Abstract:
Future generations of wearable robots will include systems constructed from conformable materials that do not constrain the natural motions of the wearer. Fabrics represe...Show MoreMetadata
Abstract:
Future generations of wearable robots will include systems constructed from conformable materials that do not constrain the natural motions of the wearer. Fabrics represent a class of highly conformable materials that have the potential for embedded function and are highly integrated into our daily lives. In this work, we present a robotic fabric with embedded actuation and sensing. Attaching the same robotic fabric to a soft body in different ways leads to unique motions and sensor modalities with many different applications for robotics. In one mode, the robotic fabric acts around the circumference of the body, and compression of the body is achieved. Attaching the robotic fabric in another way, along one surface of a body for example, bending is achieved. We use thread-like actuators and sensors to functionalize fabric via a standard textile manufacturing process (sewing). The actuated fabric presented herein yields a contractile force of 9.6N and changes in length by approximately 60% when unconstrained. The integrated strain sensor is evaluated and found to have an RMS error of 14.6%, and qualitatively differentiates between the compressive and bending motions demonstrated.
Date of Conference: 14-18 September 2014
Date Added to IEEE Xplore: 06 November 2014
ISBN Information: