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Landmine Buried Depth Estimation by Curve Characterization of
Metal Mine Detector Signals

Alex M. Kaneko1, Gen Endo2 and Edwardo F. Fukushima3

Abstract— Humanitarian demining aims at clearing landmine
affected areas, but the current manual demining techniques are
still slow, costly and dangerous. Discrimination methods for
distinguishing between real mines and metal fragments would
greatly increase efficiency of such demining operations, but
none practical solution has been implemented yet. Important
information for discrimination are the depth which targets are
buried, so estimation methods of this physical property are
desired. In this research, a new, accurate and fast method
based on Spatially Represented Metal Mine Detector Signals for
estimating metallic targets depths using Metal Mine Detectors
is presented, which takes advantage of high precision scanning
of the minefield using robotic manipulator.

I. INTRODUCTION

Landmines removal/neutralization is very costly,
dangerous and time-consuming. There are many different
methods for demining: a) animals [1][2], b) heavy machines
[3] and c) metal detectors [4], but all of them are still
inefficient and suffer from high false alarm rates (FAR). To
support the demining process, Tokyo Institute of Technology
developed a semi-autonomous mobile robot, Gryphon (Fig.
1), which can automatically scan with mine sensors over
rough terrain, record data and mark suspect spots on the
ground, proving to be as good or even better than human
operators when using a Metal Mine Detector (MMD) [5].
However, FAR improvements are still desired for making
demining operations faster and more efficient.

Several different approaches have been conducted for
reducing FAR, such as: [6][7][8][9][10]. Particularly,
[11][12] rely on a previously built database for
discrimination, but the discrimination is as limited as
the number of data in the database. [13][14] utilize a
combination of two sensors (“dual-sensor”), a MMD
with a Ground Penetrating Radar (GPR). However, a
pre-knowledge of buried depths is needed from the operator
and FAR arises. [15] uses image processing and MMD
signal surface area and volume calculation for estimating
size and material of a detected target, followed by depth
estimation inclining the MMD in different angles. However,
as work [12], it requires information from several depths
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Fig. 1: Demining robot Gryphon and detected signals

(layers) for discrimination, considerably slowing down the
demining operation. The depth landmines are buried permits
quick discrimination of anti-personnel (shallow depths)
and Anti-Tank (AT) landmines (deeper). Moreover, depth
information permits easier use of GPRs. The material which
targets are composed is also a valuable information for
discrimination, since landmines are in great part made of
steel.

In this work, a new, accurate and fast method for depth
estimation of metallic targets using MMDs is presented,
which takes advantage of high precision scanning of the
minefield using robotic manipulator as shown in Fig. 1.

II. PROPOSED CURVE CHARACTERIZATION
METHOD

A. Spatially Represented Metal Mine Detector Signals

Humans usually scan areas swinging the MMD sideways
advancing in steps, which the detected signals (called here
as V(%)) are transformed into sound and the signals with
corresponding positions must be memorized. Robots can
also deal with the same task, but with higher precision
and repeatability, easily associating signals with the spatial
position, processed in real-time and shown to the operator
(Fig. 1).

In this research, we define “Spatially Represented Metal
Mine Detector Signal” (SRMMDS) as a 3D representation of
the MMD signal (Fig. 2). It can be observed the SRMMDS
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Fig. 2: SRMMDS for different targets and conditions

change according to the target’s properties such as size,
shape, buried depth and posture, composing very strong
characteristics. This suggests that if a database with these
characteristics is composed, discrimination could be done
by comparing a SRMMDS obtained in the minefield to the
closest match in the database.

B. Main Axis and Main Characteristic Curves Definition

For each detected SRMMDs, we set a local coordinate
O-xyz’, with an x’-y’ plane parallel to the MMD scanning
plane and z’ axis passing through the maximum absolute
value of the SRMMDS. Consider an orthogonal plane Pθ to
the x’-y’ plane that passes through the z’ axis and with an
angle θ relatively to the x’ axis. The characteristic curve
defined in this work V(r(θ)) (Fig. 3) refers to the new
generated curve, the contour of the intersection of the Pθ
with the SRMMDS, with new axis r(θ).

Fig. 3 shows that the characteristic curves for physically
symmetric targets as an AT landmine don’t change for all θ,
and the SRMMDS can be simplified to one characteristic
curve. For non-symmetric targets, characteristic curves
change drastically according to θ, but simplifications to a
set of minimum curves can be done. As shown in Fig.
2, for a particular θ which coincides with the target’s
longest direction, the curve has many inflections and peaks
in relation to other angles. In this work, the characteristic
curve with most inflexions and/or peaks is defined as “main
characteristic curve” and its axis θ as “main axis”, which
four main Profiles are possible (Fig.3).

Characteristics curves can be represented by several
mathematical relations such as splines and polynomials, in
the form of V = f(r(θ)). Since the number of inflections
of the characteristic curves is limited, we propose the use
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Fig. 3: Cutting plane and main characteristic curves

of polynomials in the form of eq. 1, keeping the signal
characteristic and filtering the noisy raw data. All signals
are translated so that the maximum peak is located in r=0
and a0 has the maximum absolute MMD value of the signal.

f(Y ) = a0r(θ)
0 + a1r(θ)

1 + a2r(θ)
2 + ...+ anr(θ)

n (1)

where a0, a1, a2,..., an = polynomial coefficients

C. Depth Interpolation for Characteristic Curves

In the former sections, we mentioned the possibility of
having a pre-built database of different targets with physical
properties (depth, posture, size, shape, etc) for permitting
easy discrimination. On the other hand, it is not feasible
to make a database with all possible combinations, but as
shown in Fig 4, characteristics curves for a given target keeps
the number of concavity and mainly changes its amplitude
according to variations in depth. This fact suggests that
inputting an a0 in one set of target with its different depths
the corresponding curve as well as the depth with that a0 can
be generated. For example, in case the input a0 is 80% the
estimated depth is around 160 mm for the AT landmine and
80 mm for the MF21 (a type of MF, further detailed in the
next sections), and their corresponding curves are generated
in red in Fig. 4. This shows that with a limited number of
discrete data, reconstruction of characteristic curves for any
depth for that particular target is possible, as shows eq. 2.

f tinterpolated(Y ) = f(f(Y )t1, f(Y )t2, ..., f(Y )td) (2)

where target = 1, 2, ..., t
depths per target = 1, 2, 3, ..., d
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Fig. 4: Example of Depth Interpolation for an AT and
MF21 target type Characteristic Curves

D. Searching Criterion

A criterion of similarity (or error) for the searching in the
database between two curves is adopted here as the integral
of the difference of their polynomials, as shown in eq. 3. A
small error indicates good similarity and high possibility of
discrimination while higher ones suggest that the target is
not part of the database.

Error(%) =

∫
abs(f − g)/h ∗ 100 (3)

where f and g = polynomials to be compared
h = max[

∫
abs(f),

∫
abs(g)]

III. DATABASE BUILDING

For verifying the validity of the proposed method we first
built a database of characteristic curves in the polynomial
form for many targets with different depths and postures
using a robotic x-y manipulator. Data with weak (V(%)<1%)
or saturated (V(%)=100%) signals were removed from the
database this time. In total, the database is composed of 34
targets (Fig. 5) in several depths and postures resulting in a
total of 340 main characteristic curves.

The targets consist of many shapes (sphere, tube, cylinder,
cube) and materials (steel, brass, chrome, aluminum and
stainless). The depths vary from 10 to 400 mm and several
postures (horizontal, inclined 45o and vertical) are included.
All MFs and AT landmines were taken at linear speed of
50 mm/s, 10 mm line step between scan lines and data
density of 0.2 points/mm. Some landmines (PMN, PMN2)
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Fig. 5: Targets used for building the database

are also included, with variable depths, postures and scan
steps. Details are as in Table. I.

TABLE I: Dimensions of the targets used for building the
database

Data
No Target Dimensions Material

1-222

Bullets
and

cartridges
(MF01

to
MF21)

7-27 mm diameter,
27-114 mm height Steel

223-254 Cube 20 mm edge
Aluminum,
stainless,

brass

255-274 Cylinder 11 mm diameter, 12.5
mm height

Aluminum,
stainless,

brass

275-291 Tube
11 mm external diameter,
0.5 mm thickness, 12.5

mm height

Aluminum,
brass

292-301 Sphere 25.4 mm diameter Chrome

302-305 ITOP
(I0)

4.8 mm outer diameter,
0.38 mm wall thickness,

12.5 mm height
Aluminum

306-330 AT 300 mm diameter Steel

331-335 PMN 112 mm diameter, 56 mm
height Steel

336-340 PMN2 125 mm diameter, 65 mm
height Steel

A. Metal Mine Detector Signal Conditioning

The MinelabF3 Metal Mine Detector [4] was chosen
for this experiment. This detector outputs signals in two
independent channels (ChA and ChB), which are combined
[16] according to eq. 4, forming a signal with stronger
intensity ChC used for comparison in eq. 3. However, both
ChA and ChB information are stored in the database and
maximum MMD values and depths relation are used for
refining and speeding up the search according to eq. 5, which



only targets with depth error smaller than a threshold value
are used for comparison, while others are directly discarded.

ChC = ChB − ChA −median(ChB − ChA) (4)

Depth error(cm) = abs(depthB(a0B)− depthA(a0A)) (5)

B. Database Integrity

The database was built with a limited number of data
taken for discrete depth so that an interpolation method
as explained previously should be valid to reconstruct a
corresponding curve at a given arbitrary depth. Notice
that many minefield conditions exist, but in this work we
focus on limited conditions such as targets located in flat
grounds, no other metals nearby, scans can be done without
obstacles and different types of soils are not accounted. All
these parameters are important to be analyzed and will be
considered in future work.

In order to verify the “depth interpolation method” and
also check the integrity of the database, the following test
was conducted: depth interpolation, with search of the closest
target. For each data number N, consider it is a detected
signal and exclude it from the database, performing the
searching in all the remaining data, looking for the target
with smallest error. Since no extrapolations are done, data
of the shallowest and the deepest depths of each target
were used only for interpolation, without being input for
estimation. The depth error threshold adopted for eq.5 is
17 mm, which means, if a target has depth error higher
than this value than it is discarded as potential candidate
for estimation, guaranteeing good estimation levels. The
method, then, outputs (estimates) two main information: a)
depth (interpolated) and b) target (which is a combination
of material, size, shape, etc). Since the method estimates
a target, theoretically we could directly discriminate the
unknown signal as this target, i.e, as landmine or MF.
However, safety issues must be considered for reliable
discrimination and for this reason we will deeply discuss
this possibility in future work. For now, we only analyze the
estimated depth and material.

The estimation results are shown in Table. II and Fig.
6. Comparing to the existing method [15], more targets
were analyzed and a greater material estimation rate can be
observed: 95 to 100% for Steel, 48 to 74 % for Aluminum
and 21 to 79 % for Brass. Even though [15] doesn’t mention
Stainless and Chrome, in this work the estimation was high,
with 65 and 88 %, respectively. The depth estimation resulted
in a average error of 4 mm and maximum 39 mm. More than
91% of the data resulted in depth error below 10 mm, while
only 1.9% has the error between 30 and 40 mm, what can
be considered satisfactory for supporting the use of GPRs.
Even though [15] doesn’t mention the average depth errors,
the time for estimation is hugely smaller for the proposed
method (1 s per target) against many minutes per target for
the existing method.

TABLE II: Database integrity: material and depth
estimation results

Existing
Method [15]

Proposed
Method

Average depth error
(mm) - 4

Maximum depth
error (mm) - 39

Estimation time per
target (s) >96 1

Steel (%) 22/23 = 95 197/197 = 100
Aluminum (%) 11/23 = 48 14/19 = 74
Stainless (%) - 11/17 = 65

Brass (%) 5/23 = 21 15/19 = 79
Chrome (%) - 7/8 = 88

91.9% 

3.5% 
2.7% 1.9% 

0 - 1 cm

1 - 2 cm

2 - 3 cm

3 - 4 cm

0 - 10 mm

10 - 20 mm

20 - 30 mm

30 - 40 mm

Fig. 6: Database data depth error distribution

All cases which depth error are between 30-40 mm are
detailed in Fig. 7. The signals in the database are interpolated
very accurately generating curves as expected. However, one
can observe that for all cases, the target’s profiles are like
Profile 1 (Fig. 3), which is the profile with least inflections
and peaks, being very poor in characteristics. One can notice
that the MF19 is responsible for many high depth error
cases. Even though the MF19 is not physically symmetric, its
detected SRMMDS for both horizontal and 45o under certain
conditions are nearly symmetric, generating profiles similar
to targets such as cubes, tubes and the PMN2 landmined,
becoming difficult to estimate.

IV. EXPERIMENTAL RESULTS

The database was built using a x-y manipulator for taking
precise data in laboratory. We need to test the behavior and
robustness of the method when data taken with Gryphon is
input. Some MFs, AT landmine and ITOP simulate target
(a standard target for tests, simply called “ITOP” hereon)
data were obtained with Gryphon at different depths and
compared to the database for depth and material estimation.
ITOP is a very important target to be tested for it has the
metal content typical of a class of mine [17]. It is also known
as “ITOP inserts” since it is conceived for an International
Test Operations Procedure project as the metal content of
larger simulant mines. There are several types of ITOPs, with
different levels of detectability and metal contents. In this
work, the used ITOP is the type I0 with a “hard to detect”
level of detectability with dimensions as Tab. I.

In total, 37 data (16 MF data at 70 mm depth, 10
ITOP data at 60 mm depth and 11 AT data from 150
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to 250 mm depth) were obtained with Gryphon’s default
scanning settings: linear speed of 50 mm/s, 40 mm line
step between scan lines and data density of 0.2 points/mm.
All data is filtered, main axis extracted, translated to the
origin according a0, smoothed and interpolated. The results
are shown in Table. III. According to the results, the
average depth estimation error increased considerably, when
comparing to the database integrity experiment (from 4 to 19
mm). However, 19 mm average error can be still considered
a low error and satisfactory for real demining operations,
for permitting quick use of GPRs and landmines removal by
human operators. The maximum error kept almost unchanged
(from 39 to 41 mm). Fig. 8 shows the maximum depth error
case, which a MF6 had as closest target a MF1 in 45o. In
this case, the calculated Error between the curves is 37%,
what is too high, what suggests great chances of wrong
estimation, making the Error value an important parameter
for reliability and must be explored in future work. Deep
(AT landmines) and shallow targets (MFs) were correctly
estimated according to depth with small errors, i.e, no MF
was estimated as deep and no AT was estimated as shallow.
It is important to notice that some experienced deminers are
able to estimate depths only with a metal detector alone,
however, this task is accomplished after several extra swings,
slowing down operations in some seconds or minutes. In this
work, the same task can be accomplished with less than 1 s

TABLE III: Depth and material estimation experiment
results

Average depth error (mm) 19
Max depth error (mm) 41

Steel (%) 27/27 = 100%
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Fig. 8: Target with maximum depth error (top) and
examples of ITOP wrong estimation (bottom)

for searching and one single scan.
The metal estimation results show that steel could be

estimated in 100% of the cases (MFs and AT landmines),
while aluminum couldn’t be estimated. However, in this
experiment, ITOP was used as example of aluminum, but its
shape and size are projected to be very difficult to be detected
and also to simulate some landmines signals [17] (made of
steel), what was a very particular case of aluminum-made
target. In fact, 2 of the ITOP data had as closest target the
PMN2 landmine, proving the similarity in signal of ITOP
and landmines. Some examples of wrongly estimated ITOP
are shown in Fig. 8.

The experiments show that steel can be estimated with
high accuracy. Even though ITOP is difficult to be directly
estimated, the depth for this and other targets can be
estimated with small errors. Moreover, observing all cases
with highest Errors, it is emphasized that targets with
characteristic curve as Profile 1 have poor characteristics,
leading to difficult estimation.

V. DATABASE SEARCHING TIME

In the previous sections it was shown that the searching for
each target could be performed in an average of 1 s/target,
considering 340 data in the database and the speeding criteria
adopted in this work. However, if we analyze the slowest
time (worst case) for different database sizes, we can observe
a linear relation, as shown in Fig. 9. This proves that even
if very large amount of data is available, the searching in



the database can be done parallelly, further decreasing the
searching time.

VI. CONCLUSIONS

The authors proposed a new methodology for estimating
depth of metallic targets using commercially available Mine
Metal Detectors, based on a basic principle of comparison
of signals/curves of targets obtained in the mine-field to a
pre-build library containing data of many targets at different
postures and depths. We introduced the concept of ”Spatially
Represented Metal Mine Detector Signal” to the signal
obtained from robot manipulator scanning of the mine
field and also proposed simplification of the SRMMDS to
”Characteristic Curves” represented by polynomials, which
lead to effective signal characterization and estimation in
real-time.

With this method, large amount of data can be easily
stored in a database and quickly interpolated for representing
continuous depth data from limited depth samples with high
accuracy. The method can estimate depth with average error
of 19 mm and maximum 41 mm, which are accurate enough
for supporting the use of GPRs and also for permitting
fast discrimination of AT landmines (usually located in
deep areas) and anti-personnel landmines (usually buried
in shallow areas). As a sub product, the method could
also estimate targets materials; steel in 100% of the cases
and other types of metals (aluminum, stainless, brass and
chrome) in higher rates than the existing method. This is
very important for quickly removing objects not made of
steel, which is the material usually used in landmines. A
major advantage of this method is the time duration for
estimation per target. While existing methods take minutes
for estimating each target, the proposed method in this work
takes only 1 s per target, which can be further reduced if
parallel processing is applied.

VII. FUTURE WORK

The proposed method will be expanded for accomplishing
discrimination of metal fragments and landmines in demining
operations. In this work the calculated value of Error was
not explored and simply the smallest error was used for
estimation, but Error can be used as threshold for reliability
of the obtained results. Optimizations for the method are
desired, such as the necessary scan step and the quantity
of data for interpolation for each target for good levels of
estimation. Tests in Angola are also planned where more
landmines under very realistic conditions (soil, temperature,
humidity, etc) will be analyzed for testing the robustness of
the method.
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