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Sensor Planning for a Symbiotic UAV and UGV system
for Precision Agriculture

Pratap Tokekar, Joshua Vander Hook, David Mulla and Volkan Isler

Abstract— We study the problem of coordinating an Un-
manned Aerial Vehicle (UAV) and Unmanned Ground Vehicle
(UGV) to collect data for a precision agriculture application.
The ground and aerial measurements collected by the system
are used for estimating Nitrogen (N) levels across a farm
field. These estimates in turn guide fertilizer application. The
capability to apply the right amount of fertilizer at the rig ht
time can drastically reduce fertilizer usage which is desirable
from an environmental and economic standpoint.

We propose to use a symbiotic UAV and UGV system in which
the UGV is capable of muling the UAV to various deployment
locations. This would allow the system to overcome the short
battery life of a typical UAV. Our goal is to estimate N levelsover
the field and assign each point in the field into classes indicating
N-deficiency levels. Towards building such a system, the paper
makes the following contributions: First, we present a method to
identify points whose probability of being misclassified isabove
a threshold, termed as Potentially Mislabeled (PML). Second,
we study the problem of planning the UAV path to visit the
maximum number of PML points subject to its energy budget.
The novelty of our formulation is the capability of the UGV
to mule the UAV to deployment points. Third, we introduce
a new path planning problem in which the UGV must take a
measurement near each PML point visited by the UAV. The
goal is to minimize the total time spent in traveling and taking
measurements. For both problems, we present constant-factor
approximation algorithms. Finally, we demonstrate the utility
of the system and our algorithms with simulations which use
manually collected data from the field as well as realistic energy
models for the UAV and the UGV.

I. I NTRODUCTION

Precision agriculture offers to improve crop productivity
and farm profitability through improved management of
farm inputs, leading to better environmental quality [1]. For
example, by measuring Nitrogen levels in the soil across a
farm and applying the right level of nitrogen at the right
time and place, it is possible to reduce fertilizer usage by 25
percent without affecting corn yield [2].

One of the key components of precision agriculture is data
collection. At present, there are two primary approaches to
data collection for precision agriculture: remote sensingand
manual data collection. Satellite and aerial remote sensing
are severely limited by cloud cover [3]. Satellite images may
not be available at desired times (the update frequency of
satellite images can be anywhere from 3 to 26 days). Remote
sensing from a manned aerial device (either flown by a
pilot or radio-controlled by a professional operator) is costly
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Fig. 1. The problem formulation: Precision Agriculture using the
UAV+UGV system. Prior soil health data is available, but a soil treatment
plan needs to be developed. If practitioners are uncertain of the treatment
plan associated with some part of the field, mobile robots canprovide
immediate information about the soil health in that region.The concept of
assigning treatments based on real-time data is called Precision Agriculture.

and difficult to plan against weather conditions. Further,
soil moisture, crop height, and pest infestations cannot be
measured remotely in a vegetated crop. Manual methods
involve the collection of data by humans who either gather
the data by walking through the field, or guide a vehicle
equipped with a sensor [4]. Manual data collection process
can be tedious and time-consuming and we are working on
building a robotic system which uses low-cost Unmanned
Aerial Vehicles and Unmanned Ground Vehicles (UGVs)
working in conjunction to collect such data.

Our system will provide multiple on-demand sensing
capabilities, and combine the strengths of ground and aerial
robots: Ground robots are capable of traveling long distances,
carrying large loads and measuring soil data. On the other
hand, small aerial vehicles can take images from a low alti-
tude but have limited battery life and the images may need to
be complemented with ground measurements. Our proposed
solution is to use a UGV to deploy a small, inexpensive UAV
at carefully selected measurement locations. As the UAV is
taking aerial pictures over a small region, the UGV will take
soil measurements. The UAV will then land on the UGV
which will take the UAV to the next deployment location.

In this paper, we develop path planning algorithms for
the UAV+UGV system for the application of estimating the



Nitrogen (N) levels in an agriculture plot. We start with a
prior N level map of the field (e.g., obtained from satellite
imagery). Our goal is to identify regions with N stress
(deficiency) by assigning a label based on the estimated N
level to each point. For this purpose, we first show how points
with high probability of mislabeling error can be identified
(see Section IV). The system is then charged with taking
both aerial and soil measurements near these points. The
main bottleneck in the system’s lifetime is the battery life
of the UAV. Therefore we seek to maximize the number of
points that will be visited by the UAV+UGV subject to this
battery constraint. Note that even though the UGV can mule
the UAV between the measurement locations, landing on to
the UGV and ascending to a predetermined height consumes
energy. Our main contribution in Section V is to show how to
compute a series of UAV deployments which visit at least a
constant factor of the points visited by an optimal algorithm.

Taking a soil measurement with the UGV is likely to be
time-consuming. However, we can reduce the data collection
time through careful planning for the measurement locations
by combining measurements of nearby points. Our second
contribution is an approximation algorithm for solving a
novel variant of the Traveling Salesperson Problem with
Neighborhoods (TSPN), which we call the Sampling TSPN
Problem, that considers both travel and measurement cost.
Finally, armed with these two algorithms, we demonstrate
the benefit of using the UAV+UGV system in a precision
agriculture application through simulations using real data
collected from a corn field (Section VI). Figure 1 shows an
overview of our approach.

The rest of the paper is organized as follows. We begin
by presenting the problem formulation in Section II. The
related work in this area is presented in Section III. We
present the method used to estimate the N-map and finding
the potentially mislabeled points in Section IV. The sensor
planning algorithms and their analysis are presented in Sec-
tion V. Simulation results based on field data are presented in
Section VI. We finally conclude with a discussion of future
work in Section VII.

II. PROBLEM FORMULATION

Our operating environment is a farm plot, which we
discretize into a set of pointsX = {x1, x2, · · · , xn}. As
is common, we will use a Gaussian Process to estimate
the N levels from prior measurements [5]. For each point
we associate a most likely Nitrogen estimate asN(x), with
variance of the estimate asσ(x). Our task is to find regions
in the plot with similar N levels. For example, the task can
be to classify each point in the plot into three labels: low
N, medium N, and high N. In general, we are given a set
of labels, and each labeli is specified by a minimum and
maximum N level,l−i , l

+

i respectively. Since we do not have
access to the true N levels and instead have a distribution
N(x), we associate with each label a probability of being
correct. We define Plj(xi) as the probability that the labelj
for point xi is correct Plj(xi) = P(l−j ≤ N(xi) < l+j ). The
details for computing this probability are given in SectionIV.

Labels can then be assigned to points based on which is
most likely to be correct, given the estimates of N levels at
each point. We use the shorter notation Pl(xi) to denote the
probability of the most likely label.

We define Potentially Mislabeled (PML) points as all
points inX for which the probability of the most-likely label
being correct is below a user-desired value Pd ∈ (0, 1).

Xpml = {xi ∈ X : Pl(xi) ≤ Pd}. (1)

We can increase the probability of the label being correct by
taking soil and aerial measurements near the PML points, as
we will discuss in Section IV.

One simple strategy would be to take measurements at
every PML point until we are sufficiently certain of that
point’s true label. However, we operate under two practical
constraints: The UAV has a limited battery budget (denoted
byB) and the UGV requires some non-zero time (denoted by
Cg) to take a soil measurement. Our objective is to maximize
the number of PML points sampled with the UAV and UGV
subject to the UAV’s battery constraint.

The UAV spends some part of its energy budget for each
take-off and landing. We denote the average of these energy
costs byCa, so that a combined take-off and landing takes
2Ca. We assume that the UAV and UGV travel at unit speed
and the energy required to travel is proportional to the travel
time. Hence, we use distance, time and energy interchange-
ably. Non-unit speeds can be easily accommodated in our
analysis. Ifτa is a set ofN deployments for the UAV, then
the total cost of the UAV tour is given as len(τa)+ 2N ·Ca,
where len(τa) is the sum of Euclidean lengths of paths in
all deployments. Our problem can be concisely stated as,

Problem 1 (UAV coverage):Find a UAV tourτa consist-
ing of one or more paths (each of which is associated with
a take-off and landing location), to sample the maximum
number of PML points, such that the cost of the tour is not
greater than the UAV budget.

Given the PML points visited by the UAV, our next objec-
tive is to design a UGV path that obtains soil measurements
in the least time. The spatial correlation of soil properties
means that nearby points are likely to have the same N
level. Hence, as described in Section IV, the location of the
measurement relative to any PML point should be within
the radius defined by the spatial correlation of the measured
property. The UGV can thus combine measurement locations
for multiple points if their radii overlap. The cost to take
measurements is included as an additive time costCg for
each measurement. The UGV is assumed to have sufficient
fuel for the entire trip, but the time cost must be minimized.
If τg is a UGV tour withN measurement locations, then the
cost of the tour is given as len(τg) + N · Cg. Our second
optimization problem is then,

Problem 2 (UGV cost):Given the set of points visited by
the UAV and a radius associated with each point, find a UGV
tour of minimum cost that obtains at least one measurement
within the radius of each point.

We now review the related work in this area.



III. R ELATED WORK

The problem of designing sensor trajectories (or the related
problem of selecting sensor locations) has recently received
much attention. Low et al. [6] presented a control law to
minimize the probability of misclassification in a Gaussian
Process. The authors enforce measurements to be taken
continuously, and sensors to only move along a 4-connected
grid. Zhang and Sukhatme [7] presented an adaptive search
algorithm for finding the optimal sensor path to estimate a
scalar field. Song et al. [8] presented an algorithm to localize
multiple radio sources using a mobile robot. They presented
upper bounds on the time required to localize the sources
up to a desired probability. In all these works, the sensing
model is assumed to be continuous (i.e. no time cost), unlike
our work where we penalize measurements explicitly.

Instead of labeling certainty, Krause et al. proposed Mutual
Information as a measure of uncertainty [9]. An algorithm
to place sensing locations was given which can closely
approximate the optimal increase in Mutual Information. The
work was extended to mobile sensor routing in [10], and
multiple robots in [11]. Since we are designing algorithms for
a heterogeneous sensor network, and use different objective
function, these results are not directly applicable.

The problem of finding a tour to maximize the number of
points visited (rewards) subject to a budget is known as the
orienteering problem. Given a weighted graphG = {E, V },
the orienteering problem is to find a path such that the
sum of the weights of the edges traversed is less than the
budget, and the sum of the weights of the visited vertices
is maximized. Blum et al. [12] presented a 4-approximation
to the orienteering problem for complete graphs with metric
edges. We show in Section V how to model the problem of
selecting most PML points as an orienteering problem on a
complete graph with metric edges.

Once the subset of PML points are found, the goal is
to find a UGV tour to visit them with the least cost. The
classical problem of visiting a set of sites on the plane
with the shortest length path is known as the Traveling
Salesperson Problem (TSP). Relevant to our application is
the variant of TSP, known as TSP with Neighborhoods
(TSPN), where the robot need not visit each site exactly
but may instead visit any point in each site’s neighborhood
(subset of the plane). Dumitrescu and Mitchell [13] presented
an 11.15-approximation algorithm when the neighborhoods
are possibly-overlapping unit disks centered at each site.One
of the main differences in our problem and the standard
formulation of TSPN is that our cost is not just the traveling
time of the tour, but also the total time taken for obtaining
soil measurements. As we will discuss in Section V, finding a
minimum length/time path does not necessarily ensure that
the robot takes fewer soil measurements, and the cost for
Problem 2 is not necessarily minimized.

Bhadauria et al. [14] studied the problem of computing a
minimum time data collection tour fork robots tasked with
wirelessly collecting data from deployed sensors by visiting
a point in the sensor’s communication range. In their model,

robots spends time for both traveling and downloading data
from robots. In this problem, the robot has to separately
query each sensor whereas in our model, the robot can
combine soil measurements for multiple points by sampling
the intersection of their neighborhoods.

In [15], Alt et al. studied the problem of covering a given
set of points withk radio antenna with circular ranges, where
the algorithm has to choose the center and radiusri for each
circle. They consider a cost function which is a weighted
sum of the length of the tour and the sum ofrαi for each
disk (α models the transmission power for the antennas). The
main difference between this problem formulation and ours
is that we do not require the number of samples (i.e.k) to
be fixed, and instead penalize higherk in the cost function.

Recently, there has been a significant interest in develop-
ing cooperative aerial and ground/surface/underwater robot
systems. Grocholsky et al. [16] described a system with
coordinating aerial and ground vehicles for the application of
detecting and locating targets. Sujit and Saripalli [17] studied
the problem of exploring an area to detect targets using an
UAV and inspecting the targets with Autonomous Underwa-
ter Vehicles (AUV). The authors compared in simulations
three strategies to address the trade-off between quickly
exploring the environment for all targets, and minimizing
the latency between detection with UAVs and inspection with
AUVs. Tanner [18] presented control laws for the UGVs to
form a grid of sensors and UAVs to fly in a formation over
the grid, such that a target moving on the ground can be
detected if it moves from one grid cell to the other.

The main difference between existing literature and our
work is that we explicitly consider that the UAV can be
carried between takeoff locations by the UGV in the sensor
planning phase. The resulting plan found by our algorithm
may consist of multiple deployments for the UAV, which
increases its coverage with limited battery.

IV. F INDING POTENTIALLY M ISLABELED POINTS

In this section, we first show how to find points with
unacceptably high mislabel probability using the N level
map. Then, we find the maximum variance any point can
have and still be labeled with desired certainty. These results
directly yield a set of PML points and a radius within
which it is sufficient to obtain a measurement to improve
its mislabel probability below the desired threshold.

We use a Gaussian Process (GP) to predict the mean and
covariance of the N levels at any point. A Gaussian Process
assumes all points are jointly-Gaussian, with a function
K(a, b, θ) to determine the covariance between pointsa and
b, with hyperparametersθ. A prior estimate is required,
which in our application is commonly available from a
satellite image. Let the points at which prior measurements
are obtained beXp, with estimated N levelsN(Xp). Let
µp and σp be the mean and variance of the set of prior
measurements. We have the following equations for mean
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Fig. 2. A generated random field using the GP parameters learned from the soil dataset. (a) The ground-truth data. (b) A GP hypothesis was constructed
from a sparse sampling of the data in (a), and the data was partitioned into three labels: low, med, high. (c) The variance of the sampling. (d) The mislabel
probability. Note that it is high in many places, even thoughthe variance is roughly uniform and low since the mislabel probability also depends on the
valueN(x). (e) The points at which the labeling certainty is below Pd, and the corresponding rings described in Lemma 2.

and variance at any specific point set as [5],

N(xi) = µp +Kθ(xi,Xp)Kθ(Xp,Xp)
−1 (N(Xp)− µp)

σ(xi)
2 = σ2

p −Kθ(xi,Xp)Kθ(Xp,Xp)
−1Kθ(xi,Xp)

T (2)

whereKθ(a, b) is the covariance function used. In agriculture
literature, these equations appear in slightly different form,
known as geostatistical equations [19]. We will henceforth
consider the squared exponential covariance function, butour
method generalizes to other functions as well. Then,

Kθ(a, b) = σ2
f · e( 1

2l2
||a−b||2

2) + δa,bσ
2
n (3)

where δa,b = 1 if a = b, and zero otherwise. We will
assume the Gaussian Process has been trained, and the
hyperparametersθ = {l, σn, σf} are known.

Let lj be the current label at pointxi. LetΦ(a) be the stan-
dard Gaussian Cumulative Distribution Function evaluatedat
a. Also, we will define the terml⋆j to be the “closest” labeling
threshold, for each label, to the current nitrogen estimateat
point xi as follows,

l⋆j (xi) = min
(

|N(xi)− l−j |, |N(xi)− l+j |
)

(4)

Due to the Gaussian noise assumption, we can find an upper
bound on the probability the point is mislabeled as follows.

Lemma 1 (Mislabel Probability):A point xi, with label
lj has a likelihood of being mislabeled Pml, which satisfies,

Pml(xi) ≤ 2 · Φ
( −l⋆j
σ(x)

)

(5)

wherel⋆j is defined as the closest labeling boundary toN(x).
Proof: We are trying to bound the “two-tail” probability

mass of the Gaussian random variablexi. We will use the
following relationships. For any0 < a ≤ b, and y ∼
N (µ, σ),

P(y > b) + P(y < −b) ≤ P(y > a) + P(y < −a)

P(y > b) + P(y < −b) = 2 · Φ(µ− b

σ
)

Then it follows that,

Pml(xi) = P(N(xi) < l−j ) + P(N(xi) > l+j )

Pml(xi) ≤ 2 ·max[P(N(xi) < l−j ),P(N(xi) > l+j )]

Pml(xi) ≤ 2 · P(N(xi) < −|l⋆|) = Φ

( −l⋆j
σ(x)

)

From this lemma we know the mislabel probability is a
function of both the current estimateN(x) and the variance
σ(xi). Of these quantities, we have control overσ(xi), since
it depends on the distance of measurement locations fromxi.
We now show how close toxi a measurement should be to
have enough impact on the mislabel probability. First, we
show how low the variance must be for the current value of
N(x) to be labeled with high probability.

Corollary 1 (Desired Variance):For any point,xi ∈ X ,
let l⋆j (xi) be the closest label boundary toN(x), as defined
in Equation 4. If the variance in the estimate is less than

σ(xi) ≤
l⋆j

Φ−1(1− 1

2
Pd)

(6)

then the labeling certainty is greater thanPd.
Due to the spatial correlation from Equation 2, we can

find the maximum distance fromxi for a measurement to
have the desired uncertainty reduction to satisfy Equation1.

Lemma 2 (Measurement Radius):Let xi be a point with
high label uncertainty. For a sensorS with measurement
error σs, we can take a measurement from any pointzS
satisfying

||zS − xi||22 ≤ −l2 loge[(σ
2(x) − σ2

s)(σ
2
f + σ2

s)σ
−4

f )] (7)

to reduce Pml(xi) to below Pd.
Proof: The proof follows by manipulating the co-

variance function to find a desired reduction in variance.
From the definition of the Gaussian Process covariance
(Equation 2), we have that,

σ2
d = σ(x)2 −K(x, z)[K(z, z) + σ2

n]
−1K(x, z)T

Whereσ2
d is the variance from Corollary 1 andσ(x)2 is the

current variance at the target PML point. The functionK(·, ·)
is the covariance function given by Equation 3. Because we
use a single measurement point for the vectorz, and only a
single point forx, the covariance of the measurement point
is simply σ2

f + σ2
n. Substituting and re-arranging terms we

have the following.

σ(x)2 − σ2
d = K(xi, zS)[K(zS , zS) + σ2

n]
−1K(xi, zS)

T

σ(x)2 − σ2
d =

σ4
f

σ2
f + σ2

n

e−
1

l2
||x−zS||

2

2



The desired result follows by taking the natural log and
solving for the distance.

This lemma can be easily extended to handle measure-
ments from two types of sensors (aerial and ground).

Thus, for every PML point (which does not satisfy Equa-
tion 6), we can find a maximum distance from the point,
as a function of the sensor noise and current uncertainty,
from which a sample must be obtained to obtain sufficiently
small variance on the pointxi. An example of a field, the
field labels, and the points with high mislabel probability
are shown in Figure 2. For each point, a measurement from
inside the specified radius will satisfy Equation 1, by the
previous lemma. Next we present algorithms to find a tour
of these measurement locations.

V. PATH OPTIMIZATION

In this section, we first describe our algorithm for finding
the UAV+UGV tours to visit the most number of PML points
subject to the UAV battery budget. Our algorithm operates
in two phases: we first find the subset of PML points to be
visited by the UAV (refer to Problem 1). Then we find the
tour (i.e. order and sampling locations) for the UGV (refer
to Problem 2). The tour for the UGV also includes take-off
and landing locations for the UAV. We present the description
and analysis for each of these two phases next.

A. Computing the UAV Tour

We reduce the problem of finding the maximum subset
of PML points to be visited by the UAV to the orienteering
problem. We begin with a graphG(V,E, π, w) with weights
(w(u, v)) on edges, and rewardsπ(v) on the vertices. The
objective in the orienteering problem is to find a tour of
a subset of vertices collecting maximum reward, with the
constraint that the sum of weights of edges on the tour is
less than a given budget. In the following, we show how to
create such a graph for our problem.

First consider the simpler case of finding the maximum
subset of points in a UAV-only system. For simplicity, let the
camera footprint be a single point for now. The UAV tour
will consist of a single path with one take-off and landing
location. We build a graph with PML points as the vertices.
We add an edge toG between every pair of points with
weight equal to the Euclidean distance between the points.
Each vertex is given a unit reward. The budget for the UAV
equals the battery lifetime minus2Ca to account for the
single takeoff and landing. The solution for the orienteering
problem for this instance will be a path traversing a set of
PML points. The length of the path will be less than or equal
to the available travel budget for the UAV. The reward equals
the total number of PML points visited by the path.

Since the edge weights are Euclidean distances, this graph
is a complete metric graph. Blum et al. [12] presented
a 4-approximation for orienteering problems on undirected
metric graphs. Applying this algorithm to the graph we
constructed above will yield a UAV tour visiting at least
1/4th of the PML points visited by the optimal algorithm.

Now consider the case of a UAV+UGV system. The UGV
can transport the UAV between two PML locations, without
affecting the UAV’s battery life. We will modify the edge
weights accordingly. Furthermore, since the UAV carries a
camera with a footprint of diameterC, it can sample a point
without flying directly over it. Hence, we will also modify
the set of vertices. The detailed construction of the input
graph for the orienteering problem is as follows.

(1) Create a square grid of resolutionC/
√
2 over the plane.

Each point inXpml is associated with its nearest grid location
(Figure 3(a)). Store the number (denoted byπ(v)) of PML
points associated with a grid location.
(2) Let V be the set of grid vertices with at least one PML
point associated. For eachv ∈ V , let π(v) be the number of
associated PML points (Figure 3(a)).
(3) Build a complete undirected graphG = {V,E, π, w}.
For each edge between(u, v) ∈ V , add a weightw(u, v) =
min{d(u, v), 2Ca}. This implies there are two types of edges
between grid points: The UAV can either use the UGV to
travel paying only for the ascent/descent (2CA) or travel
directly between points paying the distance cost (d(u, v)).

Before proceeding, we verifyG is still a metric
graph. Consider a triple of verticesu, v, w. We know
w(u, v), w(v, w), w(w, u) ≤ 2Ca. It is easy to see the
triangle inequality holds when two or three edges have
weights equal to2Ca. Consider the case when only one
edge has weight equal to2Ca, say w(u, v) = 2Ca. Now,
w(v, w) + w(w, u) = d(v, w) + d(w, u) ≥ d(u, v). Since
w(u, v) = min{2Ca, d(u, v)} = 2Ca, we haved(u, v) ≥
2Ca. Hence, w(v, w) + w(w, u) ≥ w(u, v). And since
w(u, v) = 2Ca and w(v, w), w(w, u) < 2Ca, w(u, v) +
w(w, u) ≥ w(v, w) andw(u, v) + w(v, w) ≥ w(w, u). For
the case when all three edges have weights less than2Ca,
the weights are equal to Euclidean distances. Hence, weights
satisfy triangle inequality in addition to symmetry, identity
and non-negativity. Hence, the graph constructed above is a
complete metric graph. We can then apply the algorithm in
[12] to obtain a 4-approximation to Problem 1.

B. Sampling TSPN

The algorithm in the previous subsection gives us the
subset of PML points to be sampled. We must now construct
a minimum cost tour for the UGV to visit each point in
the subset. Note, for each point we have a radius given by
Lemma 2 within which we must obtain a sample. The radius
is not necessarily the same for various points, however, in
practice, we have found the radii are comparable. Hence, we
use the minimum radius (r) to simplify the algorithm.

We must now find a tour for the UGV which visits all
disks and takes a measurement within it. In the standard for-
mulation for the Traveling Salesperson with Neighborhoods
(for uniform disks) [13] only the travel time is considered.
However, recall from Problem 2, the cost of the UGV tour
equals the sum of time spent for traveling and the time spent
for obtaining all measurements. Thus the UGV must choose
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(f) Final UGV+UAV Tours

Fig. 3. Path Planning Algorithm. (a) Square grid of resolution C/
√

2. The reward for visiting each grid point (red square) is the number of PML points
(gray star) falling within the grid. (b) UAV tour found usingorienteering on the graph of grid points. For this instance,UAV budget was 500 secs out of
which 200 secs are spent traveling and 240 secs are spent for the 2 ascents/descents. (c), (d), (e) Steps in constructing aSampling TSPN tour (Algorithm 1)
for the UGV. (f) Final UGV tour including UAV take-off locations (red squares).

a measurement location within each disk, while the length of
the tour and the number of distinct measurement locations
are minimized. Specifically, we are studying the following

new variant of the Traveling Salesperson Problem.

Problem 3 (Sampling TSPN):Given a set of disks with
uniform radiusr and centers at pointsX , find a tourτ of N



distinct sample locations to minimize the cost len(τ)+C ·N
such that each disk contains a sample location.

We will present a brief description of the algorithm in [13]
for the standard TSPN problem and show how to modify
it to accommodate the additional cost of measurements.
Dumitrescu and Mitchell in [13] first find a maximal inde-
pendent set (MIS) of non-intersecting disks, from the given
set of disks. Then they find a TSP tour visiting the centers
of the disks in MIS (Figure 3(c)). This tour intersects the
circumference of each disk in the MIS twice. The final tour
that visits each disk is constructed as follows. Start from an
arbitrary disk in the MIS. Follow the tour in the clockwise
order up to the intersection point of the next disk. Follow the
circumference of this disk in the clockwise order up to the
second intersection point of the same disk. Continue until
the starting point is encountered again. Repeat this process
in the anti-clockwise direction.

(a)

a

b

c

d

e

f

g

h

r
o

(b)
Fig. 4. (a) The standard TSPN algorithm [13] that visits justthe
circumference of the disk in the MIS (shown shaded) can be arbitrarily
bad when applied to the Sampling TSPN problem. This tour willbe forced
to take one measurement each for each outer disk and thus haveO(n)
measurement locations. The optimal algorithm is not forcedto move along
the circumference. Thus, it can visit a small number of locations where the
disks overlap. (b) We modify the TSPN heuristic to visit a fixed number
of sites (shown as dots) around each disk in the MIS yielding aconstant
factor approximation for the Sampling TSPN problem.

This algorithm ensures that the tour intersects all disks
by moving along the circumference of each disk in the
MIS. However, when the UGV has to stop and obtain a
measurement in each disk, restricting the motion to the
circumference can be potentially costly in terms of the
number of measurements. For example, consider the situation
shown in Figure 4(a) where the outer disks intersect with
each other only outside the circumference of the disk in MIS.
Since the tour in the standard algorithm only moves along the
circumference, it will be forced to take one measurement for
every outer disk, which can be as large asO(n), where as the
optimal algorithm can visit a small number of intersection
points, not necessarily on the circumference.

We modify the local strategy (going around the circumfer-
ence) in order to simultaneously find sampling locations for
the tour. We will bound the additional length due to this new
local strategy, and bound the number of samples obtained
with respect to the optimal. Our algorithm is as follows:

(1) Find an MIS of non-overlapping disks from input disks.
(2) Starting from an arbitrary point, follow the TSP tour of
the centers of disks in the MIS (Figure 3(c)).
(3) When a new center (sayx) is reached on the TSP tour,
before visiting the next center on the tour, first visit the eight
sites as shown in Figure 4(b).o is the center of the disk in
the MIS. Sitesb, d, h, f lie on a square of side2r centered
at o. Sitesa, c, e, g lie on a square of side2

√
2r rotated by

π
4

. After visiting the last of these sites, we continue towards
the center of the next disk in MIS (Figure 3(d)).
(4) Restrict the candidate sampling locations to the set of
centers of disks in MIS and the set of eight sites as described
above. Denote this set of candidate sampling locations byS.

Algorithm 1: Sampling TSPN Algorithm.

First we will show that the setS defined above intersects
all disks inX . Then we will bound the size ofS with respect
to the size of the optimal number of samplesN∗. Finally,
we will bound the length of the tour and thus the total cost.

Lemma 3:Let S be the set of all centers of the disks in
a MIS of non-overlapping disksX of radiusr. Let S also
contain the eight sites as described in Algorithm 1. Then, for
each disk inX , there exists a point inS lying in its interior.

Proof: Consider Figure 4(b).o is the center of the
disk in the MIS. Then all disks that intersect the disk at
o, lie within a disk of radius2r from o (shown in red
in Figure 4(b)). Denote this outer disk byD2. Let So =
{o, a, . . . , h}. We can observe that the set of disks of radius
r centered at all sites inSo form a cover ofD2. Hence, any
point in D2 is at a distance of at mostr from a site inSo.
Now consider any disk centered ato′ that intersects the disk
centered ato. o′ ∈ D2, hence there exists a site inSo at
a distancer from o′, i.e., lying within the disk ato′. This
proves the lemma.

Next, we bound the size ofS with respect to the number of
samples in an optimal Sampling TSPN algorithm. We also
show that the total length of our tour is no more than a
constant times the length of the tour of an optimal algorithm
for the sampling TSPN algorithm.

Lemma 4: If N∗ is the number of samples by an optimal
algorithm for the Sampling TSPN problem, then|S| ≤ 9N∗.

Proof: S contains 9 sites per disk in an MIS of non-
intersecting disks: one for the center, and eight lying on the
two squares as shown in Figure 4(b). Hence,|S| = 9|MIS|.
No two disks in the MIS overlap, hence they cannot share
any sampling location between them. Hence,N∗ > |MIS|
and thus|S| ≤ 9N∗.

Lemma 5:Let TALG be the tour constructed by the algo-
rithm above, andT ∗ be the tour for the optimal Sampling
TSPN algorithm. Then len(TALG) ≤ 44T ∗.

Proof: For ease of notation, in this proof we refer both
a tour and its length byT , andT ∗ refers to an optimal tour.
The analysis of this proof proceeds similar to that in [13]
with modifications where the tour differs. Using Proposition
1 in [13] for non-unit disks, we haven ≤

(

4 + 4T∗

πr

)

.
Denote byTI andTC the TSPN tour of the MIS and TSP

tour of the center of the MIS respectively. Letn be the total



number of input disks. Now

T ∗
C ≤ T ∗

I + 2nr

≤ T ∗ + 8r +
8T ∗

π

= T ∗

(

1 +
8

π

)

+ 8r.

The first inequality follows from the fact that a tour of the
centers can be constructed by taking a detour of at most2r
for each disk from the tour of the disks.TALG consists of a
TSP tour of the centers of the disks in MIS and a tour of the
regular hexagon surrounding each disk. Using the(1 + ǫ)-
approximation for the TSP tour [20], we get

TALG ≤ (1 + ǫ)T ∗
C +

√
2nr + 7

√
2nr,

≤ (1 + ǫ)

((

1 +
8

π

)

T ∗ + 8r

)

+ 32
√
2r +

32
√
2T ∗

π
.

The
√
2nr term in the first inequality comes from the part

of moving from the center of the disk in MIS to the closest
of the eight sites (fromo to h in Figure 4(b)). The7

√
2nr

comes from visiting each of the eight sites (starting fromh
througha in Figure 4(b)).

Using Lemma 1 from [21], we know that the length of
any path that visits three non-overlapping disks of radiusr
is at least0.4786r. Thus when the MIS contains more than
3 disks, we getT ∗ ≥ 0.4786r. Therefore,

TALG ≤ T ∗

[

(1 + ǫ)

(

1 +
8

π

)

+
32

√
2

π
+ 0.47(8 + 32

√
2 + 8ǫ)

]

≤ 44T ∗

for small ǫ.
Based on the above lemmas, we can easily bound the total

cost of our algorithm and show that it is at most a constant
times that of the optimal cost.

Theorem 1:Algorithm 1 is a valid Sampling TSPN tour
with cost at most44 times that of the optimal algorithm.

Proof: Let C∗ be the cost of the optimal algorithm for
the Sampling TSPN problem. Therefore,C∗ ≥ len(τ∗)+N∗·
Cg, whereτ∗ is the optimal TSPN tour visiting all disks, and
N∗ is the minimum number of sample locations such that
each disk has at least one sample location.

Consider the cost of our algorithm,

CALG = len(τ) +N · Cg,

≤ 44len(τ∗) + 9N∗ · Cg,

≤ 44C∗.

where the first inequality comes from Lemmas 5 and 4.
In practice, we do not have to sample at all the nine sites.

We can discard sample locations that do not intersect any
disk or find a smaller subset (e.g. greedily) that samples
all the disks. Then, we can find a TSP tour of just these
sampling locations, as shown in Figure 3(e). We have not
yet considered the UAV landing and take-off locations in the
UGV tour. We add all the take-off locations toS, and find a
TSP tour of the combined set of points (Figure 3(f)). Then,

after visiting a take-off location, the UGV continues along
its tour. Whenever, its time to reach the landing location
from the tour becomes equal to the landing time of the UAV,
the UGV can deviate from its pre-planned route, visit the
landing location, and return to its pre-planned route. The
total distance overhead for the UGV is at most the budget
of the UAV and in practice, not very significant.

VI. SIMULATIONS

In the previous sections, we showed theoretical bounds on
the number of PML points selected and the distance traveled
by our algorithm with respect to optimal. We expect the
UAV+UGV system to sample more PML points as compared
to a UAV only system with the same battery limitations.
We explore this through simulations using actual system
parameters and real data collected from an agricultural plot.

A. System Description

We present the details of the robotic system we are devel-
oping to motivate the choice of our simulation parameters.
Our UGV is a Husky A200 by Clearpath Robotics [22]. The
UGV has a typical battery life of two hours on a single
charge. The operating lifetime can be extended to over six
hours easily with additional batteries. The UGV will measure
soil organic matter as a proxy for soil N supply to the crop
using a Minolta SPAD-502 Chlorophyll meter [23].

Our UAV is a Hexa XL by MikroKopter [24]. This UAV
can operate for 25 mins. Deploying the UAV to approx-
imately 100 meters height gives the camera a 50 meter
diameter coverage with a single image. The UAV takes about
2 minutes to ascend/descend this height. The images include
multi-spectral information, such as near-infrared reflectance,
which is used to estimate the crop N status [25].

B. Modeling

To generate realistic data, we need a generative model of
Nitrogen levels and realistic values for the sampling noise
for both systems. We will briefly discuss how we obtained
these from a nitrogen remote sensing and soil sampling
dataset [25]. The data consists of 1375 soil measurements
taken manually in a 50m by 250m corn field, along with
corresponding 1m spatial resolution remote sensing images
in the green (G), red (R) and near infrared (NIR) portions
of the spectrum. The samples were taken along a dense
uniform coverage (See Figure 5) and provided the levels
of soil organic matter (OM). R and NIR are known to be
inversely related to crop N status [25].

We used OM as a proxy for the initial quantity of soil
N supplied to the crop. We modeled the UGV as taking
direct measurements of OM, corrupted by some sensor noise
σg, and the UAV as measuring the Normalized Difference
Vegetation Index (NDVI), which is a combination of NIR
and R levels [26]. We assume the NDVI levels are corrupted
by sensor noiseσa. To model the spatial patterns of the
OM levels, we used GP regression over the set of sample
points and OM measurement values. This densely-sampled
GP defined the hyperparameters which were used to generate
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Fig. 5. Soil organic matter data set from [25]. Dense sampling was collected by hand (black crosses) and used to train a Gaussian Process. The resulting
estimate of nitrogen levels is shown as the contour map. Fromthis data set we learn the sensor noise valuesσa andσg , as well as model the underlying
soil organic matter for larger simulations (Figure best viewed in color).

new ground-truth N maps in our simulations. We used the
GPML Toolbox [27] for performing the GP regression.

As part of the ground-truth GP regression, we can estimate
the sample noise at each point from the data directly (σn

in Equation 3). We used this value directly asσg, since we
assumed the robot would have the same sensing capability as
the human operators. To estimateσa, we built the covariance
matrix,E[(NDVI −E(NDVI))(OM−E(OM))T ]. This gives

us a2× 2 matrix,

[

σ2
OM σOM,NDVI

σNDVI ,OM σ2
NDVI

]

.

From this, we can find the variance in OM given a

measurement of NDVI as,σ2
OM|NDVI = σ2

NDVI − σ2

OM,NDVI

σ2

OM
.

We found thatσOM|NDVI > σg. We can now model NDVI
measurements directly from measurements of OM when
sampling the Gaussian Process model. These UAV and UGV
measurement noise variance were found to beσa = 0.31 and
σg = .05 respectively, for the dataset.

For the simulations, we formed a prior estimate of OM
levels by down sampling each randomly-generated ground-
truth N-map by a factor of 20 and fitting a new GP. From
this prior GP, we found the PML point set as described in
Section IV. We randomly generated 100 N-maps for a600×
400 m field. We then found the PML points using a desired
labeling probability of 0.6. The number of PML points in
any instance depends on the randomly generated map.

C. Results

We first compare the number of PML points covered by
the UAV+UGV system versus an UAV-only system. We use
the procedure described in Section V for finding the subset
of PML points visited by the UAV only and the UAV+UGV
system, subject to the battery constraint of 25 mins. We used
the implementation from the SFO Toolbox [28] for finding
an orienteering tour, and the Concorde TSP solver [29] as a
subroutine in the Sampling TSPN algorithm implementation.

Figure 6 shows a sample run from the simulations. We
observe that the UAV-only tour is constrained to only one
part of the field, whereas the UAV+UGV system can ob-
tain measurements from farther away locations. This input
instance consisted of 75 potentially mislabeled points, the
UAV only tour covers 38 points whereas the UAV+UGV
tour covers 50 points. Figure 7 shows a histogram of the
ratio of the points covered by the UAV+UGV and the UAV
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Ratio of PML points visited
with UAV+UGV and UAV only

Fig. 7. Histograms of the ratio of number of PML points visited for a
UAV+UGV system and a UAV only system for 100 random instances. Both
systems are given an equal budget of25 minutes.

only tours for 100 random instances. As expected, the ratio
is always greater than 1 as the UAV+UGV system is at least
as good as a UAV only system in terms of the number of
points visited. Table I shows the effect of varying the budget
on the percentage of input PML points visited.

TABLE I

PERCENTAGE OF INPUTPML POINTS VISITED(AVG . OF 30 INSTANCES).

Budget (sec) UAV only UAV+UGV

500 19 25
1000 36 49
1500 55 72

The UAV+UGV system can cover points that are spread
across the field. Intuitively, if the measurements are dis-
tributed across the field, we expect the resulting map (after
incorporating the measurements) to have fewer mislabeled
points than if all measurements are nearby. After calculating
the desired UAV/UGV tours, random measurements for the
sensors were sampled directly from OM values given the
dense (ground truth) GP. We added noise to the measure-
ments using estimated variancesσa = 0.31 and σg = 0.5
as described in Section VI-B. These values were then used
to update the prior GP, which was then used to find the
posterior PML points. We observe the posterior PML points
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Fig. 6. Sample simulation instance. (a) & (b) shows the toursfound using a UAV only and UAV+UGV system. The input consistsof 75 PML points.
The UAV+UGV tour consists of 6 subtours. (c) & (d) shows the PML points found in the updated N level map after incorporatingaerial and ground
measurements. The UGV allows the UAV to transport to fartherlocations in the plot which is reflected in fewer posterior PML points.

in Figures 6(c) & 6(d). For a fair comparison, we add UGV
measurements for each PML point visited by a UAV only
tour, in obtaining the updated N level map.

Figure 8 shows a histogram of the ratio of the posterior
PML points with a UAV+UGV system and a UAV only
system. Since the number of PML points depend on both the
variance, and the estimatedN(x) values, occasionally there
are instances when the number of posterior PML points with
UAV only system are lesser than that of UAV+UGV system.
However, as we can observe in Figure 8 the UAV+UGV
system often outperforms the UAV only system in terms of
number of posterior PML points.

VII. C ONCLUSION

In this paper, we studied the problem of designing sensing
strategies for obtaining aerial images and soil samples with
a UAV+UGV system to estimate the Nitrogen level in a plot.
Effective fertilizer treatment plans can be developed by better
estimates of Nitrogen levels. Since the battery life of the UAV
is limited, the UAV and UGV can only sample a limited

number of points. We studied the problem of maximizing
the number of points visited by the UAV and UGV. Unlike
traditional approaches, our algorithm takes into consideration
the situation where the UAV can land on the UGV and
thus be carried between points without expending energy.
We also studied the problem of minimizing the time for
sampling these points with a UGV. We presented a constant-
factor approximation algorithm which finds a set of sampling
locations and a tour of these locations, such that each point
has a sampling location within its disk neighborhood.

An interesting direction for future work is bounding the
number of tours required to correctly label the whole field.
What separates this from coverage problems is the fact
that new PML points are likely to appear during sampling
tours, since N estimates change after every sample. This
presents an interesting trade-off between using the slower
UGV measurements to handle the new PML points, or
returning and re-planning with a full UAV budget.

We have also started building the complete system using a
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Fig. 8. Histograms of the ratio of number of posterior PML points gener-
ated after updating N map with simulated measurements for a UAV+UGV
system and a UAV only system for 100 random instances. Both systems are
given an equal budget of25 minutes.

Clearpath Husky A200 ground robot and a hexacopter from
MikroKopter. In order to execute the algorithms presented
in this paper, additional capabilities such as autonomous
landing and soil sampling are necessary. We are committed to
developing these capabilities and enabling the use of robots
in precision agriculture.
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