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Abstract
In this thesis, I address the issue of human-swarm interactions by proposing a new set of
affrodances that make a multi-robot system amenable to human control. An affordance,
as defined by Gibson [11], is a relation between an object and a user, where the object
explicitly allows the user to perform a particular action. The identified affordances when
controlling a swarm, include stretching the swarm, molding it into a particular shape, split-
ting and merging sub-swarms, and mixing of different swarms. The contribution beyond
the formulation of these affordances is the coupling of an image recognition framework
identified by an effective deformable-medium control interface, and the accompanying al-
gorithms needed to identify the appropriate inputs, and then turn those into decentralized
control laws for the individual robots. As result, the developed human-swarm interaction
methodology is applied to a team of mobile robots.
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Chapter 1

Introduction

“While human ingenuity may devise various inventions to the same ends, it will never devise any-

thing more beautiful, nor more simple, nor more to the purpose than nature does, because in her

inventions nothing is lacking and nothing is superfluous.”

Leonardo da Vinci

The primary goal of this thesis is to employ current theoretical knowledge to achieve

a human-swarm interaction methodology that allows an untrained operator to control a

large collection of mobile robots. The question this thesis tried to answer is “Can a swarm

be amenable to human control?” A few different approaches for interacting with swarms

of mobile robots have been previously proposed. The main line of thought is to use so-

called leader-based interactions, where the user interacts directly with a small subset of the

agents, as is the case in [1], [2]. This is an effective strategy if the number of agents is

relatively small. But, it becomes cumbersome as the number of agents increases, as was

shown in [3]. Alternative approaches that have been proposed include induced flows across

agents [4], boundary value control [5], or behavioral interactions [6], [7], [8]. A related

question concerns the appropriate structure of user interfaces that ensures that sufficient

situational awareness is provided and that the user is not overloaded with swarm-related

inputs [9], [10].

The general way this relatively new problem has been addressed so far is starting from

notions of the interaction dynamics, and then approaching the human-swarm interaction

11



(a) Knob - Rotate. (b) Switch - Flip. (c) Handle - Push.

Figure 1-1: Examples of affordances.

problem as one concerning how this interaction dynamics can be effectively manipulated.

The approach taken in this thesis is the opposite, focusing on what constitutes effective af-

fordances for interacting with large collections of mobile robots. An affordance, as defined

by Gibson [11], is a relation between an object and a user, where the object allows the user

to perform a particular action. Gibson’s affordance implies complementarity of the user

and the object. It is neither an objective nor a subjective property, and at the same time it is

both. Affordances only make sense from a system point of view., e.g. system user-object.

Affordances are invariants and are holistic, e.i. what we perceive when we look at objects

are their affordances, not their dimensions and properties.

In Fig. 1-1 the affordances are rotate-able, flip-able, and push-able respectively. The objects

in the environment are knobs, buttons and handles. The action of pushing is for handles

rather than knobs, the constraint on handles allows it only to be pushed. Clearly, the def-

inition of affordance is an intriguing, useful and too controversial concept to be expressed

in only few words. An idea, more or less vague, of the meaning of the term affordance

has been given since it is critical for this work. The purpose of investigate the appropriate

definition of affordance goes beyond the scope of this thesis and many contributions to this

topic have been witnessed in the years and examples of such contributions can be found

in [12], [13].

It has been briefly described what it is assumed for affordance since this allowed to bridge

the gap between the operator and the multi-robot control interface developed. This control

interface brings into play another aspect of this thesis which relies on solving the issue of
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controlling a multitude of agents. This problem can be part of a branch of robotics that

goes under the category of bio-inspired robotics where models and algorithms try to cap-

ture useful behaviors from biology.

Animal aggregations are one of the most impressive visible patterns in biology. They often

behave as a unit with properties that are not merely a sum of the individual behaviors. Such

spatial distributions of individuals are almost universal across living organisms, from bac-

teria to higher vertebrates [14]. While the results of these aggregations are often visible, the

individual-level mechanisms that are the cause of those brilliant results are often unknown

or only partially understood. Underneath the emergent behavior its members could either

work in synchrony e.g. fish, birds or not e.g. insects. The new functionalities that these

behaviors bring include ability to build a nest or thermoregulate the hive e.g. bees, termites

or as a group to perform a well-regulated density profile e.g. schooling fish. For instance,

insects do not rely on sophisticated internal states, directed communication, global posi-

tion and range information. Insect behavior is robust to environmental changes because

very little processing occurs from when an insect perceive a new input and when it moves.

Individuals in such groups interact only with their neighbors, but those may represent a

vanishingly small fraction of the whole group.

Lots of questions may easily arise when one tries to understand such behaviors, i.e. what

kind of features of spatial aggregations do confer advantages or disadvantages in the suit-

ability of group members and how costs and benefits have been balanced during the evolu-

tion process both at the individual and group levels. Simply, the appeal of studying these

systems relies on the failure of an external human observer to understand the rules that

govern such simple individuals that emerge in a complex group behavior. Note that the

term complex has the function of descriptor for global features of a self-organizing system.

Self-organization produces complex behavior compared to the complexity of the individual

agents producing the global organization. For example, in social insects, the complexity of

an individual is clearly not sufficient to explain the organization, robustness and flexibility

exhibited in an insect colony. Hence, these systems are potentially the source to solve real-

world problems that make researchers to scratch their heads.

While the applications of swarm intelligence have propagated in various fields of engineer-
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ing and computer science into business, telecommunications, finance, social psychology,

etc. robotics-based applications are the focus of this research. Mathematical models of so-

cial behaviors such as flocking in birds, schooling in fish provide useful tools to exploit, in

artificial environments, similar mechanisms of those observed in biology and nature in gen-

eral. One of the most interesting features that clearly emerge from biology is how multiple

simple individuals could perform complex tasks once put together. Such systems, where

each individual follows a simple set of rules, provide automatically positive features to the

whole group such as scalability, decentralization, parallelism, exploitation of peer-to-peer

or via the environment local communication mechanisms among relatively simple agents,

and also self-organization, reliability and efficiency. The abilities of such natural systems

appear to transcend the abilities of the individual components which are ruled by nothing

more than a simple set of low-level interactions.

However, even if it would be possible to provide a model which is only slightly differ-

ent from the natural one, still it would not solve all problems. In an idealized situation,

the robotic system should precisely duplicate the system behavior predicted theoretically.

However, the constraints and uncertainties of real-world implementation make such an ex-

pectation unreasonable. Therefore, it is necessary to limit the scope of the experimental

system and focus on several key elements of the case of study.

Provided the motivations and bases of the research, an overview is presented to provide the

reader with a broad perspective of each chapter in relation to the complete work. Chapter

2 exposes some of the key problems one encounters when passing from natural swarms to

artificial ones. Special attention is given to the interaction problems that naturally arise.

In Chapter 3, the proposed algorithmic framework is detailed. Image recognition and

distributed control laws will be extensively treated. Computer simulations in Chapter 4

demonstrate many of the theoretical propositions presented in Chapter 3. The simulations

also allow to study the validity of the proposed algorithm and the results will be applied

to large-scale swarms that involve as many as hundred individual agents. Simulations are

analyzed and discussed in optic of the effectiveness of the developed algorithm. In Chapter

5, the details of robot design, experimental setup, and experimental results are provided.

An analysis and discussion of the experimental results is then given. Chapter 6 contains
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general conclusions, lessons, and directions for future research.
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Chapter 2

Swarms: How to Deal With Them?

“Every ant knows the formula of its ant-hill,

every bee knows the formula of its beehive.

They know it in their own way, not in our way.

Only humankind does not know its own formula.”

Fyodor Dostoyevsky

2.1 The Key is Multi-Agent

Pursuing the positive features observed in nature, a relative new field of research in-

volve multi-agent systems, where, above all, each agent need to be simple and basing

its actions just on local information. The source of such scheme is the pioneering work

by Reynolds [15], who simulated a flock of birds in flight (using a behavioral model

based on few simple rules and only local interactions). This field is heavily influenced

by natural systems and other pioneering robotics researchers such as Fukuda et al. [16],

Beni [17], Brooks [18], have contributed to build the common sense for swarm in artificial

environments. Since then the field has witnessed many developments applying different

approaches for swarm coordination, navigation and control just to cite a few.

Multi-agent or multi-robot systems can solve parallel subproblems reducing the time needed

to perform the task of the entire system and reducing the computational cost, since the sub-

problems that each agent solves are simpler than the main one. The absence of a single
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decisional center provides robustness and reliability with respect to faults of the complex

system and the goal is to obtain better performance. The design of a multi-agent system

may lead to heterogeneous agents specialized and possibly simpler and less expensive than

a single complex agent.

However, multi-agent systems give a rise to new problems, i.e. coordination of a high num-

ber of agents, manage heterogeneous agents in a uniform fashion, succeed in tasks using

not centralized, but local information and provide appropriate protocols for the communi-

cation. This architecture forces the methods and algorithms used to be scalable and deal

only on local information. Handling heterogeneous groups of agents requires an appropri-

ate abstraction of the problem to provide a correct formalization of the latter and effective

resolution techniques. Heterogeneous robots may have different type of sensors and the

geometry modeling of those sensors could be complex.

Many solutions of this problem have been proposed, but one of them is particularly useful

for the following study: instead of trying to model the sensors geometry, one can please of

modeling just “who senses who”. In this way, one looses much of the geometry informa-

tion of the problem, but on the other hand, is allowed to design easier control laws based

on the topology of the network built from this framework. These assumptions give a rise

to use graph theory to handle multi-agent systems and the stability of the latter is shown to

rely on the connectivity properties of the graph that represents agent interconnections, in

terms of not only asymptotic convergence, but also robustness with respect to fault agents.

Given the concept of a multi-agent system, if now things get more complex assuming that

one has to deal with large scale groups of robots, the features that have been just discussed

become extremely important regarding the efficiency, stability and success of the tasks as-

signed to such systems. Considering that lots of models have been developed starting from

nature observations, it is straightforward that also the terminology have been borrowed

from biology.
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2.2 Swarm Robotics

Before proceeding, since exist many different approaches used in multi-robot systems

such as distributed robotics or collective robotics, it is necessary to clarify the meaning

of swarm robotics. This concern was first explicitly stated in [19] and a definition was

provided as:

Definition 1. Swarm robotics is the study of how a large number of relatively simple phys-

ically embodied agents can be designed such that a desired collective behavior emerges

from the local interactions among the agents and between the agent and the environment.

This definition is what most closely tries to incorporate the bases of an artificial swarm.

A set of desirable features for human-swarm interaction is identified based on the principles

of swarm robotics. The system level operation of a swarm robotic system should exhibit

three functional properties that are observed in natural swarms and remain as desirable

properties of multi-robot systems [20].

• Robustness. A swarm robotic system should be able to operate despite disturbances

from the environment or the malfunction of its individuals. First, swarms are intrin-

sically redundant systems; the loss of an individual can be immediately compensated

by another one. Second, coordination is decentralized and therefore the destruction

of a particular part of the swarm in unlikely to stop its operation. Third, the indi-

viduals that make up the swarm are relatively simple, making them less prone to

failure. Fourth, sensing is distributed, hence the system is robust against the local

perturbations in the environment.

• Flexibility. The individuals of a swarm should be able to coordinate their behaviors

to afford tasks of different nature.

• Scalability. The swarm should be able to operate under a wide range of group sizes

and support large number of individuals without impacting performance consider-

ably. That is, the coordination mechanisms and strategies to be developed for swarm

robotic systems should ensure the operability of the swarm under varying swarm

sizes.
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The robotic platform developed tries to include all these properties without losing the ap-

propriate focus onto the goals of this thesis.

2.3 Interaction Problems

Imagine that you are surrounded by a million robot mosquitos and you have a single “joy-

stick” that you can use for interacting with the swarm. How should this interaction be

structured? Which tasks will need to be executed by the operator rather then by the swarm?

Recently, the way to structure interactions between human and a team of robots be-

having as a swarm has attracted significant attention. Research is motivated by recent

advances in technology, which provide new low-cost devices and computer science, that

act as source of new theoretical knowledge. This topic has not a clear classification on its

own, but mainly lies between Biology and Robotics instead. Controlling such Bio-Inspired

systems is challenging due to the limitations of each individual robot and the large number

of robots that have to be coordinated to succeed in the desired task.

One of the factors limiting the use of robot swarms in real-life environment is the lack of

appropriate method for humans to interact with the swarm. Not all systems classes allow to

clearly understand how to control them straight away, e.g. when controlling a rear-steering

bike. The human intuition can miserably fail when faced to the control of some types

of systems where is less explicit what the effect is when translating inputs into motions.

Hence, a solution could be to abstract out the main features of that system and provide

them in an understandable way to the operator, i.e. a sort of “translation” of the system

parameters to something simpler and more intuitive for the operator. Though, this needs

considerable advances in analytical tools and, in general, it has to be shown yet if this is

even possible.

The majority of the studies in swarm robotics rely on algorithms based on autonomous

operations of the robots, where the latter are often modeled starting from an insect, a bird,

a fish, etc. For example, it is uncommon for humans to collaborate, drive or interact with

insect swarms and hence the benefits of such an arrangement in swarm robotics have been

20



explored only in an infinitesimal part.

Lots of problems have to be investigated yet in this area, from the operator point of view,

i.e. What kind of abstraction of the swarm should be used? What parameters play a key

role to decide if an abstraction is better than one other? Or again what kind of medium

should be used to communicate with the (whole) swarm? The aim of such abstractions is

to being used by the operator to achieve the desired task, and they must provide the opera-

tor with sufficient information about the inner behavior of the swarm. Other problems arise

from the swarm point of view, i.e. How the swarm can use its decentralized sensors to best

perceive inputs from the human operator? An appropriate human interaction can benefit a

swarm of robots to achieve goals more efficiently.

In this work, a human swarm interaction architecture is then proposed that has all of these

desirable features. Despite all the efforts put in the research publications presented each

year, swarm robotics has not yet been able to go far beyond laboratory research. While

experiments allow researchers to study the system behavior in real environments, both to

set up and the execution are costly and time-consuming. These downsides constrain the

study of real swarm systems to the results obtained with just small size groups.

Models of swarm systems may help to identify the parameters that influence the individual

and the team performance, and in general to gain useful insights into the system design.

The approach taken in this work allowed to capture a level of abstraction of the swarm that

turned out in an effective human-swarm interface. A deformable-medium has been used as

“joystick” to efficaciously control the group of robots in its spatial distribution regardless

of the group cardinality.

21



22



Chapter 3

The Algorithmic Framework

“The formulation of the problem is often more essential than its solution, which may be merely a

matter of mathematical or experimental skill.”

Albert Einstein

The objective of the proposed algorithm is to provide the operator with an interface for

interacting with a multi-robot system. By interacting is meant being able to modify the

latter in its spatial distribution so that particular formations can be achieved. For interact-

ing with multi-robot systems, rather than instrumenting the deformable-medium interface

itself (e.g. clay), the proposed framework is based on a combination of computer vision al-

gorithms for monitoring the clay interface, and distributed robotics algorithms for mapping

the clay shape onto the robotic platforms.

The algorithmic framework relies onto two main frameworks − an image recognition

framework and a distributed swarm control framework. Its structure is illustrated in Fig. 3-

1. The image recognition framework (described in Section 3.1), consists of a fast segmentation-

inspired algorithm that classifies each observed clay shape in the image to a shape class in

the precomputed Shapes Library (SL). The shapes library contains all the allowed spatial

distributions that the swarm can assume. Once the classification has been performed, the

distributed swarm control framework (described in Section 3.2) must map the output from

the image recognition process onto executable control laws. These control laws must rely

solely on locally available information since, otherwise, the scalability of the human-swarm
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Library
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Figure 3-1: Structure of the algorithm.

interaction algorithm would suffer. As such, control laws will be developed such that the

entire swarm can be controlled in its spatial distribution in a distributed and decentralized

fashion, without being affected by the swarm size. The set of control laws forms a precom-

puted Control Laws Library (CLL). The libraries just cited (the SL and CLL), are the result

of off-line computations and between their elements there is a one-to-one correspondence,

meaning that for each shape in the SL there exists a control law in the CLL.

The way a new shape is presented to be recognized is by modifying the clay, using the latter

as robotic control interface. Whenever a new shape is observed the images recognition al-

gorithm provides as result, in an on-line fashion, the appropriate control law for the swarm.

That control law will eventually make the swarm to perform the desired shape.

3.1 Image Recognition Framework

In this section it is described the image recognition algorithm needed to classify the

shape formed by the operator with the clay. The algorithm is divided into two main parts

- the off- line part described in Subsection 3.1.1 and the on-line part described in Subsec-

tion 3.1.2. The objective of the off-line part was to extract the features of the boundary of

a shape for each class and store these features in the SL. The objective of the on-line part

was to classify the shape in an image of the clay based on the features stored in the SL.
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3.1.1 Creation of the Shapes Library

The shapes library was created as detailed in the following. The first step was to decide

how many shapes classes would have been part of the library, i.e. what spatial distribu-

tions it was desirable the swarm to perform. In the case of study, such shape classes were

directly dependent on the affordances that were desirable when controlling the swarm.

The identified affordances include stretching the swarm, molding it into a particular shape,

splitting and merging sub-swarms, and mixing of different swarms. In terms of the image

recognition framework, the latter affordances turned into Line-Shape, S-Shape, U-Shape,

Split-and-Line-Shape, etc...

Next, for all shape classes an appropriate training set had to be available to extract the

prominent shape variations within that class so as to reveal the inner details for further in-

vestigations. Note that any attempt to capture shape variations from an image training set

must be preceded by an alignment process. The alignment process is required to remove

any variations in shape due to pose differences. According to so, it has been applied first

an alignment phase and then, it was created the SL.

Shape Alignment

The shape alignment is essential to exploit, integrate or compare different data. The align-

ment procedure in the field of Image Processing is called Image Registration and, in a

simple case, given two images, one image is treated as the target image and the other is

treated as a source image; the source image is transformed to match the target image.

There are different transformation models that could be applied to do so − in parametrized

transformation fields a common choice is to use splines, if one needs invertible transfor-

mations with a smooth inverse the deformation fields that provide such property are the

diffeomorphisms, in this framework rigid-body affine transformation models have been

adopted. Another important consideration when performing image registration is about the

similarity metric assumed. In this work, the registration quality within a shape class, was

visually judged by overlapping all images in the training set in a pixel-wise fashion. The

coherence of the aligned shapes was indicated by the increased sharpness of the summation

25



images meanwhile the blurriness indicated misalignment of the latter. More formal choices

include using measures of the sum of squared distances (SSD), correlation coefficient, and

mutual information. The acquisition noise can also play a key role in this decision. The

last, but not the least important consideration to do is about the optimization procedure.

Either continuous or discrete optimization is performed.

As it will be described later, two alignment methods have been tested − a coarsened align-

ment performed by hand and also a gradient-based optimization technique to jointly align

the training images of each shape class. The principal solution adopted was the coarsened

alignment performed by hand, but also the method proposed by [21] has been successfully

implemented.

Under the assumption of 2D training binary images, similarity transformations are defined

in order to jointly align different images representing shapes belonging to the same shape

class (e.g. U − shape). Let m represent the number of shape classes. Whether method is

employed, for each shape class one desire to segment1, a different images training set and

alignment process is required. Let the training set T consist of n of such images. Specif-

ically, let the training set T be defined as {I1, I2, . . . , In}, where Ii =
(
I1
i , I2

i , . . . , Im
i
)

for

i = 1, . . . , n. Each Ik
i for i = 1, . . . , n and k = 1, . . . , m is a binary image with values of one

inside and zero outside the shape.

Both alignment methods rely on the pose parameters p1, p2, . . . , pn used to transform the

n binary images to jointly align them. As previously said, the focus was on using body and

scaling transformations to align these binary images to each other. In 2D, the pose parame-

ter p = [a b h θ ]T with a, b, h and θ corresponding to x−, y−translation, scale and rotation,

respectively. The transformed image of Ik
i for i = 1, . . . , n and k = 1, . . . , m , based on the

pose parameter pi, is denoted by Ĩk
i , and is defined as

Ĩk
i (x̃, ỹ) = Ik

i (x, y),

1In computer vision, segmentation is typically used to locate objects and boundaries (lines, curves, etc.)
in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain visual characteristics.
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where 
x̃

ỹ

1

= T [pi]


x

y

1



=


1 0 ai

0 1 bi

0 0 1


︸ ︷︷ ︸

M(ai,bi)


hi 0 0

0 hi 0

0 0 1


︸ ︷︷ ︸

H(hi)

×


cos(θi) −sin(θi) 0

sin(θi) cos(θi) 0

0 0 1


︸ ︷︷ ︸

R(θi)


x

y

1

 . (3.1)

The transformation matrix T [pi] is the product of three matrices: a translation matrix

M(ai, bi), a scaling matrix H(hi), and an in-plane rotation matrix R(θi). This transfor-

mation matrix T [pi] maps the coordinates (x, y) ∈ R2 into coordinates (x̃, ỹ) ∈ R2.

The solution of the alignment process is under-determined until the pose of one of the

sample shapes is fixed and the rest of the shapes are aligned according to the pose of this

reference shape. In the coarsened alignment performed by hand no further tools were re-

quired since one could have defined the pose parameter by looking only at each one of the

original binary images and comparing the latter to the previously selected as the target one.

A more effective and finer strategy to jointly align the binary images is to use a gradient

descent to minimize the following energy functional

Ek
align =

n

∑
i=1

n

∑
j=1
j 6=i

˜
Ω
(Ĩi− Ĩ j)2 dA˜

Ω
(Ĩi + Ĩ j)2 dA

(3.2)

where Ω denotes the image domain and k is the number of the shape class. Different align-

ment processes were required for each shape class. Minimizing 3.2 is equivalent as to

minimize the difference between any pair of binary images in the training collection within

27



the same shape class. The area normalization term in the denominator of 3.2 is again em-

ployed here to prevent all the binary images from shrinking to improve the cost function.

The update equation for the pose parameter pi is given in terms of ∇piE
k
align, which is the

gradient of the energy functional Ek
align of the kth shape class taken with respect to the pose

parameter pi. Specifically, the update equation results pt+1
i = pt

i−αp ∇piE
k
align where t de-

notes the iteration number and αp denotes the step size in updating pi. The gradient descent

method of above was then performed until convergence. This method jointly aligned the

n example shapes in a shape class, and by doing this for each shape class one could have

obtained the alignment of the complete set of training images.

The nature of the gradient descent approach described above allows only for infinitesi-

mal updates of the pose parameters, thus giving rise fundamentally to − slow convergence

properties and sensitivity to local minima. By using a multiresolution approach such weak

points can be significantly reduced. The basic idea behind this is to use a coarsened repre-

sentation of the training set to obtain good initial estimate of the pose parameters. Then,

simply by refining these pose estimates by employing progressively increasing resolution

images it is possible to mitigate the effects of the gradient descent convergence rate.

After one of such alignment procedures, the training shapes when compared against one

another, within a shape class, shared roughly the same center, were all pointing roughly

in the same direction, and were approximately equal in size. To illustrate this alignment

process, Fig. 3-2 shows the raw training set for the class of U-shapes. Each of these ex-

amples depict an orthogonal view of an U − like shape which is one of the implemented

shape classes. Notice that each performed shape was non regular and non uniform since

the quality of the particular shape was directly dependent upon the manual skills of the

operator. The U − like shape at the far left side of the figure is chosen to be fixed and its

pose is used as a reference for the alignment process. The result of the alignment process

applied to the case of the U-shape class is depict in Fig. 3-3.

The adopted alignment techniques are performed offline and for the case where a gradient

descent is used to align the training images the convergence time was directly dependent on

the quality of the employed images. When dealing with high quality images, a multireso-

lution approach is highly recommended to overcome the common unattractive features due
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Figure 3-2: Training Data: 10 2D binary shape models of the U-shape.

Figure 3-3: Alignment results of the Fig. 3-2 shape models.

to the gradient descent technique.

Implicit Parametric Shape Models

Based on the level set methods proposed by Osher and Sethian [22], the technique followed

is presented first in [21], where the shape representation have been casted in an Eulerian ap-

proach. Firstly, the signed distance function2 has been chosen as representation for shape.

Let k be the shape class. Specifically, for each shape class, the boundaries of each of the n

aligned shapes in the database used for the alignment, were embedded as the zero level set

of n separate signed distance functions
{

Ψk
1, Ψk

2, . . . , Ψk
n
}

with negative distances assigned

to the inside of the object and positive distances assigned to the outside of the object.

Then, Φ̄k, the mean level set function of the shape database for the kth shape class has been

2The signed distance function Ψ(p) from an arbitrary point p to a known surface Z is the distance between
p and the closest point z in Z, multiplied by 1 or −1, depending on which side of the surface p lies in [23]
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computed, as the average of these n signed distance functions, Φ̄k = (1/n)∑Ψk
i . Next,

within a shape class, the mean level set function was subtracted from each of the n signed

distance functions. As result, the shape variabilities for each class were extracted from nm

mean-offset functions: Ψ̃k
i for i = 1, . . . , n and k = 1, . . . , m. These mean-offset functions

were then used to obtain the variabilities within the m shape classes.

To capture the shape variabilities of a shape class, n column vectors were formed, ψ̃k
i ,

consisting of N samples of each Ψ̃k
i , where the sample locations had to be the same in

each of the training images within the same shape class. Those samples were generated

by a N = N1×N2 rectangular grid of the training images and created in such a way that

the columns of the image grid were sequentially stacked on top of one other to form one

column. Next, the shape variability matrix for the kth shape class Sk was defined as

Sk =
[

ψ̃k
1 ψ̃k

2 . . . ψ̃k
n

]
∈ RN×n.

An eigenvalue decomposition have been employed to factor (1/n)Sk(Sk)T as

1
n
Sk(Sk)T =Uk

Σ
k(Uk)T

where Uk is a rectangular N × n matrix whose columns represent the n principal varia-

tional modes or eigenshapes of the kth shape class, and Σk is an n× n diagonal matrix

whose diagonal elements, represent the corresponding non-zero eigenvalues. Each non-

zero eigenvalue reflected the variance of shape variability associated with that eigenvalue’s

corresponding eigenshape.

The N elements of the ith column of Uk , denoted by Uk
i , were arranged back into the

rectangular structure of dimension N1×N2 by undoing the earlier stacking concatenation

of the grid columns, to yeld the ith principal mode or eigenshape for the kth shape class

denoted by Φk
i .

In the end, this approach generated a maximum of n different eigenshapes
{

Φk
1, Φk

2, . . . , Φk
n
}

for shape classes k = 1, . . . , m. Notice that in most cases, the computation of the eigenvec-

tors and eigenvalues of the matrix (1/n)Sk(Sk)T is computationally expensive since its

dimensions are N×N. In practice, the eigenvectors and eigenvalues of (1/n)Sk(Sk)T can
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be efficiently computed from a much smaller n×n matrix Wk given by

Wk =
1
n
(Sk)TSk

It is straightforward to show that if d is an eigenvector of Wk with corresponding eigenvalue

λ , then Skd is an eigenvector of (1/n)Sk(Sk)T with eigenvalue λ [24].

An useful design parameter was q < n, selected prior to segmentation, which is the number

of modes to consider. The appropriate choice of this parameter was difficult and briefly, q

should be bounded to a set of values that allow to capture the prominent shape variations

present in the training set, avoiding to extend the set too much that the model begins to

capture intricate details particular to certain training shapes. In all the examples addressed,

q has been chosen empirically. In the end, m new level set functions have been introduced:

Φ1 [w1]= Φ̄1 +∑
q
i=1 wiΦ

1
i

Φ2 [w2]= Φ̄2 +∑
q
i=1 wiΦ

2
i

...

Φm [wm] = Φ̄m +∑
q
i=1 wiΦ

m
i

(3.3)

where wk =
{

wk
1, wk

2 . . . , wk
q
}

for k = 1, 2, . . . , m are the weights for the q eigenshapes in

each of the m new level set functions. The variances of these weights
{

σ l
1, σ l

2, . . . , σ l
q
}

were given by the eigenvalues calculated earlier.

These newly constructed level set functions
{

Φ1, Φ2, . . . , Φm} were proposed to be used

as implicit representation of the m shape classes. It must be pointed out that by varying wk

it has been possible to try to match a clay shape performed by the operator. Specifically,

the zero level set of Φk described the boundaries of the kth shape class with that shape’s

variability directly linked to the variability of its level set function. Note that the shape

variability allowed in this representation was restricted to the variability given by the q

eigenshapes.

All the operations detailed so far were the result of off-line computations and provided

the implicit parametric models needed for the segmentation of new images. These models

formed the Shapes Library (SL). For the U-shape class, the implicit parametric shape model
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resulted after the application of the level set methods described in [22, 21] is illustrated in

Fig. 3-4b. Fig. 3-4a is its zero level set.

(a) Zero level-set. (b) 3D visualization.

Figure 3-4: Implicit shape priors: mean shape Φ̄U−shape.

The storage of ΦU-shape in the SL allowed to complete the offline part of the image recogni-

tion algorithm for this particular shape class and provided the tools to classify if the shape

of a molded piece of clay belonged to the class of U-shapes.

3.1.2 Multisegmentation and Classification

Following the lead of [21], it has been developed a region-based model to indirectly

segment source shapes. In region-based segmentation models [25, 26, 27, 28] the evolution

of the segmenting curve depends upon the pixel intensities within entire regions. That is,

an image is seen as the composition of a finite number of regions and region-based models

rely on regional statistics for segmentation. The statistics of entire regions are then used to

direct the movement of the curve toward the boundaries of the image.

Specifically, in this section, it is presented a model for image segmentation and is described

how it fits in the scope pursued. Region-based models generally are designed to derive

the evolution equations for the curves used to segment the image. However, in this case,

those models derive gradient descent equations used to optimize the shape parameters that

indirectly describe the segmenting curve. In the following, a simple synthetic example
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presents how the region-based segmentation model was incorporated into this model-based

algorithm. The purpose of this example is to clarify the approach taken with respect to the

segmentation procedure.

Assume that the domain of the observed image I is formed by two regions distinguishable

by some region statistic (e.g. sample mean or variance). The goal is to segment this image

via the curve ~C, which in the followed framework, is represented by the zero level set of Φ,

i.e.

~C =
{
(x, y) ∈ R2 : Φ(x, y) = 0

}
.

Note that Φ is one of the level set functions derived in 3.3. Moreover, as result of this

implicit parametric representation of ~C, the regions inside and outside the curve, denoted,

respectively, by Ru and Rv, are given by

Ru =
{
(x, y) ∈ R2 : Φ(x, y)< 0

}
Rv =

{
(x, y) ∈ R2 : Φ(x, y)> 0

}
.

In the image recognition framework implemented, the parameters of Φ [w] were calculated

to vary and hence segment the image I. The parameter, w was obtained by minimizing

a region-based energy functional that is constructed using various image statistics. Some

useful image statistics, written in terms of Φ [w], are

area in Ru: Au =

¨
Ω

H(−Φ [w])dA

area in Rv: Av =

¨
Ω

H(Φ [w])dA

sum intensity in Ru: Su =

¨
Ω

IH(−Φ [w])dA

sum intensity in Rv: Sv =

¨
Ω

IH(Φ [w])dA

average intensity in Ru: µ =
Su

Au

average intensity in Ru: ν =
Sv

Av
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where the Heaviside function H is given by

H(Φ [w]) =

 1, i f Φ [w]≥ 0

0, i f Φ [w]< 0.

Yezzi et al. in [28] proposed a pure region-based model to segment I using these region

statistics and called Binary Mean Model (BMM).

Since the optimization of the energy functional is based on w instead of ~C this approach

can be considered as a parameter optimization technique. It is proposed to evolve ~C so as

to maximize the distance between µ and ν . A natural cost functional they employed is to

minimize the following:

Ebinary =−
1
2
(µ−ν)2 =−1

2

(
Su

Au
− Sv

Av

)2

. (3.4)

Graphically, the elements of this cost functional are illustrated for the U-shape class in

Fig. 3-5. The interested reader could find more details in [21, 28] on the derivation of the

inner region

outer region

zero level
set of

ΦU−shape[w]

Figure 3-5: A binary image of the clay with the zero levels set of the current ΦU-shape superimposed to
demonstrate the inner and outer regions used to compute the cost in the BMM.

update equations for the evolution of ~C. Note that this framework does not require any

particular cost functional, so one could easily fit different ones according to the specific

case of study.
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Starting from the Binary Mean Model the update equations obtained are given by

wt+1 = wt−αw∇wEbinary

where αw is a positive step-size parameter, and wt denotes the value of w at the tth iteration.

The updated weights were then used to implicitly determine the updated location of the

segmenting curve. It is important to notice that no special numerics is required in this

technique as it does not involve any partial differential equations.

This results in fast and simple implementation of their methodology and is the model that

has been used to provide the segmentation of source images. The parameter optimization

technique previously detailed was embedded in the image recognition algorithm to provide

such recognition.

Shape recognition

The algorithm described above fits in the image recognition framework since the scope was

to recognize each time what shape class (of the SL), the shape performed by the operator

belonged to. Note that since the operator could change, different operators likely do not

share the same manual skills when deforming the clay; therefore, all resulting shapes will

be non regular and non uniform. Moreover, the segmentation process has no assumptions

on what shape class of the SL (i.e. which Φk[wk]) should be used to segment the observed

shape, so in a parallel fashion, the developed recognition algorithm tries to segment the

new presented shape using each one of the models available in the SL.

Within each shape class, the segmentation process based on the minimization of the Binary

Mean Model energy functional needed time to converge to its final segmented shape which

was an unattractive feature in this case, since it was required to perform on-line shapes

recognition. The proposed solution was to break the segmentation of the new shape before

its convergence. This was made by letting the gradient descent optimization to compute

only few updates of the zero level set of Φk, the implicit parametric shape model of the

curve ~C where those updates resulted from the BMM energy functional. After those few

updates the BMM energy functional has been evaluated for each of the implicit parametric

35



shape models available in the SL and the least value across all shape classes would have

been reached only by the corresponding shape class of the new presented shape.

For example, suppose that the operator molds an U − like shape and that the precomputed

SL consists of U-shape and Line-shape classes. The developed algorithm will try to seg-

ment the observed U − like shape using both ΦU−shape and ΦLine−shape. Since the models

in the SL capture the characteristics of a particular class of shapes, when the segmentation

starts using ΦU−shape, it will result in greater decrease in the BMM cost function than using

ΦLine−shape for the segmentation.

The proposed algorithm handles pose differences in the observed images by matching the

latter with the corresponding parameterized shape models after the classification phase.

The method described above allowed us to perform on-line shapes classification using the

models stored in SL. The developed framework allowed one to add as many shapes/control

laws as desired if and only if the following held: the number of control laws was always

equal to the number of shapes in the SL. This condition had to hold all times for the match-

ing problem to be determined. So, adding a new element was a two-steps process which

required to update the SL and CLL with the implicit parametric model of a new shape and

a control law respectively.

In the end, the image recognition algorithm could have handled objects shapes that may

differ from each other in terms of scale, orientation, or center location.

3.1.3 Outline of the Image Recognition Framework

In this section, a brief overview of the algorithmic framework is provided. The recogni-

tion algorithm can be divided into two phases − a training phase and a recognition phase.

The training phase consists of shape alignment and parametric shape modeling (described

in Section 3.1.1).

For each shape class, coarsened alignment performed by hand was employed to jointly

align the given set of training shapes. Signed distance maps were generated to represent

each of the shapes in the aligned database within each shape class. By applying PCA to

this collection of distance maps, the quantities used to form the implicit parametric shape
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representations derived in 3.3 were extracted. In the end, this phase created a Shapes Li-

brary (SL).

The next part of the image analysis algorithm, the recognition phase (described in Sec-

tion 3.1.2), involved calculating the weighting parameters of the implicit shape represen-

tations to minimize the m segmentation functionals. These minimizations were performed

as an iterative process using gradient descent. At each gradient step, wk were updated to

generate new level sets Φk [wk] with k = 1, 2, . . . , m. The segmenting curves ~Ck were im-

plicitly determined by these new level sets. Based on the new position and shape of each

~Ck, the update rules for each wk were recalculated. During the recognition phase these steps

have been performed in a parallel fashion for each shape class letting only few updates to

be computed. Hence, the evaluation of the energy functionals allowed to find which shape

class was the corresponding of the new segmented shape. By breaking the segmentation

process before its convergence the algorithm has been faster enough to perform on-line

shape recognition.

3.2 Distributed Swarm Control Framework

In this section it is described how, through local information, in a distributed and de-

centralized manner, it has been possible to control large-scale swarms. It is assumed that

agents do not share a global reference system, they do not have an unique ID and they act

in an asynchronous and independent fashion. Each one of the following control laws will

be chosen after the result of the image recognition algorithm (described in Section 3.1).

Case to case, the designated control law would have been effective until the eventual con-

vergence of the swarm to the desired spatial distribution provided by the observed image.

The distributed swarm control framework assumed to have a set of mobile agents that could

be either homogeneous or heterogeneous and had shared goals. Each agent was not aware

of the intents of its group mates, even though its actions were producing an advance to the

goal of others. By these assumptions, the result was a collective emergent behavior where a

simple set of rules provided a global emergent behavior. The robots were assumed to have

a first order integrator dynamics.
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Under these assumptions, a plethora of problems easily arise. Generally, using simple

multiple agents from the control point of view, one has to face with problems such as limi-

tations in the sensors, in the allowed computational load, in the actuation system and in the

communication one. Also the algorithms have to be designed according to the structure of

the group of robots, e.i. decentralized and distributed.

The distributed swarm control framework is made by a set of precomputed control laws

which defined the Control Laws Library (CLL). Note that between the SL and the CLL

there is a one-to-one correspondence. Once the image recognition framework classified the

new source shape, with respect to those belonging to the shapes library, as consequence,

also a match was defined with respect to the set of the control laws.

Before deriving the control laws though, it is necessary the introduction of some formal

definitions. Let N be the number of agents, let s be the space dimension where the agents

live.

Definition 1. Let ri(t) ∈ Rs for i = 1, 2, . . . , N be the state of agent i at the time t. It is as-

sumed that the interaction dynamics were ruled by pairwise interactions, i.e. if agents i and

j were connected, then they shared relative state information. Since there were no distinc-

tions between agents, in the sense of leader-follower networks, each agent was designed to

maintain the desired distance and orientation with respect its neighbors.

As it will be shown, the stability of the swarm is built around results on algebraic graph

theory. Algebraic connectivity affects the performance and robustness properties of the

overall system. The stability properties of the interconnected multi-robot system will be

theoretically established by combining results from control theory, distributed robotics and

algebraic graph theory.

Definition 2. In a graph representation,

• the agents in the swarm are described by nodes V = {v1, v2, . . . , vN},

• the connections between agents become edges E = {(i, j)∈V×V |i∼ j}, (∼ denotes

adjacency) and the cardinality of E represents the number of edges.
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By these definitions, neighbors of agent i belong to a set N(i) = { j|(i, j) ∈ E} ⊆V r i

Agents within distances smaller than a certain positive amount are interacting through

artificial ”forces”. In the following it is assumed to deal with networks whose underly-

ing graphs are undirected. Consider two underlying graphs − the communication graph

Gcomm = (V, Ecomm) and the sensing graph Gsens = (V, Esens). Let Rcomm > R be the com-

munication and sensing ranges, respectively. In the case of study, agents were subjected

to sensing constraints which could have given rise to topology variations of Gsens. Such

variations did not affect the control laws since it has been assumed that Gcomm was static

and remained connected all times (i.e. communication constraints always satisfied).

3.2.1 Agent Dynamics

To define the agents’ dynamics, general energy-based definitions [2] were used, which

allowed agents to achieve distance-based formation controls. Consider a group of N mobile

agents moving on the plane (s = 2), with dynamics expressed by single integrator,

ṙi = ui, i = 1, 2, , . . . , N (3.5)

where ri = (xi, yi)
T is the position of agent i and ui = (uix, uiy)

T is its input. Let R be the

sensing range and ‖ri j‖ be the distance between agents i and j.

Definition 3. For each edge j incident to agent i it is defined a nonnegative potential

function ξi j dependent on the distance and orientation between i and j such that,

• ξi j has an unique minimum,

• ξi j is monotonically increasing near ‖ri j‖= R.

Such edge-tension energy can be defined as

ξ (r) =
1
2

N

∑
i=1

N

∑
j=1

ξi j(ri(t), r j(t)) (3.6)
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which is the summation of the local contributes

ξi j(ri(t), r j(t)) =

 1
2{ei j(‖ri j‖)}2 (vi, v j) ∈ Esens

V > 0 (vi, v j) 6∈ Esens

where ei j : R+ → R is a strictly increasing function. Let di j be parameter that expresses

the desired distance and orientation of the pairwise. Then, ei j(di j) = 0. Each agent tries to

minimize the related parts of the edge-tension energy 3.6 through gradient descent:

ui =− ∑
j∈Ns(i)

∂ξi j(ri(t), r j(t))T

∂ ri
, i = 1, 2, , . . . , N (3.7)

where Ns(i) = { j|(i, j) ∈ Esens} ⊆ V r {i} is the sensing neighboring set of agent i. The

problem has been recasted in a more useful way based on choices made so far. By stacking

the position vectors of Definition 1 it was derived a different dynamical system. This

system had r̄ as its state, where r̄ = (BKN⊗)r is the stack vector of all relative positions

between agents, BKN is the oriented incidence matrix of the complete communication graph

with N vertices, KN represents an arbitrary orientation, ⊗ denotes the Kronecker matrix

product, I is the identity matrix of appropriate dimension and r is the stack vector of agent

positions. In this case the dynamics could be expressed

˙̄r = (BKN ⊗ I2)u, (3.8)

where u is the stack vector of all inputs defined in 3.7. Since Gcomm remained connected

all times the control interconnections were fixed and time invariant.

3.2.2 The Control Laws Library

In the following it is shown how different edge-tension energies modify the swarm spa-

tial distribution by means of the local control laws defined in 3.7. The developed control

laws form the Control Laws Library (CLL). Under the assumption that the agents initial

positions were not all coincident, proofs of convergence will be given.

Let θi j be the angle under which agent i sees agent j and let di,loc be the distance reached
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so far by agent i with respect its (local) initial position.

Stretching

An example of ei j that allowed the swarm distribution to be stretched in the preferred

direction and orientation is

est,i j = ‖ri j‖2−
(
cos(θi j−θre f )∆+ sin(θi j−θre f )δ )

)2 (3.9)

where the quantities ∆ and δ represent the stretching factors with respect to the reference

orientation θre f . If ∆ = δ then the swarm formation is a circle, while when ∆ 6= δ then the

swarm is stretched into an ellipsoid, which is stretched most in the direction of the larger

of these two gains.

Theorem 1 (Stretching). Consider a system of N mobile agents with dynamics 3.8, each

steered by control law 3.7 with local energy as in 3.9. Then the system approaches a

configuration that minimizes all agent potentials and all pairwise agents assume the desired

interagent positions and orientations.

Proof: Let Rcomm > R be the communication range. Consider the function ξ that

is differentiable and continuous everywhere. The communication graph diameter cannot

be larger than (N− 1) since the graph is connected. This implies that the largest distance

between any two agents in the graph is smaller than (N− 1)Rcomm. Moreover, it results

∑(i, j)∈V×V ‖ri j‖ ≤ N(N−1)2Rcomm/2 and r̄ always evolves in a closed and bounded set.

Likewise, the level sets of ξ define compact sets and are bounded.

From connectivity it is known that a path connecting nodes i and j has length at most

(N−1). Let a > 0, from the properties of ξ , ‖ri j‖ ≤ ξ
−1
i j (a(N−1)). So, the set

Ω =

{
(r̄) |‖r̄‖ ≤ N(N−1)2Rcomm

2

}
(3.10)

is compact. We follow showing that Ω is nonincreasing and then establishing the invariant

properties of Ω. Considering that, ∂ri jξi j = ∂riξi j = −∂r jξi j and taking the derivative of ξ
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it follows,

ξ̇ =
1
2

N

∑
i=1

ξ̇i =
1
2

2
N

∑
i=1

ṙT
i ∑

j∈Ns i

∂i jξi j

=
N

∑
i=1

(∂riξi)
T ṙi =−

N

∑
i=1

(∂riξi)
T (∂riξi). (3.11)

The last term in 3.11 can be alternatively rewritten as−∑
N
i=1 ‖∂riξi‖2 ≤ 0 which is negative

semidefinite and null whenever the argument of the sum is null ∀i. Under the particular

choice made on the inter-agent potential function ξi j, let

t =
(
cos(θi j−θre f )∆+ sin(θi j−θre f )δ

)
, then the zeros of ξ̇ are those satifisfying

∑
j∈Ns(i)

est,i j
(
ri− r j

)
= 0, ∀i = 1, . . . , N

so either ri = r j or est,i j =
(
(xi− x j)

2− (yi− y j)
2)− t2 = 0. The latter represent a circle

centered in agent j’s position with the radius function of the desired distance and orienta-

tion of the pairwise to which the agent i should belong.

Let the set γ =
{

ri |−∑
N
i=1 ‖∂riξi‖2 = 0

}
⊂ Ω. Applying LaSalle’s invariance principle

from initial conditions in Ω the solutions of the system converge to a subset of γ , more

precisely of {ri |xi, yi ∈ span{γ}}. If that, agents’ relative velocities ṙi j = 0 and the sys-

tem dynamics becomes ˙̄r = −(BKN ⊗ I2)[. . .∂ri jξi j . . .]
>. So both ẋi, ẏi belong to the range

of the oriented incidence matrix B of Gcomm. For a connected communication graph,

range(BKN ) = span(γ)⊥. Thus, in the invariant set within γ , xi, yi ∈ span{γ} and this

implies that ẋi, ẏi ∈ span{γ}. The latter result allows to conclude that we are faced to a

contradiction unless ẋi, ẏi ∈ span{γ}∩ span{γ}⊥ ≡ {0}.

In the end, the control law 3.7 is zero at steady state implying ξi j is locally minimized. If

ξi j is (locally) convex within the communication range, then the extremum is unique and

the agents are stabilized to their desired positions and orientations. Collision avoidance is

not ensured by the definition of ξi j so an appropriate algorithm that provides that has been

implemented. �

The existence and uniqueness of the solutions of 3.8 is provided by the boundness of 3.7.
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If one of the two assumptions (connection property of Gcomm and initial positions not all

coincident), cannot be guaranteed, it could happen though, that ri j /∈Ω and by consequence

the stability is not guaranteed.

Bending

A series of different spatial distributions that represent curve shapes were obtained by other

choices of ei j, e.g. U-shapes, S-shapes, L-shapes rotated by the desired angles. One of such

potentials is

ebend,i j = ‖ri j‖2−
(
cos(θi j−λ )∆+ sin(θi j−λ )δ )

)2 (3.12)

where  λ = (θre f +σ)

σ =± f (‖di,loc‖)π

c

(3.13)

with c > 0 is a constant and

f (‖di,loc‖) =



0, ‖di,loc‖ ∈ sec1

1, ‖di,loc‖ ∈ sec2

2, ‖di,loc‖ ∈ sec3

3, ‖di,loc‖ ∈ sec4

(3.14)

Let sec∗ > 0 be sections of progressively increasing distances as illustrated in Fig. 3-6.

The effect of λ is to modify the orientation angle of each pairwise depending upon which

section an agent belongs to.

The statement and proof in the case of bending energy are intentionally excluded since they

follow the same fashion of Theorem 1. Notice that the only change in the proof of the theo-

rem would be restricted to one of the solutions of the derivative of ξ . More precisely, the so-

lution of ebend,i j = 0 is a circle of a different radius since t =
(
cos(θi j−λ )∆+ sin(θi j−λ )δ )

)
.

Splitting and Organizing

The purpose of the following was to provide the (decentralized and distributed) splitting

capability to the swarm. Then, the subgroups could have been arranged in different spatial

distributions using one of the edge-tension energies described above. Once the swarm was

43



Figure 3-6: Sections definition.

separated, it could have happened that Gsens would have eventually lost the connection

property. Nevertheless, it was still possible to ensure convergence of the system through

the control law of the form in 3.7 since Gcomm remained connected. The local contributes

to the edge-tension energy in 3.6 had to be slightly modified to capture these features

ξsplit,i j =

 ±1
2r2

i k sign[cos(ρ) sin(ρ)], ‖di,loc‖ ≤ sec1

ξi j, otherwise
(3.15)

where ρ = θre f − π

2 and k > 0 is a design parameter. This particular choice of ρ let the

swarm to be split in the perpendicular direction with respect to the desired orientation θre f ,

to assume.

As in the previous case, the statement and the proof of the splitting and organizing energy

follow the same fashion of Theorem 1. Notice that no switching topologies were involved

in this case since the communication graph remained connected.

Merging

For the sake of completeness, it has been developed an appropriate strategy to allow the

swarm to rejoin after it was split or to come back to its initial spatial distribution. The basic

idea under the merging capability relies on the possibility to drive all agents to locally agree
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on a value of interest through a consensus problem. Provided that each agent remembers

its (local) initial position, by applying a self edge-tension energy such as

ξi,loc =
1
2
(‖di,loc‖− p)2

where p ≥ 0 is the desired distance on which agree, all agents would eventually have re-

turned to their initial positions. Even in this case, the statement and the proof of the merging

energy follow the same fashion of Theorem 1.

3.3 Outline of the Algorithmic Framework

In this section, it is provided a brief overview of the proposed algorithmic framework.

The proposed algorithm can be divided into two phases − an image recognition phase and

a swarm control phase. Whenever the operator presented a new shape (part of the shapes

library) by modifying the clay-based controller, the image recognition algorithm analyzed

the observed image and classified it. As result, starting from the output of the recognition

phase the corresponding control law (part of the control laws library), could have been

selected. Then, this information has been sent to a random agent, which started to spread

the signal to its neighbors. Thank to the properties of Gcomm, that agent was connected with

all its group mates and, by consequence, the whole swarm would have been subjected to the

same control law. In the end, the control laws (described in 3.2.2) would have eventually

driven the swarm to assume the desired spatial distribution.

A notable remark is that both frameworks did not share any special connection, so any

change in one did not affect the other. This feature is highly desirable in such a problem

since allows one to modify, redefine or create new frameworks and substitute the proposed

ones in a simple, fast and functional manner.
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Chapter 4

Simulations

“Nothing happens until something moves.”

Albert Einstein

Computer simulation is highly common within the swarm intelligence research com-

munity. The reason why simulations are the most common method of researching such

systems is because they are way simpler in terms of implementation and time needed to

run with respect to the real robots case, especially for a large number of agents. In the

case of study, the overall aim was to test the effectiveness of the proposed algorithm and

to investigate the predictions of theoretical modeling, to enhance understanding of self-

organization with a collision avoidance behavior included.

In cases where theoretical results are either incomplete either absent, simulations are ex-

ceptionally important, as they advance the knowledge of swarm-intelligent systems where

mathematical models are yet undeveloped.

The stability results of Chapter 3 have been verified under MATLAB environment. A set

of four shape classes has been employed in the simulations to test the image recognition

framework. Specifically, the shape classes were: Ball-like, Stretch-like, U-like and S-like

shapes.

Regarding the distribute swarm control framework a larger set was employed. Three

main categories of control laws were developed allowing a group of mobile agents to be

stretched, bended and split in the desired direction and orientation. Combining the cate-
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gories of above more possibilities emerged so that the swarm could have been split and

stretched or bended to achieve various shapes, e.g. S-like, U-like, split-and-stretched-like,

split-and-U-like, etc. Another separate category of control laws provided the merging ca-

pability whenever one desired to merge the swarm after it was split or to bring it back to its

initial spatial distribution. Finally, the multi-robot system could have been either homoge-

neous either heterogeneous.

In the end, summarizing all the possibilities, were considered 3 different bending configu-

rations and 1 stretched configuration. This led to 4 main configurations which could have

been both mixed regarding to the homogeneous/heterogeneous property and again split.

Considering all cases, up to 16 control laws were available and extensively tested.

Simulations followed the algorithm flow as depict in Fig. 3-1. Firstly, a synthetic image

is processed during the image classification phase1 and then, once the right shape class is

identified, the multi-robot system is subjected to the appropriate control law2. Synthetic

images were produced to verify the classification phase and according to what detailed

in Section 3.1 results showed the effectiveness of the proposed methodology. Each time

a synthetic shape was presented, as result, the recognition algorithm computed the cor-

responding control law provided by the right match between the SL and the CLL. The

recognition algorithm required less than 3 seconds to observe and recognize the presented

image on a PC equipped with a 2 Ghz Intel Core 2 Duo CPU and 4 GB 1067 Mhz DDR3

RAM memory.

Subsequently, the control laws were tested on a group of robots consisting of hundred

mobile agents that were assumed to be dimensionless with identical first order integrator

dynamics. Initial positions were generated by an uniform distribution in an area of 10×10

units, centered at the origin. Simulations verify that the system converged to invariant sets

that corresponded to the desired tight formations. Each time, the shape of the formations

which the swarm converged to was determined by the energy functions described in Sec-

tion 3.2.

For sake of completeness the convergence time has also to be taken into account. For the

1The technique described in 3.1
2One of the control laws described in 3.2
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(a) Line-like formation: orientation θre f = π/4.
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(b) Corner-like formation: orientation θre f =
5π
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(c) U-like formation: orientation θre f = 0.
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(d) S-like formation: orientation θre f = 0.

Figure 4-1: Some results for hundred mobile agents.

same PC as detailed previously the convergence times lie between 100 to 150 seconds. The

greater bound was reached when performing the more complex shapes.

Extended large-scale simulations have been performed and some results are visible in

Fig. 4-1. These results are obtained by the following parameters ∆ = 8, δ = 0.5, sens-

ing range R = 6, 0 < sec0≤ 10, 10 < sec1≤ 20, 20 < sec2≤ 33.3, 33.3 < sec3≤ 50 and

sec4> 50. Within each simulation the parameters are kept constant to the initialized values.

Maintaining all the simulation parameters fixed throughout independent simulations, as the

parameters ∆ and δ varied, different stretched spatial distributions were obtained. The

stretching direction was determined by the greater between these two gains. As the ratio

between ∆ and δ increased, the stretching of the robots formation also increased. Similarly,

as the ratio was converging to the unit, the spatial distribution reached was non-stretched,
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i.e. a circle. Note that, both gains were bounded within a set of values, the reason of this

derived directly from the definition of the potential functions of Section 3.2.

A similar approach has been taken to test the sensitivity with respect to the variation of

the other parameters. The way the variations in the sensing range affected the formation

the swarm converged to is that smaller sensing ranges produced more compact and tight

spatial distributions while bigger ones resulted in more loose and dilated distributions. One

reason for this behavior is that since an agent with a bigger sensing range is able to “see”

further, also has better chances to have more neighbors and that translates into bigger input.

The latter meant also greater movements since the agents’ dynamics was a pure first order

integrator.

The case of heterogeneous swarms has also been investigated and some fascinating behav-

iors emerged. The results of Figs. 4-2, 4-3 and 4-4 were obtained under the same set of
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Figure 4-2: Heterogeneous stretched-like formation with reference orientation θre f =
π

4 .

parameters as for the previous case. The only change was that since now there were two

different types of robots, also two sensing ranges had to be defined. Specifically, Rtype1 = 6

and Rtype2 = 4. Note that for the case of heterogeneous stretched-like formations, Fig. 4-2,

there is not a notion of sections since the bending is not performed. Consider the case
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Figure 4-3: Heterogeneous U-like formation with reference orientation θre f =
2π

3 .

Figure 4-4: Heterogeneous S-like formation with reference orientation θre f =
2π

5 .

where there are two classes of robots rtype1 and rtype2, with identical dynamics and control

laws, but they differ in the sensing range Rtype1 > Rtype2. In the figures, rtype1 agents are the

depicted as circles and rtype2 ones as triangles. Using the same energy functions defined in
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Section 3.2, the simulations in this case showed how rtype1 agents tend to move themselves

to the extremities of the formation. A possible explanation is given by the fact that since

rtype1 agents have a greater sensing range, they also have better chances to have a greater

cardinality of the neighboring set with respect to rtype2 agents. Hence, it is likely that the

input for these agents is greater in magnitude.

Once these basic shapes were simulated effectively, a further step has been taken to test the

distributed and decentralized splitting capability of the multi-robot system. Some results

of split formations are depicted in Fig. 4-5. The parameters for those simulations were the
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(a) Split-circles-like formation: orientation θre f = 0
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(b) Split-lines-like formation:orientation θre f =
π
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(c) Split-bends-like formation:orientation θre f =
π

3

Figure 4-5: Some split results for hundred mobile agents.

same as in the previous case with one class of robots, e.i. ∆ = 8, δ = 0.5, sensing range

R = 6. Note that in the case of split-bend-like formations as in Fig. 4-5c, the sections were

0 < sec0≤ 10, 10 < sec1≤ 20.8, 20.8 < sec2≤ 41.6, 41.6 < sec3≤ 62.5 and sec4 > 62.5.

52



Results showed how the adopted strategy was effective to control the swarm in its spatial

distribution even in the case when the swarm is split into multiple groups.

Once a formation has been reached also the merging capability was tested and along with

the assumption that each agent remembered its own local initial position the swarm was

able to eventually reach its initial configuration.

4.1 Discussion of Simulations

In this Section the simulation results have been critically examined in the light of the

previous state of the subject and judgements were made as to what has been learnt from

this work. The proposed algorithm as a whole provides an effective way to interact with

a multi-robot system. Moreover, it indicates a way towards a possible solution to over-

come the major problems related to human-swarm interactions such as how this interaction

should be structured, how to communicate with the whole group of robots and how to ab-

stract the swarm out in such a way that could make sense for an user.

The few previous approaches to swarm control share the same modus operandi when try-

ing to solve the problems deriving from that. Firstly, a notion of interaction dynamics is

stated and this constrains the model of the system to be already partially defined in such

a way that then harsher time is passed to figure out how this interaction dynamics can be

effectively manipulated. The approach taken in this work followed the opposite direction

with respect to all previous attempts by focusing on what constituted effective affordances

for interacting with large collections of mobile robots. The goal of the entire work was to

demonstrate the effectiveness of this new approach, so a plethora of improvements are left

to do. As with any computer simulation, even this one when interacting with a multi-robot

system, had certain weaknesses. Different considerations have to be taken with respect to

the image recognition framework and the distributed swarm control framework.

Simulations showed how the image recognition framework turned out to be highly effective

in the classification of the shapes present in the test images. As detailed in Section 3.1.1, an

off-line computation of the SL is required. Both the alignment and the features extraction

from the training shapes are phases that needed some time to be executed. A difficult choice

53



was to set the right parameters when extracting the features within a shape class, specif-

ically the number of modes to consider after the eigenvalue decomposition of the shape

variability matrix was performed. The image recognition algorithm, in the end, needed

only few seconds to be executed and to provide the right classification.

On the side of the distributed swarm control framework, simulation results brought one key

lesson derived from the use of local control laws. Since all agents defined the consensus

values locally within their neighbors sets, this produced local variations in the reference

orientation. The effects of these types of control laws were most visible in stretched-like

shapes, and the most pronounced examples of those characteristics are depict in Figs. 4-

1a, 4-1b, 4-5b, 4-5c, where the formations show non regular and wavy effects.

Slow convergence problems arise in the simulations since agents’ inputs are driven by gra-

dient descent based on their neighbors sets. By consequence, as the spatial distribution

of the agents was expanding, also greater distances were reached between the agents re-

ducing the cardinality of their neighbors sets. Noting that all agents’ movements were

asynchronous and independent from each other, a smaller neighbors set meant also smaller

input and slower velocity. A solution for that could be to let the system to be time-varying

so that the gains could change in such a way that they make sure the convergence velocity

is improved. In accordance to that, the system dynamics would change and new proofs of

convergence would be necessary.

In general, each framework lacked of a fast way to enlarge both the library of control laws

and the shapes one. A considerable amelioration could be achieved by letting the libraries

to define new shapes/control laws on-line by combining a set of the already defined ones

and resulting in new possibilities for the entire swarm. Once a formation was reached, the

merging control law had to be executed before that a new formation could have been de-

manded. This derives directly from the definition of the potential functions of Section 3.2

where agents changed their consensus values in part depending on what section they be-

longed to. For sake of clarity, the sections are those depict in Fig. 3-6.

Whenever two agents would have been spatially too close to each other, such potential

functions did not make them to repel themselves, so the collision avoidance capability has

been implemented to ensure collision-free movements. As result, the potential functions
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generated control laws determined by two terms: an attraction consensus based term and

a repulsion term. By consequence, another challenging phase was to choose the attraction

and repulsion gains to promote smooth behaviors. Notice that since the agents’ had a first

order integrator dynamics, the problem of choosing the right combination of gains was not

as hard as when dealing with more complex dynamics, inertia or other general constraints.
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Chapter 5

Experimental Results

“In theory, there is no difference between theory and practice. But in practice, there is.”

Yogi Berra

Besides the theoretical models and the simulations tools adopted, a further step that has

been taken was the experimentation with real robots. After all, various limits constrained

the experimental phase. Firstly, the physical implementation is expensive and time con-

suming, but can bridge the gap between the theoretical problems one tries to solve and the

real-world solutions for them. Other constraints were posed by the number of robots that

constituted the swarm; it is generally impractical to have a swarm of robots for research

purposes larger than few tens. A number of reasons motivate the experimental tests, maybe

the main one is the current lack of experimental examples in swarm intelligence literature.

In such an immature field of study, it is reasonable and more useful to rely mainly on strong

foundation in theory without attempting any weak implementation. However, at this point,

the field has matured so the further advances require both theory and practice combined.

Another reason lays on the fact that the idea developed in this thesis to interact with multi-

robot systems propose a brand new approach never taken before in literature. Previous

attempts to human-swarm control started with the definition of the interaction dynamics

and only then approaching the human-swarm interaction problem as one concerning how

this interaction dynamics can be effectively manipulated.

A number of other methods have been proposed, with varying success. What it is presented
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in this work takes a completely different prospective to solve the problem of controlling a

swarm of robots by including the concept of affordances. This allowed the task to be far

more intuitive and not affected by the number of agents in the swarm.

Simplicity is one of the pillars of swarm intelligence. Despite the simplicity of each individ-

ual, systems exhibited complex behaviors and these claims of simplicity seemed to suffice

the exhibition of swarm intelligence. A secondary objective of the experimental phase is

motivated by the desire to test the limitations of this principle of simplicity. The primary

goals of experimentation follow from the motivations previously cited. The choices made

regarding the experimental design were determined by the following goals:

• Develop a system capable of interacting with a multi-robot system and following in

completion of the task of self-organizing in different formations.

• Introduce a novel approach to multi-robot systems interaction that is intuitive, not

affected by the swarm size, does not require particular skills by the operator and has

to be reliable and low-cost.

Figure 5-1: Khepera III.
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5.1 Khepera III

In 1996 at the LAMI laboratory at EPFL (Lausanne, Switzerland) the first version of a

differential wheeled mobile robot also known as Khepera was developed. Small, fast and

architectured around a Motorola 68331, it has been widely used by lots of researchers and

universities worldwide. Since then, many extensions and new versions have been available.

In this work a group of Khepera III robots, Fig. 5-1, has been used to verify, on real robots,

the simulation results previously obtained. Further details on the Khepera III robot can be

found in [29]. The way these mobile robots have been controlled is by the implementation

of a software-based PI controller.

5.2 Deformable-Medium

The fascinating appeal taken in this work derives directly from the solution adopted to

control the swarm, namely the control interface. The objective of the proposed algorithm

Figure 5-2: Clay interface representing two shapes examples: an U-like shape and a Ball-shape.

was to provide the operator with an interface for interacting with a multi-robot system

and control the latter to assume a particular formation by molding clay, Fig. 5-2. This
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solution allowed the interface to be low-cost, and reliable since it was not instrumented at

all. Considering the case of heterogeneous swarms, from the interface point of view, this

situation could be handled easily with clay of different colors.

5.3 Experimental Set Up

The experimental environment is described in this section. Each experiment started with

an arbitrary initial spatial distribution of the group of robots. In all tests there was no max-

imum speed set for the Kheperas III, the only limit was the hardware/physical one. All

experiments were conducted using a group of Khepera III robots introduced in Section 5.1.

A camera was computer-controlled, and positioned above a high contrast surface where the

clay had to be placed as illustrated in Fig. 5-3.

The only assumption needed is that the operator had to know in advance what shapes, and

by consequence, what spatial distributions were achievable by the swarm. The previous as-

sumption simply means that the operator had to be aware of the precomputed shape library

SL.

Assuming that the number of control laws was always equal to the number of shapes for the

matching problem to be determined, the developed framework allowed one to add as many

shapes/control laws as desired with a two-steps process. This process required to update

the SL and CLL with a new element respectively as detailed in Section 3.1.2. The com-

munication between the computer and the agents is provided through a dedicated Wireless

network. The agents’ positions are supplied by an appropriate optical motion capture and

tracking system based on a set of nine high speed motion capture cameras properly oriented

to observe the scene where all the mobile agents were placed. The high accuracy, precision

and updating rate of the tracking system allowed to have all the information needed during

each step of the algorithm.
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Figure 5-3: Experimental set up.

5.4 Experimental Cases and Results

Each experiment required to be initialized in such a way that the multi-robot system

allowed the underlying communication graph Gcomm, to be connected. By consequence,

the agents’ initial positions had to satisfy the communication constraints. Whenever a new

shape has been detected the image recognition algorithm computed the appropriate match

from the SL to the CLL, Fig. 3-1. Once the PC has computed the appropriate control law,

the signal has been sent through Wireless network to a random agent in the swarm. Based

on the assumption that Gcomm was remaining connected all times, the signal was spread out

to the whole swarm.

Figure 5-4 shows how the swarm successfully reproduced the desired U-like shape for the

case of six robots. The parameters in this case were: ∆ = 0.9, δ = 0.13, sensing range

R = 1 m and the bending sections were defined in meters and valued: 0 < sec0 ≤ 0.6 and

0.6 < sec1 ≤ 0.8 and sec2 > 0.8. The trajectories of the robots have also been considered

and are shown in Fig. 5-5. The crosses in the figure represent the agents initial positions.

The agents positions have been obtained by the optical motion capture and tracking system.
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Figure 5-4: U-like shape superimposed on the swarm: θre f = 0.

Figure 5-5: Trajectories of the swarm of Fig 5-4.

It is important to note that the purpose was not try to match the exact shape in the SL, but

for example, perform a generic U-like shape instead. To clarify this consider that when-

ever an operator performed a shape (of the SL), the robots started to move after that the

appropriate control law had been identified. The final positions, though, were dependent

on the initial positions since each control law acted locally. As result, whenever an operator
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Figure 5-6: U-like shapes
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wanted the swarm to perform a shape, i.e. U-like shape, the final spatial distribution could

have been different each time. In Fig. 5-6 are depicted some U-like shapes obtained and

although all formations are different from one other, the swarm successfully converged to

an U-like shape each time.

The implementation of the algorithm on actual robots revealed the effectiveness of the idea

in the restricted case of a small group of robots. The natural evolution of the followed

approach expected that the next step was to scale up the system and verify again the al-

gorithm behavior with new experiments. In accordance to that, the group of robots has

been extended to a number of eleven robots. Following with the example of the U-like

shape, Fig. 5-7 shows how the extended swarm successfully managed to perform the de-

sired shape. The parameters in this case were: ∆ = 0.9, δ = 0.2, sensing range R = 1 m and

the bending sections were defined in meters and valued: 0 < sec0≤ 0.6, 0.6 < sec1≤ 0.75,

0.75 < sec2≤ 0.95 and sec3 > 0.95.

Even if the “quality” of the agents’ trajectories is not a parameter included in the goals of

this implementation, the swarm trajectories are taken into account. The need of a transfor-

mation between the first order integrator dynamics to the differential wheel-drive dynamics

of the actual robots and the inertia of the moving Kheperas III brought some serious chal-

lenges when dealing with the collision avoidance. In fact, the trajectories of the mobile

robots are affected by non-optimal behaviors when the repulsion term ruled the interaction

within an agent’s neighboring set, Fig. 5-8.

The same features previously exposed in the case of six robots emerged in the experiments

on the extended swarm. Considering only one shape class, this means that depending on

the robots’ initial positions, the formations the swarm converged to were always different

to one other, nevertheless, each time the swarm managed to achieve the desired spatial

distribution. A notable remark is again that the purpose of the distributed swarm control

framework was to make the swarm to assume a generic shape belonging to the appropriate

shape class and not exactly matching the one presented by the operator. Some results of

U-like shapes obtained in different experiments are depict in Fig. 5-9.

Another parameter for evaluation of the proposed algorithm is the convergence time. The

proposed method has been tested with different number of robots and the larger is the
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Figure 5-7: U-like shape superimposed on the extended swarm: θre f = 0.

Figure 5-8: Trajectories of the extended swarm of Fig 5-7.

group, the greater the convergence time. In the case of six robots, the convergence times

vary from 20 to 35 seconds depending on the shape that has to be performed meanwhile in

the case of eleven robots the convergence times vary from 60 to 90 seconds. The greater

bounds stand for the more complex shapes, e.g. splitting and/or bending cases.
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Figure 5-9: U-like shapes: extended swarm case.
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5.5 Discussion of Experimental Results

In this Section the experimental results have been analyzed and considerations were

made as to what has been obtained in the experiments. The general characteristics of the

algorithm emerged during the simulations still held for the experimentation phase. The

experimentation of the developed algorithm successfully allowed untrained operators to

interact with the multi-robot system utilized by means of the proposed affordances. The

strength of the encouraging results obtained lays in the validity of the followed idea which

might pose a pillar towards the comprehension of how the interaction with multi-robot sys-

tems could be structured.

Further theoretical work is needed in this direction and most of the problems still remain

unsolved; a critical one is how to accommodate the possibility to move the swarm once

the desired formation is reached or how to comprehend some tasks capabilities beyond the

ability of assuming those tight formations. Again, the goal of this work is to show a way

where to address greater research efforts since this work takes clearly the form of an invi-

tation rather than a solution for the human-swarm interaction problem.

A number of weaknesses were present in the operation of the experiments. Despite the gen-

eral success of the experiments, there will always be possible improvements in a system

of real robots. Perfection cannot be obtained while working in the real world and dealing

with various sources of uncertainties. Due to spatial and other limitations, the scale of the

experiments was limited to at most eleven robots. This number was adequate for demon-

strating the elements in the set of the control laws. However, it is insufficient for thorough

investigation of behaviors requiring large group size. Due to time constraints not all control

laws were tested.

Other limitations have arisen from the model uncertainties of the robots and the transfor-

mation between the first order integrator dynamics, on which the control laws were defined,

to the differential wheel-drive dynamics of the Kheperas III. The latter transformation re-

quired some fine tuning to allow a single agent to assume smooth-like behaviors when

trying to follow inputs originally computed for a first order integrator model. It has not

been an easy task to achieve such property.
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All parameters had to change with respect to the simulation phase, moreover some of them

acquired physical meaning due to the experimental elements involved in the set up. Due to

the sensitivity of the implementation, the collision avoidance term in the potential functions

of Section 3.2 has been changed to a different repulsion function. As the scale of the group

of agents increased, the attraction and repulsion gains had to be significantly decreased to

preserve the stability of the system.

The experimental results, in the end, provided enough proofs in favor of the proposed al-

gorithm.
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Chapter 6

Conclusions

“People love chopping wood. In this activity one immediately sees results.”

Albert Einstein

The objective of this thesis was to test the effectiveness of a novel approach for interact-

ing with multi-robot systems. Untrained operators should have been able to control large

collection of mobile agents, so a decentralized and distributed approach was taken to solve

the problem.

The interaction method selected to stimulate the group of robots is by means of the defini-

tion of affordance. The affordances we identify when controlling a swarm, include stretch-

ing the swarm, molding it into a particular shape, splitting and merging sub-swarms, and

mixing of different swarms. One object that provides such affordances is clay, which is a

physical object that it is easy to manipulate. As such, the main contribution of this thesis

is the identification of the clay as an effective multi-agent control interface, and the accom-

panying algorithms needed to identify the clay shapes, and then turn those into distributed

control laws for a team of mobile robots.

From the architecture point of view, two main frameworks have to be distinguished −

an image recognition framework and a distributed swarm control framework. The im-

age recognition framework had to provide the right match between two off-line created

libraries, namely the Shapes Library and the Control Laws Library. Results showed how

the developed recognition phase was highly successful, fast and robust to provide such clas-
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sification even in cases where the operator performed non regular and non uniform shapes.

The distributed swarm control framework was developed without a global supervisor, but

on the contrary, allowed only limited local information to be available. The single mobile

agents could reach the final objective by relying only on the collaboration and coordination

within the swarm. In this way complex behaviors and improved capabilities can emerge

from such simple entities.

Different cases were designed and both simulated and tested to verify the validity of the

idea. In such novel approach, there are no limitations in the possible extensions and im-

provements left to be done. For sake of completeness, some of the main ones are:

• develop more complex shapes, which is the most trivial one.

• Include the capability of moving the swarm once a formation is reached.

• Allow some task capability beyond the spatial self-organization.

• Improve more scalable communication between the operator and the swarm once the

appropriate control law has been identified.

• Speed up the convergence rate of the swarm.

• Reach deep theoretical advances before facing any real implementation.

As result, this work provides a clear proof of the effectiveness of the proposed method

for interacting with multi-robot systems. Nevertheless, further theoretical advances are

required to found the presented idea as to be a solution for interacting with multi-robot

systems.
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