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Sensor Planning for a Symbiotic UAV and UGV system
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Abstract— We study the problem of coordinating an Un-

manned Aerial Vehicle (UAV) and Unmanned Ground Vehicle Prior Soil Health

(UGV) to collect data for a precision agriculture application. o

The ground and aerial measurements collected by the system

are used for estimating Nitrogen (N) levels across a farm

field. These estimates in turn guide fertilizer application The H H |
Deploy UAV + UGV to GP?!‘JJ(?ZI:S" Assign Soil
gather samples of soil Regression Treatments

Are all

treatment

capability to apply the right amount of fertilizer at the rig ht
plans certain?

time can drastically reduce fertilizer usage which is desiable
from an environmental and economic standpoint.

We propose to use a symbiotic UAV and UGV system in which
the UGV is capable of muling the UAV to various deployment
locations. This would allow the system to overcome the short
battery life of a typical UAV. Our goal is to estimate N levelsover
the field and assign each point in the field into classes inditiag
N-deficiency levels. Towards building such a system, the pap
makes the following contributions: First, we present a metlod to
identify points whose probability of being misclassified isabove
a threshold, termed as Potentially Mislabeled (PML). Secod,
we study the problem of planning the UAV path to visit the
maximum number of PML points subject to its energy budget. Fig. 1.  The problem formulation: Precision Agriculture ngi the
The novelty of our formulation is the capability of the UGV ~ UAV+UGV system. Prior soil health data is available, but & seatment
to mule the UAV to deployment points. Third, we introduce plan needs to be developed. If practitioners are uncertatheotreatment
a new path planning problem in which the UGV must take a _plan a;soc_iated Wi_th some part of the fielt_j, mobile _robots jcavide
measurement near each PML point visited by the UAV. The immediate information about the soil health in that regihe concept of
goal is to minimize the total time spent in traveling and takig assigning treatments based on real-time data is calledsRredgriculture.
measurements. For both problems, we present constant-famt
approximation algorithms. Finally, we demonstrate the utlity
of the system and our algorithms with simulations which use

manually collected data from the field as well as realistic eergy  gnd difficult to plan against weather conditions. Further,
models for the UAV and the UGV, soil moisture, crop height, and pest infestations cannot be
I. INTRODUCTION measured remotely in a vegetated crop. Manual methods

. . ) __involve the collection of data by humans who either gather
Precision agriculture offers to improve crop productivityio qata by walking through the field, or guide a vehicle

and farm profitability through improved management ofq inned with a sensor [4]. Manual data collection process
farm inputs, leading to better environmental quality [19rF .51 be tedious and time-consuming and we are working on

example, by measuring Nitrogen levels in the soil across §iiging a robotic system which uses low-cost Unmanned

farm and applying the right level of nitrogen at the rightaeia| Vehicles and Unmanned Ground Vehicles (UGVs)

time and place, it is possible to reduce fertilizer usage by 2working in conjunction to collect such data.

percent without affecting corn yield [2]. : : . i .
One of the key components of precision agriculture is data Our system will provide multiple on-demand sensing

collection. At present, there are two primary approaches t%apabnmes, and combine the strengths of ground and laeria

data collection for precision agriculture: remote sensing robots: Ground robots are capable of traveling long distanc

) . : .carrying large loads and measuring soil data. On the other
manual data collection. Satellite and aerial remote sgnsir) . . : .
T o hand, small aerial vehicles can take images from a low alti-
are severely limited by cloud cover [3]. Satellite imageyma L ! )
. : : tude but have limited battery life and the images may need to
not be available at desired times (the update frequency

o e complemented with ground measurements. Our proposed
satellite images can be anywhere from 3 to 26 days). Remotg, . " . !

. . . ; solution is to use a UGV to deploy a small, inexpensive UAV
sensing from a manned aerial device (either flown by a

ilot or radio-controlled by a professional operator) isty at carefully selected measurement locations. As the UAV is
P yap P taking aerial pictures over a small region, the UGV will take

P. Tokekar, J. Vander Hook, and V. Isler are with the Depantme SOil measurements. The UAV will then land on the UGV

of Computer Science & Engineering, University of MinnesoxS.A.  which will take the UAV to the next deployment location.
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Nitrogen (N) levels in an agriculture plot. We start with alLabels can then be assigned to points based on which is
prior N level map of the field (e.g., obtained from satellitemost likely to be correct, given the estimates of N levels at
imagery). Our goal is to identify regions with N stresseach point. We use the shorter notatiqifz?) to denote the
(deficiency) by assigning a label based on the estimated ptobability of the most likely label.

level to each point. For this purpose, we first show how points We define Potentially Mislabeled (PML) points as all
with high probability of mislabeling error can be identifiedpoints in X for which the probability of the most-likely label
(see Section IV). The system is then charged with takingeing correct is below a user-desired valyedP(0, 1).

both aerial and soil measurements near these points. The

main bottleneck in the system’s lifetime is the battery life Xpmi = {z; € X 1 P(x;) < Py} (1)

of the UAV. Therefore we seek to maximize the number of ] N )

points that will be visited by the UAV+UGV subject to this We can increase the probability of the label being correct by

battery constraint. Note that even though the UGV can mul@King soil and aerial measurements near the PML points, as
the UAV between the measurement locations, landing on € Will discuss in Section IV.

the UGV and ascending to a predetermined height consume<ON€ Simple strategy would be to take measurements at
energy. Our main contribution in Section V is to show how t&Very PML point until we are sufficiently certain of that
compute a series of UAV deployments which visit at least ROINt'S true label. However, we operate under two practical
constant factor of the points visited by an optimal algerith constraints: The UAV ha_ls a limited battery b_udget (denoted

Taking a soil measurement with the UGV is likely to bePY B) and the UGV requires some non-zero time (denoted by
time-consuming. However, we can reduce the data collectidpy) t0 take a soil measurement. Our objective is to maximize
time through careful planning for the measurement locatiorf"€ number of PML points sampled with the UAV and UGV
by combining measurements of nearby points. Our secofybiect to the UAV's battery constraint.
contribution is an approximation algorithm for solving a The UAV spends some part of its energy budget for each
novel variant of the Traveling Salesperson Problem witfake-off and landing. We denote the average of these energy
Neighborhoods (TSPN), which we call the Sampling TSPNOsts byC., so that a combined take-off and landing takes
Problem, that considers both travel and measurement cod¢/a- We assume that the UAV and UGV travel at unit speed
Finally, armed with these two algorithms, we demonstrat@nd the energy required to travel is proportional to theetrav
the benefit of using the UAV+UGV system in a precisiorﬂme- Hence, we use distance, time and energy interchange-
agriculture application through simulations using realada ably. Non-unit speeds can be easily accommodated in our
collected from a corn field (Section VI). Figure 1 shows arnalysis. If7, is a set ofV deployments for the UAV, then
overview of our approach. the total cost of the UAV tour is given as len) + 2N - C,,

The rest of the paper is organized as follows. We begifyhere lettr,) is the sum of Euclidean lengths of paths in
by presenting the problem formulation in Section 1. Thell deployments. Our problem can be concisely stated as,
related work in this area is presented in Section Ill. We Problem 1 (UAV coverage)Find a UAV tourr, consist-
present the method used to estimate the N-map and findiiy of one or more paths (each of which is associated with
the potentially mislabeled points in Section IV. The senso? take-off and landing location), to sample the maximum
planning algorithms and their analysis are presented in Segumber of PML points, such that the cost of the tour is not
tion V. Simulation results based on field data are presented@reater than the UAV budget.

Section VI. We finally conclude with a discussion of future Given the PML points visited by the UAV, our next objec-

work in Section VII. tive is to design a UGV path that obtains soil measurements
in the least time. The spatial correlation of soil propertie

Il. PROBLEM FORMULATION means that nearby points are likely to have the same N

Our operating environment is a farm plot, which welevel. Hence, as described in Section 1V, the location of the
discretize into a set of point&’ = {zi,22,---,2,}. As Mmeasurement relative to any PML point should be within

is common, we will use a Gaussian Process to estimatie radius defined by the spatial correlation of the measured
the N levels from prior measurements [5]. For each poireroperty. The UGV can thus combine measurement locations
we associate a most likely Nitrogen estimateNagr), with ~ for multiple points if their radii overlap. The cost to take
variance of the estimate agx). Our task is to find regions measurements is included as an additive time ¢gstfor

in the plot with similar N levels. For example, the task careach measurement. The UGV is assumed to have sufficient
be to classify each point in the plot into three labels: lovfuel for the entire trip, but the time cost must be minimized.
N, medium N, and high N. In general, we are given a sdf 7, is a UGV tour with N measurement locations, then the
of labels, and each labeélis specified by a minimum and cost of the tour is given as lén,) + N - C,. Our second
maximum N level/; , ;" respectively. Since we do not haveoptimization problem is then,

access to the true N levels and instead have a distributionProblem 2 (UGV cost):Given the set of points visited by
N(z), we associate with each label a probability of beinghe UAV and a radius associated with each point, find a UGV
correct. We define P(x;) as the probability that the labgl tour of minimum cost that obtains at least one measurement
for point z; is correct R;(x;) = P(I; < N(x;) <1). The within the radius of each point.

details for computing this probability are given in Sectldh We now review the related work in this area.



[1l. RELATED WORK robots spends time for both traveling and downloading data

o ] ] from robots. In this problem, the robot has to separately

The problem of designing sensor trajectories (or the rélatqquery each sensor whereas in our model, the robot can

problem of selecting sensor locations) has recently receiv .ompine soil measurements for multiple points by sampling
much attention. Low et al. [6] presented a control law tQne intersection of their neighborhoods.

minimize the probability of misclassification in a Gaussian In [15], Alt et al. studied the problem of covering a given
Process. The authors enforce measurements to be taken

continuously. and sensors t onlv move along a 4 connectsgt of points witht radio antenna with circular ranges, where
Y, Yy 9 ﬁ’he algorithm has to choose the center and radjder each

grid. Zhang and Sukhatme [7] presented an adaptive sealfille. They consider a cost function which is a weighted

algorithm for finding the optimal sensor path to estimate &um of the length of the tour and the sum 9 for each

scalgr field. _Song etal. [8] presenteq an algorithm o laeall disk (o models the transmission power for the antennas). The
multiple radio sources using a mobile robot. They presented_. * . . .

. ) . main difference between this problem formulation and ours
upper bounds on the time required to localize the sources

. - . IS that we do not require the number of samples {)eto
up to a desired probability. In all these works, the sensing. fived and instea(? penalize highiein the COS’?{ funq:t)ieon
% , .

model is assumed to be continuous (i.e. no time cost), unlik o i ,
our work where we penalize measurements explicitly. _ Recently, there h:_sls been a significant interest in develop-
Instead of labeling certainty, Krause et al. proposed Mutud ¥ cooperative aeria| and ground/surfa_lce/underwatemtrop
ystems. Grocholsky et al. [16] described a system with

Information as a measure of uncertainty [9]. An algorith dinati ial and d vehicles for th licatb
to place sensing locations was given which can close@Oor inating aerial and ground venicles for the applica

approximate the optimal increase in Mutual InformationeTh etecting and Iocatlng.targets. Sujitand Saripall [m]jm:_d
work was extended to mobile sensor routing in [10], an € probI(_em of e_xplorlng an area fo detect targets using an
multiple robots in [11]. Since we are designing algorithims f AVVaE_d IlnspeAﬁl\r;g t?ﬁ targ?r:s with Autonodm_ous_Un(Ijet_rwa-
a heterogeneous sensor network, and use different ol:tjectﬁr enicles ( ). The authors compared in simula lons
function, these results are not directly applicable. three strategies to address the trade-off betwe.er! qu_lckly

The problem of finding a tour to maximize the number o xploring the environment for all targets, and minimizing

. . . : he latency between detection with UAVs and inspection with
points visited (rewards) subject to a budget is known as th

orienteering problemGiven a weighted grap — {E, V) Vs. Tanner [18] presented control laws for the UGVs to
-ernng p . 9 graptr =15, V5. torma grid of sensors and UAVs to fly in a formation over
the orienteering problem is to find a path such that th

sum of the weights of the edges traversed is less than t & grid, quh that a target moving on the ground can be
budget, and the sum of the weights of the visited verticese'[ected If_ It moves from one grid C_e”_ to the other.
is maximized. Blum et al. [12] presented a 4-approximation 1h€ main difference between existing literature and our
to the orienteering problem for complete graphs with metrit/0rk is that we explicitly consider that the UAV can be
edges. We show in Section V how to model the problem Cﬁarne_d between takeoff Ioc_at|ons by the UGV in the sensor
selecting most PML points as an orienteering problem on Rjanning phase. The resulting plan found by our algorithm
complete graph with metric edges. may con5|_st of multiple _dep_loyments for the UAV, which
Once the subset of PML points are found, the goal jincreases its coverage with limited battery.
to find a UGV tour to visit them with the least cost. The
classical problem of visiting a set of sites on the plane
with the shortest length path is known as the Traveling
Salesperson Problem (TSP). Relevant to our application is
the variant of TSP, known as TSP with Neighborhoods In this section, we first show how to find points with
(TSPN), where the robot need not visit each site exactlynacceptably high mislabel probability using the N level
but may instead visit any point in each site’s neighborhooaap. Then, we find the maximum variance any point can
(subset of the plane). Dumitrescu and Mitchell [13] presdnt have and still be labeled with desired certainty. Theseltesu
an 11.15-approximation algorithm when the neighborhood#rectly yield a set of PML points and a radius within
are possibly-overlapping unit disks centered at each®@ite. which it is sufficient to obtain a measurement to improve
of the main differences in our problem and the standariis mislabel probability below the desired threshold.
formulation of TSPN is that our cost is not just the traveling We use a Gaussian Process (GP) to predict the mean and
time of the tour, but also the total time taken for obtainingovariance of the N levels at any point. A Gaussian Process
soil measurements. As we will discuss in Section V, finding assumes all points are jointly-Gaussian, with a function
minimum length/time path does not necessarily ensure that(a, b, 6) to determine the covariance between pointnd
the robot takes fewer soil measurements, and the cost fgr with hyperparameterg. A prior estimate is required,
Problem 2 is not necessarily minimized. which in our application is commonly available from a
Bhadauria et al. [14] studied the problem of computing aatellite image. Let the points at which prior measurements
minimum time data collection tour fat robots tasked with are obtained bet,, with estimated N levelsV(X,). Let
wirelessly collecting data from deployed sensors by vigiti 1, and o, be the mean and variance of the set of prior
a point in the sensor's communication range. In their modemeasurements. We have the following equations for mean

IV. FINDING POTENTIALLY MISLABELED POINTS
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Fig. 2. A generated random field using the GP parametersdddrom the soil dataset. (a) The ground-truth data. (b) A @pothesis was constructed
from a sparse sampling of the data in (a), and the data waisigreet into three labels: low, med, high. (c) The variant¢he sampling. (d) The mislabel
probability. Note that it is high in many places, even thodlgé variance is roughly uniform and low since the mislabelbpbility also depends on the
value N (z). (e) The points at which the labeling certainty is below, Bnd the corresponding rings described in Lemma 2.

and variance at any specific point set as [5], [ |
_ From this lemma we know the mislabel probability is a
N(a:) = pp + Kolwi, %) Ko(Xp, X,) ™" (N(Xp) = p1p) function of both the current estimafé(z) and the variance
o(x:)? = o — Ko(i, Xp) Ko(Xp, X)) " Ko(2i, &) (2)  o(a;). Of these quantities, we have control ovér; ), since
ejt depends on the distance of measurement locations from
We now show how close te; a measurement should be to
Have enough impact on the mislabel probability. First, we
show how low the variance must be for the current value of
N (z) to be labeled with high probability.
Corollary 1 (Desired Variance)¥or any point,z; € X,
Ko(a,b) = o3 - ez lla=bl3) | a0 (3) letix(x;) be the closest label boundary #(z), as defined
in Equation 4. If the variance in the estimate is less than
P
T o1 3R
then the labeling certainty is greater than.
Due to the spatial correlation from Equation 2, we can
d the maximum distance from; for a measurement to
have the desired uncertainty reduction to satisfy Equétion

Lemma 2 (Measurement Radiud)et x; be a point with
I3 (z;) = min (|N(z;) — 1IN (i) — l;-r|) (4) high label uncertainty. For a sensér with measurement

’ . . . , error o,, we can take a measurement from any poigt
Due to the Gaussian noise assumption, we can find an up %'iisfying
bound on the probability the point is mislabeled as follows.
Lemma 1 (Mislabel Probability)A point z;, with label  ||z5 — z;|[3 < —1log,[(0?(x) — 02)(0F + 02)o ;)] (7)
l; has a likelihood of being mislabeled,, which satisfies, '

whereKy(a, b) is the covariance function used. In agricultur
literature, these equations appear in slightly differemtr,
known as geostatistical equations [19]. We will hencefort
consider the squared exponential covariance functiomut
method generalizes to other functions as well. Then,

whered,, = 1 if a = b, and zero otherwise. We will
assume the Gaussian Process has been trained, and the
hyperparameter® = {l, 0,,, 0y} are known.

Let/; be the current label at point. Let ®(a) be the stan-
dard Gaussian Cumulative Distribution Function evaluated
a. Also, we will define the terni; to be the “closest” labeling fin
threshold, for each label, to the current nitrogen estinaate
point x; as follows,

(6)

o(z;)

. to reduce R, (x;) to below R,.
Poi(z;) <2 @ ( —l ) (5) Proof: The proof follows by manipulating the co-
B o(x) variance function to find a desired reduction in variance.
wherel* is defined as the closest labeling boundaryvia:) From the definition of the Gaussian Process covariance
J ! H
Proof: We are trying to bound the “two-tail” probability (Equation 2), we have that,

mass_of the G_aussi_an random variable We will use the 03 _ U(x)z — K(z,2)[K(z,2) + 0721]—1K(m’Z)T
following relationships. For any) < a < b, andy ~
N(u,0), Wherec? is the variance from Corollary 1 ardz)? is the

current variance at the target PML point. The functidt, -)

Ply > b) + Ply < —b) < Py > a) + Py < —a) is the covariance function given by Equation 3. Because we

Ply>b)+Py < —b)=2- @(M — b) use a single measurement_point for the veetoand only a _
o single point forx, the covariance of the measurement point
Then it follows that, is simply o—? + o2. Substituting and re-arranging terms we

have the following.

(N(z:) > 1)) ()’ — 0§ = K(;,25)[K (25, 25) + 03] " K (w1, 25)"

Poni(z;) < 2-max[P(N(x;) < l;) >
. i .
( —1 > o(z)? — o2 = _9F Elle—zsl

() 0% +on

,P
Pni(z;)) <2-P(N(z;) < —|lI*]) =@



The desired result follows by taking the natural log and Now consider the case of a UAV+UGV system. The UGV

solving for the distance. B can transport the UAV between two PML locations, without
This lemma can be easily extended to handle measurffecting the UAV’s battery life. We will modify the edge
ments from two types of sensors (aerial and ground). weights accordingly. Furthermore, since the UAV carries a

Thus, for every PML point (which does not satisfy Equacamera with a footprint of diamet€r, it can sample a point
tion 6), we can find a maximum distance from the pointwithout flying directly over it. Hence, we will also modify
as a function of the sensor noise and current uncertaintjje set of vertices. The detailed construction of the input
from which a sample must be obtained to obtain sufficientlgraph for the orienteering problem is as follows.
small variance on the point;. An example of a field, the
field labels, and the points with high mislabel probability(1) Create a square grid of resoluticlyv/2 over the plane.
are shown in Figure 2. For each point, a measurement froRfich pointinX,,,,; is associated with its nearest grid location
inside the specified radius will satisfy Equation 1, by thdFigure 3(a)). Store the number (denotediy)) of PML
previous lemma. Next we present algorithms to find a toupoints associated with a grid location.

of these measurement locations. (2) Let V' be the set of grid vertices with at least one PML
point associated. For eaehe V, let w(v) be the number of
V. PATH OPTIMIZATION associated PML points (Figure 3(a)).

3) Build a complete undirected graphi = {V, E .
In this section, we first describe our algorithm for findingl(:o)r each edge bpetweQn v eV gddgz weiéh;w(;f;q)u}:
the UAV+UGV tours to visit the most number of PML pointsmm{d(u’ v),2C, ). This ir’nplies tr;ere are two types’of edges

subject to the UAV battery budget. Our algorithm operate§anveen grid points: The UAV can either use the UGV to

in two phases: we first find the subset of PML points to b?ravel paying only for the ascent/desceaC() or travel

visited by the UAV (refer to Problem 1). Then we find thed- tly betw int ina the dist W
tour (i.e. order and sampling locations) for the UGV (refer irectly between points paying the distance caitt(v)).

to Problem 2). The tour for the UGV also includes take-off
and landing locations for the UAV. We present the descriptio
and analysis for each of these two phases next.

Before proceeding, we verifyG is still a metric
graph. Consider a triple of vertices,v,w. We know
w(u,v),wv,w),w(w,u) < 2C,. It is easy to see the
A. Computing the UAV Tour tria_ngle inequality holds When two or three edges have
weights equal to2C,. Consider the case when only one
We reduce the problem of finding the maximum subsegdge has weight equal @C,, say w(u,v) = 2C,. Now,
of PML points to be visited by the UAV to the orienteering,(y, w) + w(w,u) = d(v,w) + d(w,u) > d(u,v). Since
problem. We begin with a grapi(V, £, 7, w) with weights (v, v) = min{2C,, d(u,v)} = 2C,, we haved(u,v) >
(w(u,v)) on edges, and rewards(v) on the vertices. The 2¢,. Hence, w(v,w) + w(w,u) > w(u,v). And since
objective in the orienteering problem is to find a tour ofy(y,v) = 2C, and w(v, w), w(w,u) < 2C,, w(u,v) +
a subset of vertices collecting maximum reward, with the,(y ) > w(v, w) andw(u, v) + w(v, w) > w(w,u). For
constraint that the sum of weights of edges on the tour {ge case when all three edges have weights less 24n
less than a given budget. In the following, we show how ténhe weights are equal to Euclidean distances. Hence, veeight
create such a graph for our problem. satisfy triangle inequality in addition to symmetry, idint
First consider the simpler case of finding the maximunand non-negativity. Hence, the graph constructed above is a
subset of points in a UAV-only system. For simplicity, leeth complete metric graph. We can then apply the algorithm in
camera footprint be a single point for now. The UAV tour[12] to obtain a 4-approximation to Problem 1.
will consist of a single path with one take-off and landing
location. We build a graph with PML points as the verticesB- Sampling TSPN
We add an edge t@ between every pair of points with  The algorithm in the previous subsection gives us the
weight equal to the Euclidean distance between the pointsubset of PML points to be sampled. We must now construct
Each vertex is given a unit reward. The budget for the UA\A minimum cost tour for the UGV to visit each point in
equals the battery lifetime minu&C, to account for the the subset. Note, for each point we have a radius given by
single takeoff and landing. The solution for the orientegri Lemma 2 within which we must obtain a sample. The radius
problem for this instance will be a path traversing a set aé not necessarily the same for various points, however, in
PML points. The length of the path will be less than or equabractice, we have found the radii are comparable. Hence, we
to the available travel budget for the UAV. The reward equalgse the minimum radius-) to simplify the algorithm.
the total number of PML points visited by the path. We must now find a tour for the UGV which visits all
Since the edge weights are Euclidean distances, this gragisks and takes a measurement within it. In the standard for-
is a complete metric graph. Blum et al. [12] presentedhulation for the Traveling Salesperson with Neighborhoods
a 4-approximation for orienteering problems on undirecte(for uniform disks) [13] only the travel time is considered.
metric graphs. Applying this algorithm to the graph weHowever, recall from Problem 2, the cost of the UGV tour
constructed above will yield a UAV tour visiting at leastequals the sum of time spent for traveling and the time spent
1/4™ of the PML points visited by the optimal algorithm. for obtaining all measurements. Thus the UGV must choose
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Fig. 3. Path Planning Algorithm. (a) Square grid of resoiutl'/+/2. The reward for visiting each grid point (red square) is thenber of PML points
(gray star) falling within the grid. (b) UAV tour found usingrienteering on the graph of grid points. For this instarddy budget was 500 secs out of
which 200 secs are spent traveling and 240 secs are spehef@rascents/descents. (c), (d), (e) Steps in constructBapling TSPN tour (Algorithm 1)
for the UGV. (f) Final UGV tour including UAV take-off locatns (red squares).

a measurement location within each disk, while the length afew variant of the Traveling Salesperson Problem.

the tour and the number of distinct measurement locations . ) ) )
are minimized. Specifically, we are studying the following Problem 3 (Sampling TSPN)Given a set of disks with
uniform radiusr and centers at point&, find a tourr of vV



(1) Find an MIS of non-overlapping disks from input disks.
(2) Starting from an arbitrary point, follow the TSP tour of
the centers of disks in the MIS (Figure 3(c)).

We will present a brief description of the algorithm in [13](3) When a new center (say) is reached on the TSP tour,
for the standard TSPN problem and show how to modika?lefore visiting the next center on the tour, first visit thgm_l
it to accommodate the additional cost of measurement3it€S as shown in Figure 4(bj).is the center of the disk in
Dumitrescu and Mitchell in [13] first find a maximal inde- the MIS. Sitesb, d, h, f lie on a square of sider centered
pendent set (MIS) of non-intersecting disks, from the giveAt o- Sitesa, ¢, e, g lie on a square of sidey/2r rotated by
set of disks. Then they find a TSP tour visiting the centerg- After visiting the last of these sites, we continue towards
of the disks in MIS (Figure 3(c)). This tour intersects thdhe center of the next disk in MIS (Figure 3(d)).
circumference of each disk in the MIS twice. The final touf4) Restrict the candidate sampling locations to the set of
that visits each disk is constructed as follows. Start fram acenters of disks in MIS and the set of eight sites as described
arbitrary disk in the MIS. Follow the tour in the clockwise@bove. Denote this set of candidate sampling locations.by
order up to the intersection point of the next disk. Follow th Algorithm 1: Sampling TSPN Algorithm.
circumference of this disk in the clockwise order up to the
second intersection point of the same disk. Continue until First we will show that the se$ defined above intersects
the starting point is encountered again. Repeat this psocesi| disks in.X. Then we will bound the size of with respect
in the anti-clockwise direction. to the size of the optimal number of sampl®&s. Finally,
we will bound the length of the tour and thus the total cost.
Lemma 3:Let S be the set of all centers of the disks in
a MIS of non-overlapping diskX of radiusr. Let S also

distinct sample locations to minimize the cost(eyw-C- N
such that each disk contains a sample location.

9 contain the eight sites as described in Algorithm 1. Then, fo
e \N each disk inX, there exists a point it lying in its interior.
LV . Proof: Consider Figure 4(b)o is the center of the
\ \j disk in the MIS. Then all disks that intersect the disk at
NXAXY o, lie within a disk of radius2r from o (shown in red
¢ in Figure 4(b)). Denote this outer disk by,. Let S, =
(@ (b) {0,a,...,h}. We can observe that the set of disks of radius

Fig. 4-f (@ Tfheh Stgntli(a_rd ESPNSal(g?]rithm Ll?:j] ctjf)]at ViSti)t_S iil:lz/e r centered at all sites i, form a cover ofD,. Hence, any

circumference of the disk in the MIS (shown shaded) can bér s : : o

bad when applied to the Sampling TSPN problem. This tour vélforced point in D_2 Is at a d_IStance of at m0$tf_r0m a site InSO_‘

to take one measurement each for each outer disk and thuswave ~NOW consider any disk centered @tthat intersects the disk

measurement locations. The optimal algorithm is not forcethove along  centered ab. o’ € D, hence there exists a site i), at

the circumference. Thus, it can visit a small number of liocat where the : ;o : S : / :

disks overlap. (b) We modify the TSPN heuristic to visit a dixeumber a distancer from o', i.e., Iymg within the disk ab'. This

of sites (shown as dots) around each disk in the MIS yieldirgprstant  proves the lemma. u

factor approximation for the Sampling TSPN problem. Next, we bound the size of with respect to the number of
samples in an optimal Sampling TSPN algorithm. We also
show that the total length of our tour is no more than a

constant times the length of the tour of an optimal algorithm

This algorithm ensures that the tour intersects all disk®r the sampling TSPN algorithm. _
by moving along the circumference of each disk in the Leémma 4:If N* is the number of samples by an optimal
MIS. However, when the UGV has to stop and obtain &l90rithm for the Sampling TSPN problem, thg# < 9N™.
measurement in each disk, restricting the motion to the Proof: S contains 9 sites per disk in an MIS of non-
circumference can be potentially costly in terms of thdtersecting disks: one for the center, and eight lying an th
number of measurements. For example, consider the situatiy’© Sauares as shown in Figure 4(b). Hencs, = 9|MIS|.
shown in Figure 4(a) where the outer disks intersect withl© two disks in the MIS overlap, hence they cannot share
each other only outside the circumference of the disk in MINY sampling location between them. Hend#, > |M S|
Since the tour in the standard algorithm only moves along tHfdd thus|S| < 9N™. .
circumference, it will be forced to take one measurement for -€mma S:Let Tara be the tour constructed by the algo-
every outer disk, which can be as large(@), where as the rithm above, andl™ be the tour for the optimal Sampling

optimal algorithm can visit a small number of intersectionl SPN aI%erthm. Thenfle(ﬂ“Ang) < 44;11* ¢ fer both
points, not necessarily on the circumference. Proof: For ease of notation, in this proof we refer bot

a tour and its length b, andT* refers to an optimal tour.
We modify the local strategy (going around the circumferdhe analysis of this proof proceeds similar to that in [13]
ence) in order to simultaneously find sampling locations foyith modifications where the tour differs. Using Propositio
the tour. We will bound the additional length due to this nevl in [13] for non-unit disks, we have < §4 +4).
local strategy, and bound the number of samples obtainedDenote byl andT¢ the TSPN tour of the MIS and TSP
with respect to the optimal. Our algorithm is as follows: tour of the center of the MIS respectively. Letbe the total



number of input disks. Now after visiting a take-off location, the UGV continues along
T5 < T 4 9nr its tour. Whenever, its time to reach the Ignding location

¢ =-1I from the tour becomes equal to the landing time of the UAV,

the UGV can deviate from its pre-planned route, visit the

*

T
ST*+87’—|—8

m landing location, and return to its pre-planned route. The
— T <1 + §> + 8. total distance overhead for the UGV is at most the budget
™ of the UAV and in practice, not very significant.

The first inequality follows from the fact that a tour of the
centers can be constructed by taking a detour of at st
for each disk from the tour of the disk&.4 . consists of a In the previous sections, we showed theoretical bounds on
TSP tour of the centers of the disks in MIS and a tour of théhe number of PML points selected and the distance traveled
regular hexagon surrounding each disk. Using the- ¢)- by our algorithm with respect to optimal. We expect the
approximation for the TSP tour [20], we get UAV+UGV system to sample more PML points as compared
to a UAV only system with the same battery limitations.
Tare < (14 €)T¢ + V2nr +7V2nr, We explore this through simulations using actual system
<+ ((1 n %) o 8r) 4 32V3r 4+ 32\/§T*. parameters and real data collected from an agriculturdl plo

™

VI. SIMULATIONS

A. System Description
The v/2nr term in the first inequality comes from the part \ye present the details of the robotic system we are devel-
of moving from the center of the disk in MIS to the closesfying to motivate the choice of our simulation parameters.
of the eight sites (fromv to % in Figure 4(b)). The?\/im Our UGV is a Husky A200 by Clearpath Robotics [22]. The
comes frqm v_|S|t|ng each of the eight sites (starting frbm gy pas a typical battery life of two hours on a single
througha in Figure 4(b)). charge. The operating lifetime can be extended to over six
Using Lemma 1 from [21], we know that the length ofq 5 easily with additional batteries. The UGV will measur

any path that visits three non-overlapping disks of radius ;) organic matter as a proxy for soil N supply to the crop
is at least0.4786r. Thus when the MIS contains more tha“using a Minolta SPAD-502 Chlorophyll meter [23].

3 disks, we gefl™ > 0.4786r. Therefore, Our UAV is a Hexa XL by MikroKopter [24]. This UAV

8 322 cadn operate for 25 mins. Deploying the UAV to approx-
Tare <T" [(1+¢) (1 + ;) t— 0.47(8 + 32v/2 + Sdmately 100 meters height gives the camera a 50 meter
diameter coverage with a single image. The UAV takes about

< 44T 2 minutes to ascend/descend this height. The images include
for small ¢ multi-spectral information, such as near-infrared reflace,

Based on the above lemmas, we can easily bound the tngtrI"Ch is used to estimate the crop N status [25].
cost of our algorithm and show that it is at most a constaf \odeling
times that of the optimal cost.

Theorem 1:Algorithm 1 is a valid Sampling TSPN tour To generate realistic data, we need a generative model of

with cost at mosti4 times that of the optimal algorithm. ][\htrggehn levels ansvrealilllstgc_v:lllugls for thr? samphntg); q0|sde
Proof: Let C* be the cost of the optimal algorithm for or both systems. We will briefly discuss how we obtaine

; " «  these from a nitrogen remote sensing and soil sampling
the Sampling TSPN problem. Therefo€&; > len(t*)+ N*- ; .
C,, wherer* is the optimal TSPN tour visiting all disks, and dataset [25]. The data consists of 1375 soil measurements

N* is the minimum number of sample locations such tha ken manl_JaIIy na SQm by 25(_)m corn field, allong. with
each disk has at least one sample location. corresponding 1m spatial resolution remote sensing images
Consider the cost of our algorithm in the green (G), red (R) and near infrared (NIR) portions

’ of the spectrum. The samples were taken along a dense

Carc =len(t) + N - Cy, uniform coverage (See Figure 5) and provided the levels
< 44len(t*) + 9N* - C,, pf soil organic matter (OM). R and NIR are known to be
< 44C* inversely related to crop N status [25].

We used OM as a proxy for the initial quantity of soll
where the first inequality comes from Lemmas 5 and M. N supplied to the crop. We modeled the UGV as taking
In practice, we do not have to sample at all the nine sitedirect measurements of OM, corrupted by some sensor noise
We can discard sample locations that do not intersect amy,, and the UAV as measuring the Normalized Difference
disk or find a smaller subset (e.g. greedily) that samplééegetation Index (NDVI), which is a combination of NIR
all the disks. Then, we can find a TSP tour of just thesand R levels [26]. We assume the NDVI levels are corrupted
sampling locations, as shown in Figure 3(e). We have ndily sensor noiser,. To model the spatial patterns of the
yet considered the UAV landing and take-off locations in th€©M levels, we used GP regression over the set of sample
UGV tour. We add all the take-off locations £ and find a points and OM measurement values. This densely-sampled
TSP tour of the combined set of points (Figure 3(f)). ThenGP defined the hyperparameters which were used to generate
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Fig. 5. Soil organic matter data set from [25]. Dense sargplias collected by hand (black crosses) and used to train as@@auProcess. The resulting
estimate of nitrogen levels is shown as the contour map. Rhisndata set we learn the sensor noise valigsaind o, as well as model the underlying
soil organic matter for larger simulations (Figure bestwéd in color).

new ground-truth N maps in our simulations. We used the Wffgt:j’A‘ijfL’J"'évng”fU‘Eti‘r’]Iy
GPML Toolbox [27] for performing the GP regression. ‘ ‘ ‘ ‘

As part of the ground-truth GP regression, we can estimate S
the sample noise at each point from the data directly ( 20" 1
in Equation 3). We used this value directly @g, since we
assumed the robot would have the same sensing capability as 5 — |
the human operators. To estimatg we built the covariance
matrix, E[(NDVI — E(NDVI))(OM — E(OM))T]. This gives
us a2 x 2 matrix, oM TOMNDVI . 1o |

) ONDVI,OM UI%IDVI_ ) )
From this, we can find the variance in OM given a

2 5F b
2 _ 2 90oM,NDVI
measurement of NDVI asgqynpyi = Onovi — 52
We found thatoomnovi > o, We can now model NDVI —/
measurements directly from measurements of OM when o 1.2 1.4 16 18 2 2.2

sampling the Gaussian Process model. These UAV and UGN§. 7.  Histograms of the ratio of number of PML points vigitéor a

measurement noise variance were found to—lbe: 0.31 and UAV+UGV system and a UAV only system for 100 random instan@&zsth
. systems are given an equal budget26fminutes.

o4 = .05 respectively, for the dataset.

“For the simulations, we formed a prior estimate of OM
levels by down sampling each randomly-generated grounghly tours for 100 random instances. As expected, the ratio

m.nh N-map by a factor of 20 and ﬂ.ttmg anew GP‘_ Fror_qs always greater than 1 as the UAV+UGV system is at least
this prior GP, we found the PML point set as described ing good as a UAV only system in terms of the number of

Section IV. We randomly generated 100 N-maps fo0a x : i .
. : . . points visited. Table | shows the effect of varying the budge
400 m field. We then found the PML points using a des'recgnlthevrl)elrcentage of ian\JAtl PML points vi\giteyclj g 9

labeling probability of 0.6. The number of PML points in
any instance depends on the randomly generated map. TABLE |

PERCENTAGE OF INPUTPML POINTS VISITED(AVG. OF 30 INSTANCES).

C. Results

We first compare the number of PML points covered by BUngto(seC) UAvlgnly UAV;;JGV
the UAV+UGYV system versus an UAV-only system. We use 1000 36 49
the procedure described in Section V for finding the subset 1500 o5 72

of PML points visited by the UAV only and the UAV+UGV
system, subject to the battery constraint of 25 mins. We usedThe UAV+UGYV system can cover points that are spread
the implementation from the SFO Toolbox [28] for findingacross the field. Intuitively, if the measurements are dis-
an orienteering tour, and the Concorde TSP solver [29] astdbuted across the field, we expect the resulting map (after
subroutine in the Sampling TSPN algorithm implementatiorincorporating the measurements) to have fewer mislabeled
Figure 6 shows a sample run from the simulations. Wpoints than if all measurements are nearby. After calauati
observe that the UAV-only tour is constrained to only onghe desired UAV/UGV tours, random measurements for the
part of the field, whereas the UAV+UGV system can obsensors were sampled directly from OM values given the
tain measurements from farther away locations. This inpatense (ground truth) GP. We added noise to the measure-
instance consisted of 75 potentially mislabeled points, thments using estimated variances = 0.31 ando, = 0.5
UAV only tour covers 38 points whereas the UAV+UGVas described in Section VI-B. These values were then used
tour covers 50 points. Figure 7 shows a histogram of th® update the prior GP, which was then used to find the
ratio of the points covered by the UAV+UGV and the UAV posterior PML points. We observe the posterior PML points
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Fig. 6. Sample simulation instance. (a) & (b) shows the tdammd using a UAV only and UAV+UGV system. The input consisfs75 PML points.
The UAV+UGYV tour consists of 6 subtours. (¢) & (d) shows the IPpbints found in the updated N level map after incorporataegial and ground
measurements. The UGV allows the UAV to transport to fartbeations in the plot which is reflected in fewer posterior [Ppbints.

in Figures 6(c) & 6(d). For a fair comparison, we add UGVnumber of points. We studied the problem of maximizing
measurements for each PML point visited by a UAV onlythe number of points visited by the UAV and UGV. Unlike
tour, in obtaining the updated N level map. traditional approaches, our algorithm takes into consitilen
Figure 8 shows a histogram of the ratio of the posteriathe situation where the UAV can land on the UGV and
PML points with a UAV+UGV system and a UAV only thus be carried between points without expending energy.
system. Since the number of PML points depend on both thwe also studied the problem of minimizing the time for
variance, and the estimatéd(z) values, occasionally there sampling these points with a UGV. We presented a constant-
are instances when the number of posterior PML points witfactor approximation algorithm which finds a set of sampling
UAV only system are lesser than that of UAV+UGV systemlocations and a tour of these locations, such that each point
However, as we can observe in Figure 8 the UAV+UGWhas a sampling location within its disk neighborhood.
system often outperforms the UAV only system in terms of An interesting direction for future work is bounding the

number of posterior PML points. number of tours required to correctly label the whole field.
VII. CONCLUSION What separates this from coverage problems is the fact

In this paper, we studied the problem of designing sensi gat new PML poir!ts are Iikhely to a?pear during sarlnplinﬁ_
strategies for obtaining aerial images and soil samplels witours, since N estlmates change after every sample. This
a UAV+UGV system to estimate the Nitrogen level in a IOIO,[_presents an interesting trade-off between using thg slower
Effective fertilizer treatment plans can be developed hyebe ZCV _meaSl(eremelnts to ha_nr(]jle fﬂ;le newb ZML points, or
estimates of Nitrogen levels. Since the battery life of tyy "€turning and re-planning with a full UAV budget.

is limited, the UAV and UGV can only sample a limited We have also started building the complete system using a
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[15]

[16]

[17]

(18]

Clearpath Husky A200 ground robot and a hexacopter from

MikroKopter. In order to execute the algorithms presenteﬂ9

in this paper, additional capabilities such as autonomous
landing and soil sampling are necessary. We are committed[#6!
developing these capabilities and enabling the use of sobot

in precision agriculture.
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