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Abstract— We present a method for system identification of
flexible objects by measuring forces and displacement during
interaction with a manipulating arm. We model the object’s
structure and flexibility by a chain of rigid bodies connected
by torsional springs. Unlike previous work, the proposed
optimal control approach using variational integrators allows
identification of closed loops, which include the robot arm
itself. This allows using the resulting models for planning in
configuration space of the robot. In order to solve the resulting
problem efficiently, we develop a novel method for fast discrete-
time adjoint-based gradient calculation. The feasibility of the
approach is demonstrated using full physics simulation in trep
and using data recorded from a 7-DOF series elastic robot arm.

I. INTRODUCTION

The goal of this work is to use a robotic arm to identify the
behavior of a flexible object through touch only. This is an
important step toward manipulation of flexible objects such
as rubber tubes, plants or clothes [19], [16], [3], [7]. There
are many methods to model and simulate flexible objects
[11], [12]. A common approach is to model the object as a
lattice or collection of links of masses and springs [17], [18],
[11]. This approach has been used to simulate linear object
like strings, hair, and electrical cables for which the model
is a series of masses linked together with springs.

Our approach is similar with the primary difference that
the loop connects back onto itself. This connection restricts
the loops movement and is handled using holonomic con-
straints. To the best of our knowledge, no one has used a
robot to identify parameters of a flexible loop for manipula-
tion.

We are using a flexible loop as a running example through-
out the paper. We assume the robot has already rigidly
grasped the object at one end and that it is clamped at
the other. The robot then bends, twists, and stretches the
loop. During the manipulation, the robot measures the arm’s
joint torques and joint angles. With this information, it
is possible to back out mechanical properties of the loop
in order to generate an accurate model for future control
and manipulation. In this paper, the manner in which we
model the loop is so that the underlying mechanics of the
loop are the same as the robot arm, i.e., a collection of
rigid bodies connected by springs, allowing us to utilize
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Fig. 1. Rethink Robotics’ Baxter manipulating an inflated bicycle tyre.

the vast theory of rigid body mechanics [14]. Also, this
enables planning and control to be done in the combined
arm and loop configuration space instead of the end effector
or object space. We then use an optimal control approach for
calculating model properties that best match the behavior of
the physical loop.

We use Rethink Robotics’ Baxter [4] robot to both manip-
ulate and measure the loop. Each of Baxter’s arms have 7
degrees of freedom. The arms are designed for compliance
since each joint has series elastic actuators that allows for
force sensing and control. A picture of Baxter manipulating
rubber loop is in Figure 1.

A good representation of a flexible object is not enough to
accurately model it. We also need the model simulation to be
consistent with the physical behavior of the loop. We decided
not to apply Euler integration or another low order integrator
to the continuous dynamics, as is the case in [17], because
such integrators can introduce significant energy errors. At
worst these errors will destabilize the integration and at best
compromise the model’s energy dissipation [8]. Instead we
decided to use variational integrators. Variational integrators
can be used to describe discrete-time equations of motion of
a mechanical system. They are designed from the least action
principle and have good properties that agree with known
physical phenomenon like stable energy behavior [15].

Furthermore, variational integrators elegantly handle holo-
nomic constraints. Holonomic constraints are specified as
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h(q) = 0, where q is the system’s configuration. They are
used to constrain positions and orientations. For the example,
we use holonomic constraints to “close the loop”—i.e. to
constrain the link at one end of the loop to the other end.
In simulating continuous dynamics, holonomic constraints
are commonly handled with equivalent constraints on the
acceleration that can creep due to numerical integration
error. In comparison, variational integrators apply holonomic
constraints directly and do not have this issue (see [8] for a
discussion).

Due to recent work by Johnson and Murphey [8], [9],
it is possible to efficiently simulate mechanical systems
using variational integrators in generalized coordinates. They
provide a framework using a tree representation and caching
that not only makes for efficient simulation—especially
for articulated rigid bodies—but also efficient model-based
calculations like linearizations about a trajectory. In optimal
controls, linearizations are needed for gradient calculations
like the gradient calculation presented in this paper.

With a model and simulation to predict the motion of
a flexible object, unknown model quantities, referred to as
parameters, can be identified. These model parameters may
be lengths, masses, or damping coefficients. For the example,
we assume the loop’s stiffness is unknown. As such, the goal
is to obtain the spring constants of the torsional springs at
the loop model’s joints. In this paper, this is done using an
optimal control approach.

The parameter identification optimization problem is set
up as a discrete-time Bolza problem. For the loop example,
the cost functional is a summation of the error between
the simulated end effector position and the experimentally-
measured end effector position. The joint error directly
correlates to the difference between the simulated loop
displacement and the measured loop displacement, at least
at the manipulator. Alternatively, the cost can be given by
a maximum likelihood estimate for which the cost is lower
for parameters that correspond to the simulation that is most
consistent with the measurement (see [5]).

A. Contribution of this paper

The paper’s contributions are twofold. First, it provides a
discrete-time adjoint-based gradient calculation for optimal
parameter estimation. Second, it formulates model parameter
identification of flexible objects with variational integrators
for greater confidence in the simulations’ consistency with
known physical properties.

B. Organization of this paper

This paper is organized as follows: Section II reviews
continuous and discrete mechanical systems, discussing vari-
ational integrators and providing linearization calculations.
Section III discusses the parameter identification optimiza-
tion problem as well as provides an adjoint-based gradient
calculation. Section IV provides the details of the physical
experiment using Rethink Robotics’ Baxter, in addition to
specifics on the loop model and simulation. Moreover, it

applies the parameter identification approach to estimate
stiffness properties of the rubber loop model.

II. MECHANICAL SYSTEMS

In order to identify model parameters of a mechanical
system, we must first be able to specify equations for
simulation as well as model based calculations like lin-
earizations. This section reviews continuous and discrete
time mechanical systems, where the latter is with respect
to variational integrators. A continuous mechanical system
depends on its system Lagrangian which is the difference
of its kinetic and potential energies. From the Lagrangian,
the system’s equations of motion can be derived from the
Euler Lagrange or similar equations depending on whether
the system’s movement is constrained or is externally forced.
The discrete mechanical system’s equations of motion are
similarly derived. For the experiment, these equations predict
how the Baxter arm moves as well as how it manipulates and
deforms the loop.

The mechanical system depends on nρ system parameters
from the parameter space P ∈ Rm. The mechanical system
has nq generalized coordinates q ∈ Rnq . For continuous
time, q varies with the continuous variable t—e.g. q(t)—for
t in the interval [0, tf ], tf > 0. Likewise, for the discrete
representation, q varies with the discrete variable k—e.g.
qk—for k in the set K := {0, 1, . . . , kf}, kf > 0. Each
discrete time k pairs with a continuous time, labeled tk,
where t0 = 0, tkf = tf and tk < tk+1. This section
presents the continuous and discrete dynamics dependent on
the parameters ρ ∈ P . The continuous dynamics are provided
for comparison with the discrete dynamics, in which the
paper results are given.

A. Continuous Mechanical System

We will first review continuous mechanical systems for
reference with discrete mechanical systems. A mechanical
system’s evolution is given by the path of least action. The
system’s action is

S =

∫ tf

0

L(q(τ), q̇(τ), ρ)dτ

where L(q, q̇, ρ) := KE(q, q̇, ρ) − V (q, ρ), the system
Lagrangian, is the difference of the system’s kinetic energy,
KE, with its potential energy, V . For this paper, we assume
that both kinetic and potential energies depend on system
parameters ρ ∈ P . Possible parameters of L include lengths,
spring constants, and masses.

As is common in mechanical systems, we wish to include
external forces, Fc(q, q̇, ρ, t). This term is the total external
forcing in generalized coordinates, which we also assume
depends on the parameters ρ ∈ P , such as damping coeffi-
cients. By including the additional external force term Fc to
the action, the Lagrange d’Alembert principle finds that the
continuous dynamics of the mechanical system are given by
the forced Euler-Lagrange equations [14]:

d

dt

∂

∂q̇
L(q, q̇, ρ)− ∂

∂q
L(q, q̇, ρ) = Fc(q, q̇, ρ, t).



Holonomic constraints can be enforced as external forces us-
ing Lagrange multipliers. The nh holonomic constraint equa-
tions are given in the form h(q, ρ) = [h1, . . . , hnh ]T (q, ρ) =
0. These constraints are important as they allow for describ-
ing closed loops like the flexible loop in the example.

With the addition of the constraint, the forced Euler-
Lagrange equations are [14]:
d
dt

∂
∂q̇L(q, q̇, ρ)− ∂

∂qL(q, q̇, ρ) = Fc(q, q̇, ρ, t) + ∂
∂qh

T (q, ρ)λ
∂2

∂q2h(q, ρ) ◦ (q̇, q̇) + ∂
∂qh(q, ρ)q̈ = 0,

(1)
where λ(t) ∈ Rnh are Lagrange multipliers. For fixed
parameters ρ, the system’s evolution is solved from Eq.(1)
for q, q̇ and λ.

Equation 1 can be transformed into first-order state space
equations. Define the continuous state as x = [q, q̇]T .
The state equations, dependent on the parameters ρ ∈ P ,
are ẋ(t) = f(x(t), λ(t), ρ, t) where q̈ is specified by the
constrained, forced Euler-Lagrange equations. In the state
space representation, gradient and Hessian calculations with
respect to parameters are given for parameter optimization
in [13].

B. Discrete Mechanical System

The discrete mechanical system is an approximation of
its continuous counterpart. For an initial configuration q(0)
and velocity q̇(0), the continuous configuration q([0, tf ]) is
integrated from the forced Euler-Lagrange equations, Eq.(1).
The discrete analog to the forced Euler-Lagrange equations
instead calculates the sequence qk ≈ q(tk) using a variational
integrator approach [8].

The discrete Lagrangian, labeled Ld, is an approximation
of the action over a short time interval. Instead of a velocity
term, the discrete Lagrangian is defined by the current and
next configurations, qk and qk+1:

Ld(qk, qk+1, ρ) ≈
∫ tk+1

tk

L(q(τ), q̇(τ), ρ)dτ. (2)

The integration can be approximated with a quadrature like
midpoint or trapezoidal rules. Refer to [8] for details of using
midpoint rule, which we use in the example.

Similarly, external forcing is included by approx-
imating Fc with the discrete left and right forces
F−d (qk, qk+1, ρ, tk, tk+1) and F+

d (qk, qk+1, ρ, tk, tk+1) using
a quadrature. In addition, the nh holonomic constraints
h(qk, ρ) can be enforced with the nh Lagrange multipliers
λk. Given the discrete Lagrangian, discrete forces, and
holonomic constraints the forced discrete Euler-Lagrange
equations are [8]:1

D2Ld(qk−1, qk, ρ) + F+
d (qk−1, qk, ρ, tk−1, tk)

+D1Ld(qk, qk+1, ρ) + F−d (qk, qk+1, ρ, tk, tk+1)
−D1h

T (qk, ρ)λk = 0
h(qk+1, ρ) = 0.

(3)

1The notation Di is the slot derivative of the ith argument. For example,
D2Ld(qk−1, qk, ρ) is the partial of Ld with respect to the second slot, qk .

These equations should be viewed as an implicit function on
qk+1. For example, given consecutive configurations q0 and
q1, the next configuration q2 is found with a root solving
operation on Eq.(3). Following, q3 is obtained from q1 and
q2 and so forth. Whereas the continuous mechanical system
is solved using integration, the discrete mechanical system
is solved through recursive calls to root finding Eq.(3).

As in [8], define pk as

pk := D2Ld(qk−1, qk, ρ) + F+
d (qk−1, qk, ρ, tk−1, tk). (4)

Without external forcing, pk is the conserved momentum.
The discrete state is xk := [qk, pk]T which has a one-step
mapping:

xk+1 = f(xk, ρ, tk) :=
pk +D1Ld(qk, qk+1, ρ) + F−d (qk, qk+1, ρ, tk, tk+1)

−D1h
T (qk, ρ)λk = 0

h(qk+1, ρ) = 0
pk+1 = D2Ld(qk, qk+1, ρ) + F+

d (qk, qk+1, ρ, tk, tk+1).
(5)

This equation is the state equation for discrete mechan-
ical systems using variational integrators. The function
f(xk, ρ, tk) is implicit, but, according to the Implicit Func-
tion Theorem, it exists when

Mk+1 := D2D1Ld(qk, qk+1, ρ)
+D2F

−
d (qk, qk+1, ρ, tk, tk+1)

is nonsingular. By assuming nonsingular, even though f
is implicit, the linearization around xk+1—i.e. ∂xk+1

∂xk
—is

explicit. Letting dxk = [dqk, dpk]T be the differential of
xk and da be the differential of ρ, the linearization of
f(xk, ρ, tk) is:[
dqk+1

dpk+1

]
=

[
∂qk+1

∂qk

∂qk+1

∂pk
∂pk+1

∂qk

∂pk+1

∂pk

]
︸ ︷︷ ︸

Ak

[
dqk
dpk

]
+

[
∂qk+1

∂a
∂pk+1

∂a

]
︸ ︷︷ ︸

Bk

da

(6)
The calculations for the linearization term Ak is given in [9]
and duplicated here for reference:

∂qk+1

∂qk
=

−M−1
k+1[D2

1Ld(qk, qk+1, ρ) +D1F
−
d (qk, qk+1, ρ, tk, tk+1)

−D2
1h
T (qk, ρ)λk −D1h

T (qk, ρ)∂λk∂qk
]

(7a)
∂qk+1

∂pk
= −M−1

k+1 (7b)

∂pk+1

∂qk
=

[D2
2Ld(qk, qk+1, ρ) +D2F

+
d (qk, qk+1, ρ, tk, tk+1)]∂qk+1

∂qk

+D1D2Ld(qk, qk+1, ρ) +D1F
+
d (qk, qk+1, ρ, tk, tk+1)

(7c)
∂pk+1

∂pk
=

[D2
2Ld(qk, qk+1, ρ) +D2F

+
d (qk, qk+1, ρ, tk, tk+1)]∂qk+1

∂pk
(7d)

where ∂λ
∂qk

can be found in [9]. Notice the calculations for
Eqs. (7c) and (7d) rely on the calculations for Eqs. (7a) and



(7b) respectively. The Bk term is given by chain rule:
∂qk+1

∂a = ∂qk+1

∂pk

∂pk
∂a + ∂qk+1

∂qk

∂qk
∂a +M−1

k+1[D1D2h
T (qk, ρ)λk

−D3D1Ld(qk, qk+1, ρ)−D3F
−
d (qk, qk+1, ρ, tk, tk+1)]

(8a)
∂pk+1

∂a =

[D2
2Ld(qk, qk+1, ρ) +D2F

+
d (qk, qk+1, ρ, tk, tk+1)]∂qk+1

∂a

+[D1D2Ld(qk, qk+1, ρ) +D1F
+
d (qk, qk+1, ρ, tk, tk+1)]∂qk∂a

+D3D2Ld(qk, qk+1, ρ) +D3F
+
d (qk, qk+1, ρ, tk, tk+1)

(8b)
The term Bk depends on Ak and the previous term Bk−1.

We use the equations of motion of discrete mechanical
system, Eq.(5), as well as its linearization, Eqs.(7) and (8)
for simulation and calculating the parameter identification
gradient for optimal parameter identification.

III. PARAMETER OPTIMIZATION

The goal of parameter optimization is to calculate the
model parameters ρ ∈ P that minimize a cost functional. For
the continuous problem, the cost functional is the integral of
a running cost `(x(t), ρ) plus a terminal cost m(x(tf ), ρ):

Problem 1 (Continuous System Parameter Optimization):
Calculate the parameters ρ ∈ P which solves:

min
ρ∈P

[
J(ρ) :=

∫ tf

0

`(x(t), ρ)dt+m(x(tf ), ρ)
]

constrained to ẋ(t) = f(x(t), ρ, t).
The gradient and Hessian of the continuous cost is given in
[13]

For the discrete problem, it is reasonable to choose a
discrete cost functional that approximates the continuous
cost—i.e. `d(xk, ρ) ≈

∫ tk
tk−1

`(x(τ), ρ)dτ and md(xkf , ρ) ≈
m(x(tf ), ρ). Alternatively, `d and md can be designed di-
rectly without first choosing an underlying continuous cost.
The discrete parameter optimization problem is as follows:

Problem 2 (Discrete System Parameter Optimization):
Calculate the parameters ρ ∈ P which solves:

min
ρ∈P

[
Jd(ρ) :=

kf∑
k=1

`d(xk, ρ) +md(xkf , ρ)
]

constrained to xk+1 = f(xk, ρ, tk), Eq.(5).
In optimal control theory, it is common practice to solve

optimization problems using iterative methods. Iterative op-
timization methods repeatedly reduce the cost by stepping in
a descending direction until a local optimum is found. Com-
monly, the step direction and step size is calculated using
local derivative information [2], [10], which is practiced in
this paper. In the next section, we provide an adjoint-based
calculation for the gradient of the cost functional with respect
to the parameters.

A. Discrete System Parameter Gradient

The gradient of the cost functional given in problem 2 is
provided in the following lemma.

Lemma 1: Suppose Ld(qk, qk+1, ρ),
F−d (qk, qk+1, ρ, tk, tk+1), F+

d (qk, qk+1, ρ, tk, tk+1), and
h(qk, ρ) are C2 with respect to qk, qk+1 and ρ. Take Ak

and Bk from Eq.(6) and assume Mk is always nonsingular.
Then,2

DJd(ρ) =

kf∑
k=1

λkBk−1 +D2`d(xk, ρ) +D2md(xkf , ρ) (9)

where λk is the solution to the backward one-step mapping

λk = λk+1Ak +D1`d(xk, ρ) (10)

starting from λkf = D1`(xkf , ρ) +D1md(xkf , ρ).
Proof: The derivative of the cost in the direction θ ∈

Rnρ is

DJd(ρ)θ :=
∑kf
k=1D1`d(xk, ρ)∂xk∂θ +D2`d(xk, ρ)θ

+D1md(xkf , ρ)
∂xkf
∂θ +D2md(xkf , ρ)θ.

(11)
Label zk := ∂xk

∂θ for convenience. Also for convenience,
label

H :=

kf∑
k=1

D1`d(xk, ρ)zk +D1md(xkf , ρ)zkf (12)

The linearized state, zk, is the solution to the linearized state
equation, Eq.(6). In other words,

zk+1 = Akzk +Bkθ

starting from z0 = 0. The linearized state’s solution depends
on the discrete state transition matrix:

Φ(k2, k1) :=

k2−k1∏
j=1

Ak2−j = Ak2−1Ak2−2 · · ·Ak1

for integers k2 > k1 and where Φ(k1, k1) := I , the identity
matrix. Recalling z0 = 0, the linearized state’s solution is

zk = Φ(k, 0)z0 +

k−1∑
s=0

Φ(k, s+ 1)Bsθ =

k−1∑
s=0

Φ(k, s+ 1)Bsθ

for k = 1, . . . , kf . Plugging zk into H , Eq.(12), H becomes

H =
∑kf
k=1D1`d(xk, ρ)

∑k−1
s=0 Φ(k, s+ 1)Bsθ

+D1md(xkf , ρ)
∑kf−1
s=0 Φ(kf , s+ 1)Bsθ

=
∑kf
k=1

∑k−1
s=0 D1`d(xk, ρ)Φ(k, s+ 1)Bsθ

+
∑kf−1
s=0 D1md(xkf , ρ)Φ(kf , s+ 1)Bsθ

Switch the order of the double sum.

H =
∑kf−1
s=0

∑kf
k=s+1D1`d(xk, ρ)Φ(k, s+ 1)Bsθ

+D1md(xkf , ρ)
∑kf−1
s=0 Φ(kf , s+ 1)Bsθ

=
∑kf−1
s=0

[∑kf
k=s+1D1`d(xk, ρ)Φ(k, s+ 1)

+D1md(xkf , ρ)Φ(kf , s+ 1)
]
Bsθ

Set λs+1 as the resulting co-vector in the brackets so that

H =

kf−1∑
s=0

λs+1Bsθ =

kf∑
k=1

λkBk−1θ.

2The notation D is a slot derivative for a function of only one argument.
For example, DJd(ρ) is the partial derivative of Jd with respect to ρ.



The efficient calculation for λk is given in Eq.(10). Plugging
H into Eq.(11), we find

DJ(ρ)θ =
[ kf∑
k=1

λkBk−1 +D2`d(xk, ρ) +D2md(xkf , ρ)
]
θ.

IV. EXPERIMENT

The goal is to identify the model parameters of a flexible
loop that best match experimental measurements of a flexible
loop with only touch at a single point of contact. For
the measuring and manipulating, we use Rethink Robotics’
Baxter robot, shown in Figure 1. We simulate this interaction
using a discrete model of the loop shown in Figure 2.
The simulated arm joint angles and torques depend on the
parameters set for a simulation. As such, we can find the
parameters which correspond to simulated joint angles that
best match the measured joint angles. For this experiment,
the unknown parameters describe the stiffness of the loop
model.

The tools for simulating Baxter manipulating a loop are
given in Section II while the optimization technique for best
matching the simulation to the measured data is described in
Section III. The following provides the experimental setup,
the model and simulation of Baxter manipulating the loop,
and the results of optimally identifying loop parameters.

A. Experimental Setup

The experiment is set up as follows. Baxter’s arm is
positioned similarly to that in Figure 1. The top of an
inflated rubber loop (bicycle tyre) is placed in Baxter’s
gripper and the bottom is clamped to the table. The loop
is initially positioned vertically. The loop has a radius of
0.355 meters and a mass of 0.132 kilograms. The arm is
run through a recorded motion that is designed to stretch,
bend, and twist the tube. The arm’s joint angles and torques
are captured every 100Hz, which we compile into the two
vectors bmeas(t) and Tmeas(t). The measured joint angles
have a position resolution of +/- 5 mm.

The measured joint angles bmeas correspond to a subset
of the system configuration q, where the remaining config-
urations belong to the loop. We label this subset of q that
describes the arm as b. The optimization goal is to choose
model parameters so that |b− bmeas| is small.

B. Model

We model Baxter and the loop with the same underlying
rigid body mechanics. We model both as a series of rigid
links connected by rotational joints. For Baxter, these joints
are 7 series elastic actuators. The dimensions, inertia, and
other information concerning Baxter’s arm can be obtained
at https://github.com/RethinkRobotics.

We use a discrete model of the loop. The loop is composed
of 12 rigid links wherein the connection between each rigid
link is a spherical joint. A single loop joint is shown in
Figure 3. As seen in the figure, the orientation of the new
link is given by the angles θi and ψi. These rotations are

described on a frame that is rotated about the X − axis
by 5π/6 radians so that when each ψi = θi = 0, the
loop approximation is a regular dodecagon. These angles,
the θi and ψi, along with Baxter’s joint angles, b, make
up the system configuration, q. Note that the choice of the
discretization is arbitrary and only dependent on the required
fidelity of the model as well as available computational time.

We represent Baxter grasping the loop using a tree struc-
ture of transformations. This tree structure is illustrated in
Figure 2a). Starting from the world frame W , the arm is
specified with successive rotation and translation transfor-
mations. At Baxter’s end effector, labeled H , the description
branches, splitting the loop into two sides, marked with `
and r for left and right. The two branches meet at the
base of the loop, where the loop is clamped. For arbitrary
Baxter and loop joint angles, q, there is no guarantee that
the two ends of the loop meet at the clamping location in
space. When they do, we say that the system configuration
satisfies the holonomic constraint h(q) = 0. There are 12
total constraints—i.e. h(q) ∈ R12. There are 6 constraints
for each side of the loop transformation description in order
to constrain the orientation and position of frames N` and
Nr to the clamp location. Figure 2 shows three distinct
configurations q that satisfy the constraints.

We model the stiffness of the loop with torsional springs
on each loop configuration variable—i.e. for each θi and
ψi. Due to the uniformity of the loop, we assume that all
of the springs on the θi configuration variables have the
same spring constant κθ. Likewise, each of the springs on ψi
configuration variables have same spring constant κψ . The
objective is to identify these spring constant and as such we
set ρ = [κθ, κψ]T , where P = R+ × R+.

C. Simulation

In order to simulate the robot arm and loop, we turn
to Section II which reviews variational integrators. The
continuous state is given by q and its time derivatives—i.e.
x(t) = [q(t), q̇(t)]T . These are the robot and loop joint angles
and associated angular velocities. The system’s discrete time
state is xk = [qk, pk]T where pk is defined in Eq.(4). The
continuous dynamics are given by the constrained, forced
Euler Lagrange equations, Eq.(1), which depends on the
system Lagrangian L(q, q̇, ρ), external forces Fc(q, q̇, ρ, t)
and holonomic constraints h(q, ρ). Techniques to derive these
formulas for rigid bodies are well understood [14].

From the continuous dynamics, it is straightforward to
obtain the discrete dynamics, which are given in Eq.(3). The
discrete dynamics depend on the discrete system Lagrangian
Ld(qk, qk+1, ρ), discrete external left and right forces,
F−d (qk, qk+1, ρ, tk, tk+1) and F+

d (qk, qk+1, ρ, tk, tk+1), and
holonomic constraints h(qk, ρ).

For simulation, we chose a constant time step of ∆t =
0.01 seconds, which matches the broadcast frequency of
Baxter. Further, we decided to approximate Ld from L using
midpoint rule (see Eq.(2)):

Ld(qk, qk+1, ρ) = ∆tL(
qk+1 + qk

2
,
qk+1 − qk

∆t
, ρ). (13)

https://github.com/RethinkRobotics
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Fig. 2. Three distinct configurations along with snapshots of the physical system. a) The frames for Baxter and the loop in their initial configuration. b)
Baxter “twisting” the loop. c) Baxter “bending” the loop.
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Fig. 3. Illustration of joint i connecting loop links i and i+1. The joint is a rotation of θi radians about the X-axis followed by a rotation of ψi radians
about the Y -axis.

Similarly, using midpoint rule, we approximate Fc by F−d
and F+

d where
F−d (qk, qk+1, ρ, tk, tk+1) =

∆tFc(
qk+1+qk

2 , qk+1−qk
∆t

, ρ, tk+1+tk
2 )

F+
d (qk, qk+1, ρ, tk, tk+1) = 0.

It is a simple process to translate the continuous system to the
discrete variational integrator one. Additionally, in order to
simulate the dynamics using the one-step mapping in Eq.(5),
we need certain partial derivatives of the Lagrangian, external
forces and constraints with respect to configuration variables,
which can be found in [8].

The external forces Fc are applied at the configuration
variables. For Baxter manipulating the loop, the only external
forces are those applied at the 7 configuration variables that
define Baxter’s arm, which we have labeled as b. Due to
model and sensor error, which are always an issue for real
systems, it is unreasonable to expect that the simulation

will provide meaningful results, let alone be stable by
directly setting Fc = Tmeas, the experimentally measured
joint torques. Instead, we decided to filter them using a
proportional feedback loop as so:

Fc(t) = Tmeas(t)−K(t)(b(t)− bmeas(t)),

where bmeas is Baxter’s measured joint angles as mentioned
in Section IV-A and K is a feedback gain. When K is
chosen correctly, the simulation is stable. We chose K from
a finite horizon LQR to calculate an optimal feedback gain
from the model linearized around bmeas and a quadratic cost
functional [1].

Aside: We used the software tool trep [8] which simu-
lates articulated rigid bodies using midpoint variational inte-
grators. It additionally provides partial derivative calculations
that we need for the system linearization, Eqs.(7) and (8).



D. Linearization

The linearization of the discrete equations of motion is
given by matrices Ak and Bk in Eqs.(7) and (8). We need the
linearization for the gradient calculation, Lemma 1, in order
to perform gradient-based descent algorithm like steepest
descent for parameter identification. Partial derivatives of Ld
and F+ with respect to qk and pk can be obtained from [9].
In this section, we only concern ourselves with the partials
that depend on the paramaters ρ = [κθ, κψ]T which are not
included in [9]

For the loop example, we need to calculate
D3D1Ld(qk, qk+1, ρ) and D3D1Ld(qk, qk+1, ρ) for
ρ = [κθ, κψ]. Note that the potential energy of the system
can be written as:

V (q, ρ) = Vθ(q, κθ) + Vψ(q, κψ) + Vg(q)

where Vθ, Vψ and Vg are the potential energies due to
the spring torques on the θi configuration variables, the
spring torques on the ψi configuration variables, and gravity,
respectively. Label Iθ and Iψ as the index of the θi and ψi
configuration variables in q respectively. The potential energy
due to the θi torsional springs is Vθ(q, κθ) =

∑
i∈Iθ

1
2κθθ

2
i .

Approximating for the discrete time potential energy—see
Eq.(13)—we find that 3

Vθ,d(qk, qk+1, κθ) =
∑
i∈Iθ

∆t

2
κθ(

qi,k+1 + qi,k
2

)2.

Taking the needed partial derivatives to calculate D3D1Ld,
the ith element of D3D1Vθ,d is

D3D1Vθ,d(qk, qk+1, κθ)i =

{
∆t

4 (qi,k+1 + qi,k), i ∈ Iθ
0 else.

The needed partial derivatives of Vψ,d are the same except
for the indexes Iψ Since the kinetic energy does not depend
on ρ = [kθ, kψ],

D3D1Ld(qk, qk+1, ρ) =
−[D3D1Vθ,d(qk, qk+1, κθ), D3D1Vψ,d(qk, qk+1, κψ)].

Repeating the derivation for D3D2Ld(qk, qk+1, ρ) we find
that D3D2Ld(qk, qk+1, ρ) = D3D1Ld(qk, qk+1, ρ)

Furthermore, we need to calculate D1h(qk, ρ), D2
1h(qk, ρ)

and D1D2h(qk, ρ), the last of which is 0 since the constraints
do not depend on the parameters. These partial derivatives
of h are given simply by chain rule and depend on the first
and second partial derivatives of the transformations from
the world frame W to frames Nr and N` (refer to Figure 2
for the frames). These partial derivatives can be found in [9].

E. Optimal Parameter Identification

With the linearization of the discrete state equations,
Eq.(5), we can calculate the gradient of a cost from Lemma
1 in a steepest descent algorithm to identify the model
parameters ρ = [κθ, κψ]T . The experiment is set up as in
Section IV-A. We program the experimental Baxter arm to
stretch, bend and twist the loop over a 20 second time frame.

3Here, we (poorly) index the ith term of qk as qi,k .
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Fig. 4. Convergence of the optimization algorithm.

Snapshots of this manipulation are in Figure 2. The joint
torques to displace the loop are recorded in Tmeas while
joint angles are recorded in bmeas. For fixed parameters
ρ, the system can be simulated as discussed in Section II
using Tmeas. We wish to find the simulated Baxter arm joint
angles, labelled b—recall b are the configuration variables of
q that describe the Baxter arm—that best match bmeas.

The matching is quantified by the cost Jd. We choose Jd
to be quadratic on the error from the simulated end effector
position in space to the measured end effector position, which
can be derived from b and bmeas respectively. For reference,
the position of the end effector is at the origin of frame H in
Figure 2a. Label wk(ρ) as this simulated position at time tk
for parameters ρ and wmeas(tk) as this measured position.
Set εk := wk(ρ)−wmeas(tk). The cost Jd is defined by the
running cost `d(qk, ρ) and the terminal cost md(qkf , ρ), set
as

`d(qk, ρ) = εTk εk and md(qkf , ρ) = εTkf εkf

We perform the optimization using a steepest descent algo-
rithm with the inequality constraint that the parameters are
κθ > 0 and κψ > 0. At each iteration of the descent, an
Armijo line search updates the parameters by choosing a
distance to step in the direction of the negative gradient. We
used Armijo parameters α = β = 0.4 [2].

We seed the steepest descent algorithm with an initial
guess of ρ = [5, 5]T . After 75 iterations, the algorithm
terminates with gradient norm |DJd(ρ)| = 0.001138. The
cost decreased from Jd = 2.13506 to 1.106741. The pa-
rameters are identified as ρ? = [4.45252, 0.96969]T . The
convergence is shown in Fig. 4. Furthermore, a comparison
of the simulated end effector’s path for each iteration of
steepest descent with the Baxter measured end effector’s path
is in Fig. 5. In agreement that the cost decreases with each
iteration, it appears in the figure that the end effector’s path
converged toward the measured end effector’s path.

For the example, optimally identifying a 12-link (31 con-
figuration, 62 state) model from 20 seconds of manipulation
activity (2000 data points recorded at 100Hz) takes 219.05
minutes on a Macbook air. For comparison, we also identified
a 6-link (19 configuration 38 state) model. It converged
nearly four times quicker, in 61.01 minutes, but the optimal
cost was higher at Jd = 1.54588. The design tradeoff is
between model fidelity and computation time.



Fig. 5. The path the robot’s end effector took through space. The black
line is the measured end effector’s path while the yellow lines are the end
effector’s simulated path for each iteration of the steepest descent algorithm.
The iteration numbers are ordered from lighter yellow to darker yellow.

V. DISCUSSION

Through the proposed parameter identification procedure,
we calculated the model parameters that best match physical
phenomena within the constraint of the chosen model. This
process is important since an improved model can make for
better object manipulation. However, it is unclear, especially
in the presented experiment, what this matching tells us about
the object’s physical properties. Certainly, measuring at a
single contact point provides little insight into the interior
stress and strain of the rubber loop.

Furthermore, we assumed the loop has uniform stiffness.
Without this assumption, multiple experiments are needed at
different contact points to identify the non-uniformity. Also,
objects with more complex geometries require additional ex-
periments. For instance, grasping and manipulating a single
leaf of a tomato plant provides little insight to identify the
full plant. Multiple experiments as well as algorithms to
determine appropriate actions is a topic of future work.

As the parameter identification process is informed from
actual manipulation, the proposed method could also be used
online, thereby improving a model estimate with the time the
robot spent with an object growing. We note that identifica-
tion in this paper relies exclusively on proprioceptive data
compared with model prediction. In the future, we plan to
explore the following directions: (1) using proprioception of
a second arm to validate hypotheses on object movement and
obtaining additional measurements and constraints, and (2)
combine this data with exterioperception such as cameras,
3D data, and dynamic tactile sensing [6].

Finally, we note that the fidelity of the approach heavily
depends on the choice of the model. While this choice
strongly depends on the desired manipulation task, we are
also interested in automatically finding appropriate model
representations for given geometries and conceptual knowl-
edge on the object, such as “plant”, “tube” or “sheet”, e.g.

VI. CONCLUSION

We provided a method for optimally identifying the model
parameters of a flexible object manipulated by a robotic
arm and applied it to identifying stiffness characteristics of
a flexible loop. The proposed model exclusively relies on

proprioception, thereby not requiring any additional sensors.
We modeled the loop as a chain of rigid links connected by
torsional springs and used variational integrators to simulate
it. The simulation accounted for the chain of links being
closed to form the loop. Additionally, since we modeled
the loop with the same underlying mechanics as the robotic
arm, the full system can be simulated together, allowing for
planning in the configuration space. The feasibility of the
approach was demonstrated using the variational integrator
simulating software trep and with data recorded from a 7-
DOF series elastic robot arm. We have identified open chal-
lenges, including using multiple arms and external sensors to
increase model performance, as well as identifying not only
model parameters, but also the model structure itself.
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