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Abstract— Snake robots are biomimetic robots highly suited
for traversing challenging terrain where traditional robots have
difficulty moving. A key aspect is obstacle-aided locomotion,
where the snake pushes against the environment to achieve the
desired propulsion. The main focus of this work is to optimally
determine how to use the motor torque inputs that result in
obstacle forces suitable to achieve some user-defined desired
path for the snake. To this end, we present a new dynamical
snake model, an explicit algebraic relationship between input
and obstacle forces, and formulate an optimization problem
that seeks to minimize energy consumption while achieving
propulsion along the desired path.

I. INTRODUCTION

Snake robots are biomimetic robots, designed to move
in the same manner as biological snakes. In nature, snakes
show remarkable adaptability in the different types of envi-
ronments they can traverse. In addition to moving in highly
unstructured environments, they can also swim, climb and
– in some species – glide [1]. It is especially the ability
to move efficiently in difficult terrain (dense forests, ruined
buildings, etc.) where traditional wheeled or tracked robots
have difficulty and flying robots can’t go, that is interesting
for snake robots. The ability to switch from one environment
or propulsion mode to another (e.g., crawling to swimming)
is also interesting. A machine capable of snake-like loco-
motion has a wide variety of applications, e.g., search-and-
rescue, fire-fighting, inspection and exploration [2]–[4].

Conceptually, snake robots are n serially connected links,
only attached to each other. Planar robots, such as the one
discussed in this paper, therefore have n + 2 degrees of
freedom (center of mass position and n rotation angles) and
only n − 1 control inputs at the n − 1 joints. Unlike robot
manipulators, they are therefore under-actuated. [2], [5]

Snake locomotion on smooth, usually flat, surfaces has
been extensively studied (e.g., [2], [6]–[11]). Many real-life
environments are not smooth, but cluttered. A key aspect of
practical snake robots is therefore obstacle-aided locomotion,
first defined by [12]. During this type of locomotion, the
snake uses obstacles in the environment as push-points to
propel itself forwards. This is common in nature [2]. Without
proper use of obstacle-aided locomotion, snake robots lose
their key advantage over other types of mobile robots, namely
the ability to traverse a wide range of terrain.

Many authors, e.g., [2], [12]–[15], have presented models
of snake robots in cluttered environments. These models are
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all of snakes with uniform links, and link centers of mass
coinciding with the geometric center of the links. However,
some snake robots do not conform to this, including a new
experimental platform on which we hope to test novel control
strategies [16]. Therefore, we have developed a new model,
presented in this paper. The model is of a planar snake, with
non-uniform links, and where the links’ center of mass need
not coincide with their geometric centers. This model is a
more general form of that presented in [2, Ch. 2].

Obstacle-aided locomotion has been addressed in, among
others, [2], [6], [13], [17]–[19]. Some of this research has
been on shape-based control, where a basic motion pattern
is propagated along the snake robot’s body, and the pattern
adjusted as necessary due to the presence of obstacles
[2], [6], [17]. Other research has focused on asymmetric
pushing against obstacles, with the pushing pattern fixed and
determined a priori [18]; or on snake robots than can deform
to exert extra push against the obstacles [13].

In this paper, we present a solution based on a different
approach. The control of the snake robot is based on a hier-
archical control structure (Fig. 1). We assume that trajectory
planning for the snake’s center of mass and head orientation
(the first block in Fig. 1) has been done by higher-level
control strategies or a human operator. The low-level control
of individual joint angles is briefly touched upon, but not
in detail, as this has been covered by previous authors (see,
e.g., [2]). The component of the control hierarchy covered
here is the second level, which deals with how to map a
desired trajectory to obstacle contact forces, and these forces
to control inputs.

Trajectory
planning

Low-level
control

Force
mapping

Fig. 1: Control hierarchy.

We determine an explicit, algebraic relationship between
motor torques and obstacle forces, based on a fully dynamic
model (unlike [19], which is based on static analysis). Since
the number and nature of contact points between snake robot
and obstacles changes discretely [2, Ch. 10], the relationship
is only valid for single instances in time. The algebraic
relationship is then updated on-line as the situation changes.

We use this relationship to determine the inputs that
give the desired forces required to move the snake in the
motion determined by the path planning algorithm or user,
using an optimization criterion based on minimizing energy
consumption (by proxy of the square of the motor torques),
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while achieving the control goal. The optimization is by
necessity performed on-line.

The main contributions of this paper are:
• A dynamical model for snakes with non-uniform links

(Sec. III).
• Main contribution: An explicit, algebraic relationship

between motor torque inputs and the resulting obstacle
forces, based on the dynamical model (Sec. IV).

• Main contribution: The formulation of an optimiza-
tion problem that uses the motor torque–obstacle force
relationship to achieve a desired snake motion, while
minimizing energy consumption (Sections VI and VII).

• A criterion for determining if a particular path can be
used for snake locomotion (Sec. VI-A).

Currently, the user has to determine a path for the snake,
a non-trivial task even with the suggested criterion. In our
opinion, the search for an automatic way of doing this
remains an important future challenge for obstacle-aided
locomotion.

II. NOMENCLATURE

The following notation is used in this work:
• Vectors are represented in a global, inertial reference

frame where applicable.
• Vectors are written in lower-case, non-bold italics.
• Matrices are written in upper-case, non-bold italics.
• Elements of a vector are indicated with a subscript, e.g.,
x2 is the second element of the vector x.

• The diag(·) operator creates a diagonal matrix based on
a vector argument.

• For the vector θ, sin(θ) and cos(θ) are the vectors of
sines and cosines.

• As a shorthand, si = sin(θi) and ci = cos(θi).
• Some vectors have, as a shorthand, defined matrix

equivalents that are the diagonal matrices formed by
the relevant vector. E.g., M = diag(m) where mT =
[m1, . . . ,mn].

A. The snake

See Fig. 2 for a visual representation of some of the
parameters and variables listed here. Links are numbered
from 1 (tail) to n (head).

1) Physical parameters: Physical parameters of the snake:
n ≥ 3 ∈ Z Total number of links. There are n− 1 joints.
mi ∈ R Mass of link i. (Matrix: M ∈ Rn×n.)
Ji ∈ R Moment of inertia around the center of mass of link

i. (Matrix: J ∈ Rn×n.)
lh,i ≥ 0 ∈ R Distance from the center of mass of link i to

the next joint.
lt,i ≥ 0 ∈ R Distance from the center of mass of link i to

the previous joint.
2) State variables: State variables of the snake robot:

θi ∈ R Angle of link i relative to the inertial frame. (Vector:
θ ∈ Rn.)

xi ∈ R x-position of the center of mass of link i relative to
the inertial frame. (Vector: x ∈ Rn.)

yi ∈ R y-position of the center of mass of link i relative to
the inertial frame. (Vector: y ∈ Rn.)

p = [px, py]
T ∈ R2 Position of the snake’s center of mass in

the inertial frame.

3) Forces/moments: Forces and moments of the snake:

ui ∈ R Motor torque on link i from the joint connecting
links i and i+ 1. (Vector: u ∈ Rn−1.)

hx,i ∈ R Constraint force on link i from link i + 1 in the
global x-direction. (Vector: hx ∈ Rn−1.)

hy,i ∈ R Constraint force on link i from link i + 1 in the
global y-direction. (Vector: hy ∈ Rn−1.)

fx,i ∈ R Obstacle contact force on link i in the global x-
direction. Zero for links not in contact with an obstacle.
(Vector: fx ∈ Rn.)

fy,i ∈ R Obstacle contact force on link i in the global y-
direction. Zero for links not in contact with an obstacle.
(Vector: fy ∈ Rn.)

li ∈ [−lt,i, lh,i] Distance from the center of mass of link i to
the point through which the contact force [fx,i, fy,i]

T is
acting. li = 0 when the obstacle is in contact with the
link’s center of mass and (for simplicity) for links not
in contact with obstacles. (Matrix: L ∈ Rn×n.)

τr,i ∈ R Ground friction torque on link i. (Vector: τr ∈ Rn.)
fr,x,i ∈ R Ground friction force on link i in the global x-

direction. (Vector: fr,x ∈ Rn.)
fr,y,i ∈ R Ground friction force on link i in the global y-

direction. (Vector: fr,y ∈ Rn.)

B. Obstacles

Parameters of the obstacles:

nC ≥ 1 ∈ Z Number of obstacles in contact with the snake.
γi ∈ {−1, 0, 1} Indicates on which side of the link the

obstacle is. For obstacles to the right of the link, γi = 1
and vice versa. Zero for links not in contact with an
obstacle. (Vector: γ ∈ Rn.)

f̄i ∈ R Signed magnitude of the obstacle force on link i.
(Vector: f̄ .)

gx,i ∈ R x-direction of the obstacle force on link i. fx,i =
gx,if̄i. (Matrix: Gx ∈ Rn×n.)

gy,i ∈ R y-direction of the obstacle force on link i. fy,i =
gy,if̄i. (Matrix: Gy ∈ Rn×n.)

fC ∈ RnC Vector of non-zero f̄i.
P ∈ RnC×n Selector matrix indicating which links are in

contact with an obstacle. fC = P f̄ .
ΓC ∈ RnC×nC Matrix form of non-zero γi. ΓC = diag(Pγ).

C. Control

Control variables:

nd ∈ [1, n) Number of links to be individually controlled.
θc ∈ Rnd Angles of the links to be individually controlled.
P̃ ∈ Rnd×n Selector matrix indicating which links are to be

individually controlled. θc = P̃ θ.
θd ∈ Rnd Desired values for θc.
px,d ∈ R Desired x-position of the snake’s center of mass.
py,d ∈ R Desired y-position of the snake’s center of mass.
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(a) Some parameters of the snake robot.
(b) Contact forces of the snake
robot.

Fig. 2: Parameters of the snake robot.

D. Miscellaneous
Some constants and variables used throughout this work:

eT = [1, 1, . . . , 1] ∈ Rn , E = eeT ∈ Rn×n

D =

 1 −1 0
. . . . . .

0 1 −1

 ∈ R(n−1)×n

Al =

 lh,1 lt,2 0
. . . . . .

0 lh,n−1 lt,n

 ∈ R(n−1)×n

Kl = AT
l (DDT)−1D ∈ Rn×n , m̄ =

1

n

n∑
i=1

mi ∈ R

Sθ = diag(sin(θ)) ∈ Rn×n , Cθ = diag(cos(θ)) ∈ Rn×n

Qθ̇ = diag(θ̇) ∈ Rn×n , θ̇2 = diag(θ̇)θ̇ ∈ Rn .

Furthermore, I is the identity matrix of appropriate dimen-
sions (usually n×n). Note that (DDT)−1 always exists for
n ≥ 2 [2].

III. THE DYNAMICS OF SNAKE MOTION

To derive the equations describing the dynamics of the
snake robot’s motion and ensure a well-formulated problem,
some assumptions have to be made:

1) The snake is planar.
2) All joints are actuated.
3) There are n ≥ 3 links. The links may be non-identical.

The centers of mass of the links do not need to be in
the geometrical centers of the links.

4) Each link is touching at most one obstacle, and the
snake at least one.

5) The obstacles are dimensionless; contact is at a single
point.

6) Ground and obstacle friction can be modeled as
coulomb friction. There is no stiction.

7) The links and the obstacles are perfectly rigid, and the
obstacles immovable.

8) The desired trajectory of the snake’s center of mass and
the desired orientation of the snake’s head are known
and twice differentiable w.r.t. time.

The model that will be presented here is similar to that
found in [2], but generalized to include non-identical links
and rotational friction.

A. The dynamic equations
Extending [2, (2.11)] to non-uniform links gives the link

positions

x = −KT
l cos(θ) + epx (1)

y = −KT
l sin(θ) + epy . (2)

These equations reflect the geometric relationship between
the link centers of mass and the snake center of mass.

Taking the time derivatives of (1) and (2) gives the link
velocities and accelerations

ẋ = KT
l Sθ θ̇ + eṗx (3)

ẏ = −KT
l Cθ θ̇ + eṗy (4)

ẍ = KT
l Cθ θ̇

2 +KT
l Sθ θ̈ + ep̈x (5)

ÿ = KT
l Sθ θ̇

2 −KT
l Cθ θ̈ + ep̈y . (6)

The translational dynamics of the links are given by

Mẍ = fr,x + fx +DThx (7)

Mÿ = fr,y + fy +DThy . (8)

Inserting (5), (6) into (7), (8) and solving for hx and hy gives

hx = (DDT)−1DMKT
l

(
Cθ θ̇

2 + Sθ θ̈
)

− (DDT)−1D (fr,x + fx −Mep̈x)
(9)

hy = (DDT)−1DMKT
l

(
Sθ θ̇

2 − Cθ θ̈
)

− (DDT)−1D (fr,y + fy −Mep̈y) .
(10)

The dynamics of the snake’s center of mass follow New-
ton’s Second Law; the time derivative of the momentum of
the center of mass is equal to the sum of the external forces,
or

nm̄p̈x = eT(fr,x + fx) , nm̄p̈y = eT(fr,y + fy) . (11)

The rotational dynamics of the links are given by

Jθ̈ = DTu+ τr

− Sθ(AT
l hx + Lfx) + Cθ(A

T
l hy + Lfy) .

(12)

Inserting (9) and (10) into (12), we get

Jθ̈ = DTu+ τr −
[
SθKlMKT

l Sθ + CθKlMKT
l Cθ

]
θ̈

−
[
SθKlMKT

l Cθ − CθKlMKT
l Sθ

]
θ̇2

+ SθKl (fr,x + fx)− CθKl (fr,y + fy)

− SθLfx + CθLfy − SθKlMep̈x + CθKlMep̈y
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where we have used the definition of Kl.
Combining the above with the dynamics of the snake’s

center of mass, we get the total dynamics

Mθ θ̈ = DTu−Wθ̇2 + τr − SθLfx + CθLfy

+ SθKl

(
I − 1

nm̄
ME

)
(fr,x + fx)

− CθKl

(
I − 1

nm̄
ME

)
(fr,y + fy)

(13)

nm̄p̈x = eT(fr,x + fx) (14)

nm̄p̈y = eT(fr,y + fy) (15)

where

Mθ = J + SθKlMKT
l Sθ + CθKlMKT

l Cθ

W = SθKlMKT
l Cθ − CθKlMKT

l Sθ .

We note that, if mi = m̄, Ji = J̄ and lh,i = lt,i = l̄ ∀ i,
and τr = fx = fy = 0; then the above equations would
match [2, (2.33)].

IV. THE OBSTACLE FORCE

The force acting on link i from an obstacle consists of
two parts: one normal to the link and one tangent to the
link. The normal force prevents the link from moving into
the obstacle, and is the counter-force to the force with which
the link is pushing against the obstacle (due to the action of
the joint motors) by Assumption 7. The tangent force is due
to friction. Let us define these forces as fi,c ∈ R2 (constraint)
and fi,f ∈ R2 (friction), see Fig. 2b. Then, the obstacle force
fi = [fx,i, fy,i]

T ∈ R2 is given by

fi = fi,c + fi,f . (16)

Let us assume that link i is pushing against an obstacle
with a force of magnitude ‖f̃i‖, then ‖fi,c‖ = ‖f̃i‖. If we
define f̄i ∈ R as a “signed force magnitude” so that |f̄i| =
‖fi,c‖ and the sign of f̄i indicates on which side of the
obstacle link i is (f̄i > 0 for obstacles to the right of the
link and vice versa), then the constraint force on link i from
the obstacle will be given by

fi,c = f̄i

[
−si

ci

]
. (17)

To compute the friction, we need to know the velocity of
the link at the point of contact with the obstacle. Let the
position of the obstacle be po,i ∈ R2 in the inertial frame,
pTi = [xi, yi] ∈ R2 be the position of the center of mass of
link i, and pc,i ∈ R2 be the vector from the contact point to
the center of mass of link i. Then,

po,i + pc,i = pi . (18)

The obstacle’s position is fixed in the inertial frame, so

ṗo,i = ṗi − ṗc,i = 0 ⇒ ṗc,i = ṗi . (19)

We need the component of the velocity ṗc,i that is tangent
to the link, as only this will contribute to the friction. Let
vi,t ∈ R denote this component. Then,

vi,t = [ci, si]ṗc,i = ciẋi + siẏi. (20)

The friction will be proportional to the force with which
link i is pushing against the obstacle (Assumption 6). There-
fore,

fi,f = −µ‖fi,c‖sign(vi,t)

[
ci
si

]
= −µ sign(f̄i) f̄i sign(vi,t)

[
ci
si

]
. (21)

For convenience, we define µ̃i , −µ sign(f̄i) sign(vi,t) so
that

fi = fi,c + fi,f =

[
µ̃ici − si
µ̃isi + ci

]
f̄i . (22)

Not all links are in contact with obstacles; for these links
f̄i = 0. The vector f̄ ∈ Rn includes forces that are zero,
while fC = P f̄ ∈ RnC is the vector of only those signed
force magnitudes that are non-zero. Furthermore,

gx,i = µ̃ici − si , gy,i = µ̃isi + ci

Gx = diag([gx,1, . . . , gx,n]) ∈ Rn×n (23)

Gy = diag([gy,1, . . . , gy,n]) ∈ Rn×n , (24)

so that

fx = GxP
TfC (25)

fy = GyP
TfC . (26)

Note that fC , like f̄ , contains signed values, and these
signs must be preserved, as the sign indicates on which
side of the obstacle the link is. Switching the sign would
be equivalent to a link spontaneously moving to the other
side of the obstacle. With γi as the correct sign of f̄i and

γ = [γ1, . . . , γn]T ∈ Rn

ΓC = diag(Pγ) , (27)

fC must satisfy the constraint

ΓCfC ≥ 0 . (28)

We will show that fC can be uniquely determined by the
choice of u.

A. Finding fC
The links have to satisfy the non-holonomic constraint

that the links’ velocity component into the obstacles is zero
(Assumption 7). Once again, ṗc,i = ṗi is the velocity of the
link at the point of contact. The normal component of this
velocity, vi,n = [−si, ci]ṗi ∈ R has to satisfy

γivi,n ≥ 0 . (29)

Since γi = 0 for links not in contact with obstacles, this
is trivially satisfied for those links. For the links that are in
contact with an obstacle, this presents a genuine constraint.

To simplify the analysis, we make the following obser-
vation: If a link is in contact with an obstacle, the force it
can generate will either help the snake move in the desired
manner or it won’t; in the latter case we should not let the
snake push against it (the resultant force from that obstacle is
then zero). However, obstacles that are currently not helpful
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may be so in the future, as the desired motion might change.
As such, links that are in contact with obstacles should
remain so (but we should not necessarily push against them).

We therefore choose the constraints to be

γivi,n = 0 . (30)

In other words, we will use control action u to enforce a
stricter constraint (30) than is enforced by the model (29).

We now write the constraints vectorially. Let vn =
[v1,n, . . . , vn,n] ∈ Rn. Eq. (30) gives Pvn = 0 ∈ RnC , or

Pvn = −PSθẋ+ PCθẏ = 0 . (31)

To find the forces arising from this constraint, we need
the time derivative of (31); the constraint forces arise from
the equation [20, Ch. 6]

dPvn
dt

= 0 . (32)

As long as the snake does not lose/gain contact with any
obstacles, dPvn

dt = P dvn
dt . Using (5) and (6), we find

dvn
dt

= −Sθẍ− CθQθ̇ẍ+ Cθÿ − SθQθ̇ẏ

= −
(
SθK

T
l Sθ + CθK

T
l Cθ

)
θ̈ − Sθep̈x + Cθep̈y

− Cθ
(
Qθ̇K

T
l −KT

l Qθ̇
)
Sθ θ̇ − Cθ θ̇ṗx (33)

+ Sθ
(
Qθ̇K

T
l −KT

l Qθ̇
)
Cθ θ̇ − Sθ θ̇ṗy .

For convenience, we define

M̃θ = SθK
T
l Sθ + CθK

T
l Cθ , K̃l = Qθ̇K

T
l −KT

l Qθ̇ .

Inserting the dynamics (13)–(15) into (33) and pre-
multiplying with P , we rewrite (32) as

AffC +Auu = bf (34)

where Af ∈ RnC×nC , Au ∈ RnC×(n−1) and bf ∈ RnC are
given by

Af = P

(
M̃θM

−1
θ G̃+

1

nm̄
(SθEGx − CθEGy)

)
PT

G̃ = Sθ

(
Kl

(
I − 1

nm̄
ME

)
− L

)
Gx

− Cθ
(
Kl

(
I − 1

nm̄
ME

)
− L

)
Gy

Au = PM̃θM
−1
θ DT

bf = −PM̃θM
−1
θ

(
τr + SθKl

(
I − 1

nm̄
ME

)
fr,x

)

+ PM̃θM
−1
θ

(
Wθ̇2 + CθKl

(
I − 1

nm̄
ME

)
fr,y

)
− 1

nm̄
PSθEfr,x +

1

nm̄
PCθEfr,y

− P
(
CθK̃lSθ − SθK̃lCθ + ṗxCθ + ṗySθ

)
θ̇ .

We note that, assuming Af to be invertible, the inequality
constraint (28) can be rewritten as a constraint on u, namely

ΓCA
−1
f Auu ≤ ΓCA

−1
f bf . (35)

V. FINAL DYNAMICAL EQUATION

We can now rewrite the dynamical equations for the snake:

Mθ θ̈ = Bu−Wθ̇2 + gr (36)

nm̄p̈x = eT
(
fr,x +GxP

TA−1f (bf −Auu)
)

(37)

nm̄p̈y = eT
(
fr,y +GyP

TA−1f (bf −Auu)
)

(38)

where B ∈ Rn×(n−1) and gr ∈ Rn are given by

B = DT − G̃PTA−1f Au

gr = τr + SθKl

(
I − 1

nm̄
ME

)
fr,x

− CθKl

(
I − 1

nm̄
ME

)
fr,y + G̃PTA−1f bf

subject to

ΓCA
−1
f Auu ≤ ΓCA

−1
f bf . (39)

Note that the matrices Af , Au, Gx, Gy , P , ΓC and the
vector bf will change depending on which links are in contact
with obstacles. This will change over time, as discrete events,
and the equations are only valid as long as this does not
occur.

The dynamics of the snake forms a hybrid system; a new
set of equations of similar structure but with different values
for the matrices will be valid after the discrete event. This
is in accordance with the results of [2, Ch. 10]. No effort is
here made to model the transitions, as this is not necessary
for the optimization algorithm and thus beyond the scope of
this work.

VI. CONTROL OBJECTIVE

The primary objective is to get the snake to move in the
desired direction. We express this as a desired path for the
snake’s center of mass and a desired head angle, assumed
known (Assumption 8).

In order to achieve this, external forces have to be present.
In this case, that is predominantly achieved from pushing
against obstacles. As the angle of the link determines the
direction of the obstacle force (22), links that are in contact
with obstacles might need to maintain a certain angle to
achieve desired direction of the force. If a link is in contact
with an obstacle and the snake moves, the link will at some
point leave the obstacle. It may therefore be considered
useful to also angle the following link so that it will hit
the obstacle at the right angle.

It is possible to demand specific behavior of other links.
However, this would reduce redundancy. Furthermore, it is
largely unnecessary; only the behavior of the snake at or near
obstacles is likely to have a significant effect on the propul-
sion of the snake. Other links contribute only via friction,
which is likely to be dominated by the obstacle forces, and
would largely be the same no matter the configuration of the
snake between obstacles.

Let us formalize the control objective.
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We define the error between the angles we wish to control
θc and the desired values for these angles θd (assumed
known, Assumption 8) as θ̃ = θc − θd ∈ Rnd . We find

¨̃
θ = P̃M−1θ

(
Bu−Wθ̇2 + gr

)
− θ̈d . (40)

We define the error between the actual position of the snake’s
center of mass [px, py] and the desired position [px,d, py,d]
(assumed known, Assumption 8) as p̃x = px− px,d ∈ R and
p̃y = py − px,d ∈ R. We find

¨̃px =
1

nm̄
eT
(
fr,x +GxP

TA−1f (bf −Auu)
)
− p̈x,d (41)

¨̃py =
1

nm̄
eT
(
fr,y +GyP

TA−1f (bf −Auu)
)
− p̈y,d (42)

The low-level control action u (Fig. 1) gives the closed-
loop dynamics

¨̃
θ = fθ̃(θ̃,

˙̃
θ, t) (43)

¨̃px = fp̃x(p̃x, ˙̃px, t) (44)
¨̃py = fp̃y (p̃y, ˙̃py, t) . (45)

The precise nature of fθ̃, fp̃x and fp̃x are determined by the
low-level controller.

Regardless of the precise functional expressions, we can
insert the desired dynamics (43)–(45) into the actual dynam-
ics (40)–(42), and rewrite the equations as

Aeu = be (46)

where Ae ∈ R(2+nd)×(n−1) and be ∈ R2+nd are given by

Ae =

 eTGxP
TA−1f Au

eTGyP
TA−1f Au

P̃M−1θ B



be =


eT
(
fr,x +GxP

TA−1f bf

)
− nm̄(fp̃x + p̈x,d)

eT
(
fr,y +GyP

TA−1f bf

)
− nm̄(fp̃y + p̈y,d)

P̃M−1θ

(
Wθ̇2 − gr

)
+ fθ̃ + θ̈d

 .

The control input would be any u that satisfies (46). (Note
that this holds true no matter which low-level controller is
chosen.) We describe a method for choosing a specific u in
Sec. VII, and a simple low-level controller in Sec. VI-B.

A. Path quality

A pertinent question is under what conditions (46) has a
solution. This is not trivial to answer, and will depend on
the configuration of the snake and the number and position
of the obstacles. While it is fairly easy to check numerically
to see if a particular configuration allows a solution to (46)
(e.g., by the Rouché-Capelli Theorem [21]), an analytical
criterion would rapidly become cumbersome.

At least in part, the problem also depends on the choice
of path, as the situation at the links in contact with the
obstacles is largely determined by the path the head took
earlier. A perfectly controlled snake robot is analogous to
a train: the path are the tracks, the head the locomotive,
and the other links the railcars; the rail cars/links must

follow the same path as the locomotive/head link. Of course,
the snake will not be perfectly controlled in practice, but
the analogy is often a useful abstraction. As mentioned
previously, automatically finding a good or even feasible path
is an unsolved problem, beyond the scope of this work, and
assumed generated by the first block of Fig. 1 (a human
operator or future algorithms).

However, a method for checking the quality of a chosen
path (i.e., its suitability for locomotion) presents itself: The
existence of a solution to the equation Aeu = be, under
the constraint ΓCA

−1
f Auu ≤ ΓCA

−1
f bf , implies that useful

forces can be generated. If a solution exists no matter where
on the path the snake is, then the path will be traversable.

This can be investigated off-line.

B. Low-level control design

Design of the low-level controller (Fig. 1) is not the main
focus of the paper, and largely beyond the scope of this work.
None the less, we here present a simple low-level controller
capable of achieving the control goal. Refinement or design
of a better controller remains future work.

Let

fθ̃(θ̃,
˙̃
θ, t) = −Kp,θ θ̃ −Kd,θ

˙̃
θ (47)

fp̃x(p̃x, ˙̃px, t) = −kp,xp̃x − kd,x ˙̃px (48)

fp̃y (p̃y, ˙̃py, t) = −kp,yp̃y − kd,y ˙̃py (49)

where kp,x, kd,x, kp,y, kd,y > 0 ∈ R, Kp,θ,Kd,θ > 0 ∈
Rnd×nd are controller gains. Then, assuming (46) can be
solved for u, the closed-loop dynamics are given by

¨̃px + kp,xp̃x + kd,x ˙̃px = 0 (50)
¨̃py + kp,yp̃y + kd,y ˙̃py = 0 (51)

¨̃
θ +Kp,θ θ̃ +Kd,θ

˙̃
θ = 0 (52)

which, with appropriate choices for the controller gains, have
an exponentially stable equilibrium at the origin. (This is a
feedback linearizing controller.)

VII. OPTIMIZATION

Given that there will most likely exist more than one
solution to the control equation (46), it seems prudent to
choose one that minimizes the energy consumption of the
snake. For convenience, we use a weighted sum of the
squares of the joint torques ui as a proxy.

So far in the paper, we have described several constraints
that need to be satisfied. These are: that links cannot sponta-
neously move to the other side of the obstacles, represented
by (39); that links should not move away from obstacles and
that the control objective is satisfied, both covered by (46).
In this section we also add a new constraint based on the
maximum torques of the motors.

Optimization Problem 1: For any time instant t, minimiz-
ing the energy cost while ensuring that the snake moves in
the desired direction can be done by solving the following
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quadratic programming problem:

min
u,z

uTQuu+ zTQzz (53)

s.t. ΓCA
−1
f Auu ≤ ΓCA

−1
f bf (54)

Aeu+ z = be (55)
|ui| ≤ ui,max ∀ i ∈ {1, . . . , n− 1} (56)

where z ∈ R2+nd are slack variables; and Qu ≥ 0 ∈
R(n−1)×(n−1) and Qz ≥ 0 ∈ R(2+nd)×(2+nd) are weighting
matrices. 4

We note that this problem is a convex quadratic pro-
gramming problem, and as such will have a unique globally
optimal solution. Algorithms for solving such problems are
fast and readily available in a wide variety of software
packages. We also note that while the precise numerical
values of ΓC , Af , Au, bf , Ae and be change depending on
system state, desired path and the chosen low-level controller,
the optimization problem still remains fundamentally the
same; for each time step we simply use the new, updated
values.

If the optimal slack variables z are not very small,
then the desired trajectory is not achievable in the cur-
rent snake/obstacle configuration and the trajectory planning
(Fig. 1) was poor.

VIII. NUMERICAL RESULTS

The ideal test (other than experimental verification) of
the optimization problem suggested in this paper, would be
to test the snake’s ability to traverse a simulated, cluttered
environment. However, this necessitates some method –
preferably automatic – of determining the desired angles
θd and trajectory [px,d, py,d]

T. As previously discussed, the
creation of an automatic method is non-trivial and an active
area of research, and beyond the scope of this paper.

Instead, a simple demonstration of the optimization prob-
lem, for a single frozen moment in time, on a virtual snake
robot, is presented to illustrate the algorithm.

The specifics of the ground friction has so far been of little
interest. For the numerical calculations, we used coulomb
friction with friction coefficients µg (linear ground friction
fr,x, fr,y) and µg,r (rotational ground friction τr).

Table I defines the physical constants of the snake (link
sizes but not the arbitrarily selected weights match the robot
of [16]). Table II contains the current state of the snake, and
Table III the number and placement of the obstacles. The
control parameters are listed in Table IV. In this example,
the snake is currently in a sinusoidal pattern, in contact with
five obstacles. The center of mass is moving slowly, and the
desired position of the snake’s center of mass is 1 m to the
right.

The optimal parameters found can be seen in Table V and
illustrated in Fig. 3. In Fig. 3, obstacles are drawn as circles.
Crosses represent the joints on the snake, and the crossed
circles indicate link centers of mass. The head is to the right.
Constraint forces fi,c are dashed, while actual contact forces
fi (includes obstacle friction) are solid. The forces indicated

TABLE I: Parameters used.

Prameter Value Unit
n 20 –

mi, i < n 1 kg
mn 2 kg

Ji, i < n 0.001 kg·m2

Jn 0.0015 kg·m2

lh,i, i < n 0.0233 m
lh,n 0.0117 m

lt,i, i < n 0.0617 m
lt,n 0.0628 m
g 9.81 m/s2
µg 0.3 –
µg,r 0.1 –
µ 0.3 –
Qu I (N·m)−2

Qz 1012I s4/m2

ui,max 4.5 N·m

TABLE II: Current state.

Var. Value Unit Var. Value Unit

θ



0.8631
0.8631
0.4144
−0.2731
−0.8777
−1.1165
−0.8777
−0.2731
0.4144
0.8631
0.8631
0.4144
−0.2731
−0.8777
−1.1165
−0.8777
−0.2731
0.4144
0.8631
0.8631



rad θ̇



0.4655
0.0616
−0.4594
−1.0177
−1.0615
−0.3505
1.0203
0.9696
0.7274
0.2561
−0.6099
−1.0676
−1.2700
−0.4941
1.2480
1.4646
1.2580
0.7426
0.2983
−0.1065



rad/s

pT 0 m ṗT [0.1625, 0.0244] m/s

TABLE III: Obstacles.

Variable Value Unit
nC 5 –
li 0 m

P1,3 = P2,6 = P3,10 1 –
= P4,14 = P5,18

Other Pi,j 0 –
Pγ [−1, 1,−1, 1,−1]T –

TABLE IV: Control objective.

Parameter Value Unit
px,d 1 m
py,d 0 m

P̃1,1 = P̃2,3 = P̃3,4 = P̃4,6 = P̃5,7 = P̃6,10 1 –
= P̃7,11 = P̃8,14 = P̃9,15 = P̃10,18 = P̃11,19

Other P̃i,j 0 –
θd P̃ θ rad
θ̇d 0 rad/s

ṗx,d = ṗy,d 0 m/s
p̈x,d = p̈y,d 0 m/s2

kp,x = kp,y = kd,x = kd,y 1 Multiple
Kp,θ = Kd,θ I Multiple
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are those obtained from the optimization. Forces are scaled,
reduced by a factor of 1:105.

As we can see, the optimization algorithm is, for this
configuration, able to find a globally optimal solution. Using
MATLAB 2013b on a laptop with a 2.3 GHz Intel Core
i7 processor, the algorithm completes in approx. 0.1 s;
implemented in a compiled language such as C it is expected
to be several magnitudes faster.

TABLE V: Optimization results.

Par. Value Unit

uT
[1.029, 3.217, 3.939, 1.014,−2.644,−4.500,−1.728,

N·m1.192, 3.131, 3.776, 3.776, 2.408, 0.228,−2.836,
−4.117,−1.922, 0.300, 1.898, 2.191, 1.250]

‖z‖2 < 10−11 m/s2

fTC
[
−25.450, 50.577,−18.634, 27.276,−11.920

]
N

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

x [m]

y
 [

m
]

Fig. 3: Optimization results. Circular obstacles, fi,c dashed,
fi solid. Forces are scaled 1:105.

IX. CONCLUSIONS

This paper has investigated a solution to a fundamental
problem in snake locomotion: how to best utilize obstacles
in the environment as push-points to achieve desired loco-
motion.

To investigate this problem, we present a model of non-
uniform snake robots in contact with obstacles and find an
explicit, algebraic relationship between motor torque inputs
and obstacle forces.

Using the input–obstacle force relationship, we present
a method for obstacle-aided locomotion. Given any system
state, a desired path, and desired angles for some of the links,
the optimization problem we present (a convex quadratic
programming problem) minimizes energy (by proxy of the
square of the motor torques), given the constraint that the
control goal is to be satisfied.

Assuming there is a feasible solution, the optimization
problem is easily solvable by existing algorithms. As a by-
product, the existence of feasible solutions can be used to
determine, off-line, if a path is suitable for locomotion or
not, something that has until now been difficult to determine.

The solution presented here is an important step on the
road to practical obstacle-aided locomotion; however, there
are two key issues that remains future work. First, an
automatic method for finding the desired link angles at the

obstacles, given the desired path (these reference angles are
currently assumed user-supplied). Second, given a specific
environment, an automatic method of finding the desired path
(also, currently assumed user-supplied). These are major,
ongoing areas of research in snake robotics.
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