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Abstract— An increasing amount of robotic systems is de-
veloped for safety-critical scenarios, such as automated cars
operating in public road traffic or robots collaborating with
humans in flexible manufacturing systems. For this reason, it
is important to provide methods that formally verify the safety
of robotic systems. This is challenging since robots operate in
continuous action spaces in partially unknown environments
so that there exists no finite set of scenarios that can be
verified before deployment. Verifying the safety during the
operation based on the current perception of the environment
is often infeasible due to the computational demand of formal
verification methods. In this work, we compute sets of behaviors
for parameterized motion primitives using reachability analysis,
which is used to build a maneuver automaton that connects
motion primitives in a safe way. Thus, the computationally
expensive task of building a maneuver automaton is performed
offline. The proposed analysis method provides the whole set of
possible behaviors so that it can be verified whether forbidden
state-space regions are avoided during the operation of the
robot, to e.g. avoid colliding with obstacles. The method is
applied to continuous sets of parameterized motion primitives,
making it possible to verify infinitely many motions within the
parameter space, which to the best knowledge of the authors
has not been published before. The approach is demonstrated
for collision avoidance of road vehicles.

I. INTRODUCTION

The ever-increasing autonomy of robots makes it possible
to operate them in environments that until today are only en-
trusted to human supervision. Examples are automated road
vehicles, automated mining robots, and robots collaborating
with humans in flexible manufacturing. Those systems are
either safety- or operation-critical and their deployment is
only acceptable if one can guarantee that the robot behaves
as specified. For this reason, the demand for formal methods,
i.e. methods that can mathematically prove properties, is
expected to grow.

Testing of robotic systems does not qualify as a formal
verification technique since only a few scenarios can be
tested, while infinitely many exist. There are many factors
that have to be considered for formally verifying robotic
systems: Sensor noise, disturbances, uncertain initial states,
and changing environments. The first three sources of un-
certainty (sensor noise, disturbances, initial states) can in
principle be covered by most formal verification techniques,
such as theorem proving [31], constraint propagation [9],
barrier certificates [32], and reachability analysis [5]. The big
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challenge, however, is to verify safety of robots in unknown
and changing environments, which can only be considered
on-the-fly and not offline before deployment. The reason
for this is that unexpected events can happen, such as a
human worker entering the workspace of a robot, or a traffic
participant unexpectedly entering the surrounding region of
an automated vehicle. A system designer cannot think of
all possible eventualities since infinitely many exist just by
arguing that the initial position and velocity of an obstacle
is described by real numbers and not by countable integers.
Besides the position and velocity, the number, type and shape
of other objects is constantly changing.

In this work, we propose to verify the system on-the-fly,
i.e. during its operation, to cope with changing environments.
This is especially challenging since even the offline verifi-
cation is a difficult problem (see e.g. [5], [31]). We first
consider previous work that formally verifies robotic systems
offline. In [30] the dynamic window algorithm for obstacle
avoidance is formally verified using theorem proving. The
same technique is used in [26] to verify automatic cruise
control under the assumption that all vehicles are automated.
Other work uses barrier certificates to prove the safety of
UAVs for given environments [6] or to find regions of
attractions for an Acrobot [27]. Reachability analysis is used
in [8], [12] to verify maneuvers of a quadrotor offline. In
those works, reachability analysis is reformulated to an op-
timization problem of Hamilton-Jacobi equations, requiring
to discretize the state space, which limits the applicability to
systems with no more than 4−6 continuous state variables.

There are only a few previous works that apply formal
methods for on-the-fly verification. In [24], constraint sat-
isfaction of the zero moment point in robotic walking is
verified online, but without considering sensor noise, distur-
bance, and uncertain parameters. Planned motions in auto-
mated driving are formally verified in [1] using reachability
analysis. Current on-the-fly verification techniques would fail
in the event of surprises, which requires shorter verification
times. In order to shorten the verification time, we propose to
pre-compute reachable sets of motion primitives, which are
popular in robotic path planning [11], [17], [25]. The ideas
to verify motion primitives, which are later connected to
obtain a fully verified maneuver, and to parameterize motion
primitives in order to cover continuous sets of behaviors, are
approached in [28] and [29] with sum of squares techniques.
Our work differs in several aspects: Our method is not limited
to a certain type of linear controllers. Instead different, non-
linear controllers may be applied for different maneuvers.
Furthermore, our method is intrinsically able to account for



bounded disturbances and measurement noise and to give
rigorous bounds on the system state, which reflect the size
of disturbances and noise.

Constraints for safe vehicle movement can also be formu-
lated in a robust model predictive control framework [21].
In model predictive control, an optimal input is computed
based on solving an optimal control problem for a finite
time horizon, where only the first section of the optimal
input trajectory is executed. This procedure is repeated so
that the solution adapts to the current situation. In tube-
based model predictive control (tube-based MPC), concepts
from reachability analysis are mixed with model predictive
control. Most of the work on tube-based MPC considers
linear systems [14], [34], but concepts for nonlinear sys-
tems also exist [7]. However, nonlinear tube-based MPC
approaches are computationally too expensive to be used for
an online application involving fast dynamics with several
state variables, such as the vehicle dynamics of this work.

Another line of work provides formal methods to synthe-
size trajectories based on temporal logic specifications that
are provably correct. In [20] temporal logic specifications
are used to specify requirements on missions for unmanned
aerial vehicles. Trajectories for automated vehicles in static
environments are synthesized in [37] within a discretized
environment. A discrete environment is also used in [22]
to synthesize plans for teams of robots. Another work syn-
thesizes robotic motion for a point mass (double integrator)
by bounding the error to an abstract kinematic model and
using the abstraction for the planning task [10].

Besides formally verifying safety, other works use a prob-
abilistic setting and predict the variances when following
a given reference trajectory [16], [19]. A further line of
research is to design robust controllers for tracking con-
catenated motion primitives to account for sensor noise and
disturbances [35]. Note that [35] does not provide deviations
from reference trajectories, which are crucial to ensure that
no collision occurs, as detailed later.

The paper is organized as follows. In Sec. II we provide a
precise problem statement, which is followed by a descrip-
tion of the overall approach in Sec. III. In Sec. IV we present
a technique for building maneuver automata which ensure
that motion primitives are properly connected for on-the-
fly verification. The technique is demonstrated in numerical
experiments in Sec. V.

II. PROBLEM STATEMENT

The objective is to formally verify reach-avoid problems of
robotic systems on-the-fly. The robotic system is specified by
a nonlinear differential equation of the state vector x(t)∈R

n

subject to a continuous input vector u(t) ∈ R
m:

ẋ = f (x(t),u(t)). (1)

The function f (x(t),u(t)) is assumed to be Lipschitz con-
tinuous to ensure existence and uniqueness of the solution.
The presented approach also works for hybrid (mixed dis-
crete/continuous) systems [36], but to focus on the main
innovations, we restrict ourselves to continuous systems. The

solution of (1) is denoted by ζ (t;x0,u(·)), where x0 ∈ R
n is

the initial state and u(·) is used to refer to the complete
trajectory rather than the specific value at a point in time t
denoted by u(t).

The verification problem is to ensure that a set of forbidden
states F (t)⊂R

n is always avoided while a set of goal states
G (t) ⊂ R

n is eventually reached. This reach-avoid property
has to hold for any initial state within a set of initial states
X 0 and for all input trajectories such that u(t) ∈U (t). The
initial set X 0 is used to model measurement uncertainties
and U (t) is used to model sensor noise and disturbances.
The verification problem can be more formally defined as

(

x0 ∈ X
0
)

∧
(

∀t(u(t) ∈ U (t))
)

∧
(

∀t∀x0∀u(·)
(

ζ (t;x0,u(·)) /∈ F (t)
)

)

∧

(

∃t∀x0∀u(·)
(

ζ (t;x0,u(·)) ∈ G (t)
)

)

.

(2)

Reach-avoid problems occur in many scenarios. For instance,
in human-robot collaborative manufacturing, the robot might
want to bring a work piece to a goal region, while avoiding a
human worker. In this work, we consider automated vehicles
that have to reach goal regions while avoiding other traffic
participants. The occupancies of other traffic participants
over time are the forbidden regions F (t), which grow over
time to account for uncertainties in their future behavior [3].

III. OVERALL APPROACH

In order to verify (2), we compute the set of reachable
states

R
e(t) :=

{

ζ
(

t;x0,u(·)
)

∣

∣

∣

∣

x0 ∈ X
0,∀t̃ ∈ [0, t]u(t̃) ∈ U (t)

}

.

When the set of reachable states Re(t) does not intersect
F (t) for all times and is fully included in a goal set G (t)
at some point in time, the planned motion of the robot is
verified. There are two issues with this approach. First, one
cannot compute the set of reachable states Re(t) exactly
[23]. For that reason, one computes overapproximations
R(t) ⊇ Re(t), which is a standard approach (see [5]). The
reason for over- rather than underapproximation is that this
way one can guarantee that the real system meets (2) when
the overapproximation is safe. The disadvantage, however,
is that it might not be possible to verify safety when
the overapproximation is too large, which is prevented by
computing tight overapproximations in this work.

The other issue is that computing reachable sets typically
requires too much time. For this reason, we compute reach-
able sets offline, which are then loaded from a database
during the operation of the system. In order to handle the
infinite number of possible motion plans, we build a set of
so-called motion primitives [11], which can be combined to
obtain a plan that drives the system into a goal set while
avoiding forbidden sets. We allow that the parameters of
the motion primitives are uncertain, making it possible to
consider the full parameter space and thus an infinite number



of possible motion primitives. We denote the reachable set
of the i-th motion primitive by R i(t). Since time is reset
when changing a motion primitive, the partial reachable sets
always start at time t = 0. It is crucial to ensure that the
final reachable set of one motion primitive is enclosed in the
initial reachable set of the preceding motion primitive, i.e.,

∀i : R
i(t f

i )⊂ R
i+1
0 , (3)

where t f
i is the final time of the i-th motion primitive. This

ensures that when starting in X 0, all possible solutions
ζ (t;x0,u(·)) are within the partial reachable sets R i([0, t f

i ])

for the time intervals [0, t f
i ]. Maneuver automata are used

to formalize which motion primitives can be connected with
each other [11]. In this work, the states of the maneuver
automaton refer to the motion primitives and the transi-
tions between states model the connectivity of the motion
primitives. Since we directly link the maneuvers with the
automaton’s states, we do not define a separate maneuver
alphabet as in [11]. In this work, a maneuver automaton is
defined as a tupel

MA = {M ,∆,M 0,G }, (4)

where

• M is a finite set of maneuvers mi, which are the discrete
states of the maneuver automaton;

• ∆ is the set of discrete transitions ∆ ⊆ M ×M . A
transition from mi to m j is denoted by (mi,m j);

• M 0 ⊂ M is a set of possible initial maneuvers;
• G ⊂ M is a set of final, accepting maneuvers.

The semantics of the maneuver automaton is described non-
formally. Starting from a maneuver m0 ⊆ M 0, the possible
successive maneuvers are {mi|(m0,mi) ∈ ∆}, which in turn
have a set of successive maneuvers. The concatenation of
maneuvers is stopped as soon as a newly added maneuver is
in the set of accepting maneuvers G . Computing the set of
transitions ∆ from a set of maneuvers is described in detail
in Sec. IV.

The idea of computing partial reachable sets, which are
stored in a database is illustrated for the application scenario
automotive collision avoidance in Fig. 1. During offline
computation, the reachable sets of motion primitives are
computed (step ➀). Note that also the occupancy of the
vehicle under all eventualities is stored. When the reachable
set of the last point in time t f

i is within the initial set
of another partial reference trajectory, those partial plans
can be connected (see (3)) and added in the maneuver
automaton (step ➁). During the online phase, the reachable
sets of other vehicles are computed, which can be computed
much faster than for the ego vehicle. The reason for this
is that no complicated vehicle models are required and
that no trajectory tracker has to be additionally considered
[3]. Next, partial motion primitives are combined by the
maneuver automaton (step ➃) and it is checked whether the
occupancies of the other vehicles intersect with the one of the
ego vehicle, which is the vehicle for which the verification
is performed (step ➄). If there exist many possible safe
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Fig. 1. Overview for formally verifying automated vehicles on-the-fly.

solutions, the collision avoidance system is not activated and
the human driver operates the vehicle. If, however, only one
or a few crucial safe plans remain, one of those safe motion
primitives is automatically executed (step ➅). Due to the
previous verification effort, it is ensured that the behavior of
the maneuver execution is fully enclosed by the reachable
sets and thus verified.

There are previous works on automotive collision avoid-
ance systems, but none of them formally verifies the sys-
tem considering sensor noise, disturbances, uncertain initial
states, and changing environments. It is remarked that formal
verification is based on mathematical models. In order to
ensure that the exact behavior is included in the model,
uncertain parameters and additional uncertain inputs are
included [2].

IV. BUILDING OF VERIFIED MANEUVER AUTOMATA

In this section, a maneuver automaton MA (see (4)) is built
from a set of motion primitives M . A maneuver mi ∈ M is
defined in this work such that it represents an infinite number
of similar reference trajectories {w(p, t))|p ∈ P i}, where
P i is a set of parameters corresponding to the maneuver
mi (indicated by the same index) and the function w(p, t)
maps time t and the parameter vector p to a partial reference
trajectory xref in the state space, which needs to be tracked by
a controller. For instance, a simple scalar reference trajectory
is xref(t) = p1 + p2t + p3t2 and a possible set of parameters
is P = {p|pi ∈ [0,1], i ∈ {1,2,3}}. Uncertain parameters are
included in the reachability analysis by defining additional
state variables xk with the dynamics ẋk = 0, so that the initial
set for the reachability analysis is composed by uncertain



states of the system equations and uncertain parameters:
R i

0 = X i
0 ×P i.

The reachable sets associated with two maneuvers mi and
m j can be concatenated if (3) holds, which is stored in
the maneuver automaton by adding the transition (mi,m j):
∆ := ∆∪ (mi,m j). An important design question is how to
properly choose R i

0 and how to maximize the number of
possible transitions in ∆. A trivial way of obtaining reachable
sets R i([0, t f

i ]) for each maneuver is to guess initial sets
R i

0 for each partial maneuver and check afterwards for
which combinations of maneuvers the inclusion property
in (3) holds. We found that it is advantageous to guess
parallelotopes as initial sets whose axes are aligned with the
eigenvectors of the linearized dynamics to take advantage of
the eigenmotion of linear systems.

However, rather long partial reference trajectories are
required to generate a sufficient number of transitions in the
maneuver automaton using the trivial approach. To increase
this number, subsets of the maneuver set M i

sub ⊂ M are
constructed such that their nominal reference trajectories
(parameter vector is the volumetric center of the parameter
set P i) have a common final state x∗ref, see Fig. 2. In
addition, we construct the desired transitions in the maneuver
automaton ∆des. In Alg. 1 it is checked if we can find initial
sets such that the transitions in ∆des are safe in the sense
that the enclosure condition (3) always holds. The algorithm
starts by guessing initial sets and computing the reachable
sets of all maneuvers in M (line 1 - 4). Next, it is checked
for each maneuver if its initial set is a superset of all final sets
of previous maneuvers in the maneuver automaton (line 9).
For maneuvers where the enclosure condition does not hold,
the new initial set is chosen as the union of the final sets
of previous maneuvers (line 10). This ensures the enclosure
condition on the expense that a larger initial set has to be
chosen. Since this changes the initial assumption of initial
sets, the reachable set of the corresponding partial reference
trajectory has to be re-computed (line 11). This also alters
the previously used final reachable set of the corresponding
maneuver, such that previous enclosure conditions might not
hold anymore. For this reason, the described procedure is
repeated in an outer while loop (line 5) until the enclosure
conditions for all transitions in ∆des hold. Note that con-
vergence is not guaranteed and that it might be required to
redesign the trajectory tracking controller and/or the desired
transition set ∆des and/or the maneuvers mi.

Alg. 1 works for any kind of set representation. In this
work, zonotopes are used as a set representation since
efficient algorithms exist for computing reachable sets based
on zonotopes [4]. The algorithm in [4] (with some improve-
ments) is used to implement REACH(R j

0,m j) in Alg. 1.
Its basic principle is to linearize the system dynamics for
consecutive time intervals τk = [tk, tk+1] and overapproxima-
tively obtain the linearization error denoted by L (τk) for
each time interval. Since the linearization is re-computed for
each time interval, we obtain linear differential inclusions
ẋ(t) ∈ Akx(t) +Bku(t)⊕L (τk) that are only valid for t ∈
τk, where ⊕ denotes the Minkowski addition: C ⊕ D =

Algorithm 1 Computes valid Maneuver Automaton

VERIFYMA

1 for each mi ∈ M

2 R i
0 := INITIAL(mi)

3 R i := REACH(R i
0,mi)

4 done := 0
5 while ¬done
6 done := 1
7 for each m j ∈ M

8 pred(m j) := {mi : (mi,m j) ∈ ∆}
9 if ∃mi ∈ pred(m j) : ¬SUBSET(R i(t f

i ),R
j
0)

10 R
j
0 := UNION({R i(t f

i ) : mi ∈ pred(m j)})

11 R j := REACH(R j
0,m j)

12 done := 0
13 end
14 end
15 end

X(m)

Y
(m

)
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Fig. 2. Valid concatenation of predecessor maneuvers {m1,m2,m3} to a
successor maneuver m4. Final sets Ri(t f

i ) are plotted by thin blue lines, the
initial set R4

0 by thick red lines, the reachable sets in gray color, and the
marker ’×’ refers to the point xi

ref(t
f
i ) = x4

ref(t
0) where the nominal partial

reference trajectories are concatenated.

{c+ d|c ∈ C ,d ∈ D}. There exist efficient algorithms for
computing reachable sets of linear differential inclusions,
see e.g. [13]. Zonotopes perform exceptional for reachability
analysis since the required operations Minkowski sum and
linear map can be efficiently computed. However, there
exist no efficient algorithms for computing the enclosure
of the union of two zonotopes and to detect whether a
zonotope is enclosed by another zonotope, which are both
required in Alg. 1. For this reason, new algorithms have been
developed to implement UNION({R i(t f

i ) : mi ∈ pred(m j)})

and SUBSET(R i(t f
i ),R

j
0). Due to space limitations we are

not able to present those algorithms in detail in this paper.

V. NUMERICAL EXAMPLES

The presented construction of a maneuver automaton for
the online verification of planned maneuvers is demonstrated
for the application scenario automotive collision avoidance.
For this application scenario we present our choice of param-
eterized maneuvers, construct the maneuver automaton based



on the selected maneuvers, and demonstrate its integration in
an online planning approach. The objective of the collision
avoidance system is to drive along an arbitrarily curved
road while executing lane changes to avoid lane blocking
obstacles.

First, we present our choice of partial reference trajecto-
ries. Next, we introduce the dynamic model of the vehicle
and of the trajectory tracking controller for following the
partial reference trajectories. In a further step, the maneuver
automaton is constructed based on the reachable set along
partial reference trajectories based on the dynamic model of
the closed-loop dynamics of the vehicle. Finally, the online
application of the maneuver automaton is demonstrated for a
specific traffic situation. In the online phase, an optimization
algorithm is used to adjust the parameters of partial reference
trajectories.

A. Partial Reference Trajectories

The chosen trajectory tracking controller of the vehicle
requires reference values X∗(t) for the x- and Y ∗(t) for the
y-position, which are combined in the reference trajectory
xref(t) := [X∗(t),Y ∗(t)]. Since x- and y-positions cannot be
arbitrarily chosen due to dependencies among those vari-
ables, we derive xref(t) from a point mass traveling at velocity
v∗(t), following a curvature κ∗(t) with the current orientation
θ ∗(t):

Ẋ∗ = cos(θ ∗)v∗(t)

Ẏ ∗ = sin(θ ∗)v∗(t)

θ̇ ∗ = v∗(t)κ∗(t)

(5)

The values X∗(t), Y ∗(t), and θ ∗(t) are obtained by integra-
tion of the above kinematic equations. Since our application
is invariant to position and orientation, the initial values
X∗(0), Y ∗(0) and θ ∗(0) can be arbitrarily chosen. Different
functions can be used to model the independent inputs
v∗(t) and κ∗(t), such as polynomials, sinusoidals, and Euler
spirals. In this work, we use polynomials of first order:

v∗(t) = p1 + p3 t

κ∗(t) = p2 + p4 t.
(6)

This choice results in spiral trajectories, specifically Euler
spirals for the case of v̇∗ = 0 after integration of (5).

B. Vehicle Model

We describe the vehicle dynamics using relative coordi-
nates. If absolute values would be used, the x-position and y-
position vary greatly depending on the choice of parameters
p1, . . . , p4 of the reference trajectory, which is disadvanta-
geous for constructing the maneuver automaton according
to Alg. 1. To describe the behavior in relative coordinates,
we define the position vector ρ = [X ,Y ]T , the orientation
ψ , the slip angle β , the absolute velocity v (velocities in
x- and y-direction are denoted by vx, vy), the slip angle

β = tan−1(vy/vx), the rotation matrix R(·) =
(

cos(·) −sin(·)
sin(·) cos(·)

)

,
the path tangential error et , and the path normal tracking
error en. The vector of the position error etn = [et ,en]

T is
obtained as etn = R(−θ ∗)(ρ − xref). Further errors are the

heading error eθ = ψ +β −θ ∗, the velocity error ev = v−v∗,
and the turn rate error eω = ω − v∗κ∗. We assume that the
vehicle has steering angle δ and acceleration/brake force Fb

as inputs. The translational and rotational acceleration of the
vehicle result from the balance of forces and moments acting
on the vehicle, according to the bicycle model formulation
[33]:

v̇x =
(

cos(δ )Fx, f − sin(δ )Fy, f +Fx,r
)

/m+ vyω
v̇y =

(

sin(δ )Fx, f + cos(δ )Fy, f +Fy,r
)

/m− vxω
ω̇ =

(

l f sin(δ )Fx, f + l f cos(δ )Fy, f + lrFy,r
)

/J

(7)

The tire forces origin from a linear tire model [33] and the
brake balance bb ∈ [0,1] that determines the fraction of the
braking force applied to the front axle:

Fx, f = bb Fb +Ferr,x, f

Fy, f =−C f

(

tan−1((vy + l f ω)/vx)−δ
)

+Ferr,y, f

Fx,r = (1−bb)Fb +Ferr,x,r

Fy,r =−Cr tan−1((vy − lrω)/vx)+Ferr,y,r

(8)

The vehicle state and the reference trajectory are thus fully
defined by the combined vector

x = [et ,en,eθ ,ev,eω ,β ]. (9)

The final set of equations is obtained by inserting the tire
forces from (8) into (7), which in turn are inserted into the
differentiation of the above mentioned formulas determining
the state variables in (9). The differentiation of the rotation
matrix results in d

dt

(

R(φ)p
)

= R(φ)
(

S(φ̇)p+ ṗ
)

, where

S(φ) =
(

0 −φ
φ 0

)

. The final set of differential equation of the
open-loop dynamics in relation to a reference trajectory is:

[

ėt

ėn

]

= R(−eθ )

[

v
0

]

−

[

v∗

0

]

−S(κ∗ v∗)

[

et

en

]

ėθ = eω + β̇
ėv = (cos(β )v̇x + sin(β )v̇y)− v̇∗

ėω = ω̇ − v̇∗κ∗− v∗κ̇∗

β̇ = (−sin(β )v̇x + cos(β )v̇y)/v

(10)

For trajectory tracking we apply input-output linearization as
described in [18] so that the evolution of the tracking error
is equivalent to a linear second order system in the error-free
case (no measurement errors, exact model): ëtn = −k0 etn −
k1 ėtn. Inserting the controller equations into the open-loop
dynamics in (10) results in the set of differential equations
of the closed-loop dynamics, which is not presented due
to space restrictions. The interested reader is referred to
[18] for more information. Further, the equations for the
uncertain parameters p j ( j = 1, . . . ,4) are also integrated as
new state variable xi (i = 7, . . . ,10) with ẋi = 0 in order to
consider uncertain parameters in the reachability analysis as
mentioned in Sec. IV.
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Fig. 3. Parameter space with valid example trajectory. Each parameterized
motion primitive allows the uncertain set-trajectory parameters p1, p2 to
vary inside one of the grey boxes and p3, p4 to vary inside another (or the
same) box.

C. Maneuver Automaton

In order to generate a maneuver automaton that can
be grasped by a human reader, we only introduce three
parameter regions for the partial reference trajectories. In
principle, this approach would work for arbitrary many
parameter regions. Each parameter region has the same size,
but a shifted center. The uncertainty around a center is I =
[−∆v,+∆v]× [−∆κ ,+∆κ ] and the parameter regions are R =
[v0,−2∆κ ]T ⊕I , S = [v0,0]T ⊕I , L = [v0,+2∆κ ]T ⊕I ,
where v0 = 16.7m/s, ∆v= 0.2m/s and ∆κ = 0.005m−1 and L
stands for left, S for straight, and R for right. The parameters
p1, p2 may be selected from any of the three parameter space
regions so that [p1, p2]

T ∈ (R∪S∪L).
In order to connect partial reference trajectories without

jumps, it is required that v∗i (t
f
i ) = v∗j(0) and κ∗

i (t
f
i ) = κ∗

j (0).
This condition is not ensured when the set of values for v∗(t)
and κ∗(t) in (6) grows over time, which is restricted for the
particular choice in (6) by selecting the parameters p3, p4 as

[p3, p4]
T ∈

(

−[p1, p2]
T ⊕ (R∪S∪L)

)

/t f
i .

A maneuver is denoted by LS when the maneuver transi-
tions from the parameter region L to the region S, meaning
that a left turn maneuver is followed by a straight maneuver.
The line in Fig. 3 is an example for a trajectory which can
be categorized as an RL maneuver. The overall maximum
and minimum parameter values of the three regions are
v∗min = v0−∆v, v∗max = v0+∆v, κ∗

min =−3∆κ , κ∗
max =+3∆κ .

In lateral direction this corresponds to a region of ay ∈
[−4.2,+4.2]ms−2 acceleration, thus covering roughly 50%
of the physically possible spiral trajectories by only three
regions. The desired set of transitions ∆des of the maneuver
automaton is chosen such that the graph of the maneuver
automaton is fully connected, see Fig. 4. This ensures that
parameters of trajectories can be arbitrarily chosen within
[v∗min,v

∗
max] and [κ∗

min,κ
∗
max].

For the reachability analysis, the initial sets of the vehicle
are chosen with the origin as its center, except for the slip
angle, where we use the steady state slip angle. The initial
sets R i

0 are chosen as interval hulls in the eigenvector space
with a normalized length of 0.05. Alg. 1 is able to prove
all connections to be valid after one iteration. Fig. 5 and 6
show examples of projections of reachable sets to verify the
enclosure condition (3) together with exemplary simulations
that illustrate individual behaviors. All 9 nominal partial

SS

SR
SL

LS

LR
LLLL

RS

RL
RR

Fig. 4. The resulting maneuver automaton. S denotes the parameter set for
straight movement, L for left movement, and R for right movement. Their
combination refers to the transition between the parameter sets S, L, and R.
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Fig. 5. Reachable sets on which the enclosure condition (3) has been
positively tested for a transition from the parameterized RR maneuver to
itself. The initial set of the maneuver is plotted in red, the final set in
blue, reachable sets of intermediate time intervals in gray, and exemplary
simulations of the system behavior in black. The enclosure condition is
fulfilled since the final set is fully contained in the initial set.

reference trajectories are plotted in Fig. 7 together with
the area covered by all partial reference trajectories when
their parameters are uncertain within the specified parameter
space. One can see that due to uncertain parameters a large
region of possible reference trajectories is covered. Out of
the 9 partial reference trajectories, we take a closer look at
the RR maneuver (connecting the parameter region R with
the region R) in Fig. 8. The line shows the nominal reference
trajectory and the light gray area shows the area covered by
possible reference trajectories when the trajectory parameters
are uncertain. The dark gray region shows the reachable
set when following the nominal reference trajectory. This
reachable set can be easily recovered for any reference
trajectory within the light gray area since the uncertainty
in the reference trajectory parameters is already considered
in the reachability analysis.

D. Online Planning

During the online planning, the steps illustrated in the
lower half of Fig. 1 are executed. First, the occupancy of
other vehicles over time is computed, then partial maneuvers
are combined according to the generated maneuver automa-
ton, and finally it is checked which of the full maneuvers



−0.05 0 0.05

−0.1

−0.05

0

0.05

0.1

−0.05 0 0.05

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.1 −0.05 0 0.05 0.1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.01 −0.005 0 0.005 0.01
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

etet

en

e n e v

β

e ωe ω

Fig. 6. Reachable sets on which the enclosure condition (3) has been tested
for all three maneuvers mi which connect to the RS-maneuver. The three
initial sets are plotted in gray, the final sets in blue (sometimes overlapping),
and the initial set of the RS-maneuver in red. The enclosure conditions are
fulfilled since the final sets are all included in the initial set of the RS-
maneuver.
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Fig. 7. Position region covered by the 9 parameterized reference trajectories
for the full range of parameter values. Black lines show the 9 nominal
reference trajectories (parameter value is the volumetric center of the
parameter sets P i) and the gray region shows the coverage of all reference
trajectories when the parameters are within P i.
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Fig. 8. Closer look at the RR maneuver. The red line shows the
nominal reference trajectory, the light gray area shows the area covered
by the reference trajectory when the parameters are uncertain, and the dark
gray area shows the reachable set when following the nominal reference
trajectory.

are collision-free. If there is only one or a few crucial
collision-free paths, the selected maneuver is executed. The
occupancy prediction of other vehicles is already described in
[3], the combination of maneuvers according to the maneuver
automaton is trivial and can be supported by standard search
algorithms (e.g. A*), and collision checks can be computed
as described in e.g. [15]. For this reason, we focus on a
novel aspect in this work: The optimization of the parameter
values of selected partial reference trajectories. Given the
sequence of maneuvers, the initial velocity and curvature
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Fig. 9. Evasion maneuver on a curved road. The red areas show the
occupancy of the vehicle, the blue line shows the complete reference
trajectory assembled from partial reference trajectories.
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Fig. 10. The values of the curvature κ plotted over time; circles indicate
the switch from one partial motion primitive to another.

as well as the final velocity and curvature can be freely
chosen within [v∗min,v

∗
max] and [κ∗

min,κ∗
max] without changing

the verification result. The only restriction is that the final
parameter values of a predecessor maneuver mi and the initial
parameter values of a successor maneuver m j must be equal:
v∗i (t

f
i ) = v∗j(0), κ∗

i (t
f
i ) = κ∗

j (0) (note that time is reset after
changing the maneuver). We optimize q, which is the vector
of N velocity and curvature pairs at the beginning of each
maneuver. To simplify notation, we introduce the starting
times of the maneuvers when time is not reset: Ti = ∑i

k=1 t f
i ,

so that the optimization vector can be written as

q = [v∗(0), κ∗(0), · · · , v∗(Ti), κ∗(Ti), · · · , v∗(TN), κ∗(TN)].

The cost function is chosen as the integral over the absolute
acceleration. The optimization is computed using fmincon in
MATLAB. The result of the optimization of a plan for eva-
sion of an obstacle on the right lane of a curved road is shown
in Fig. 9 and 10. In Fig. 9 the blue curve is the reference
trajectory and the red regions correspond to the area occupied
by the vehicle. The occupied area is constructed from the
reachable sets projected onto the dimensions et , en, eθ and
β as presented in [1]. Fig. 10 shows the κ values over time,
where circles indicate the switch from one partial motion
primitive to another. The approach guarantees safe execution
within modeled uncertainties since all possible behaviors are
already considered by the preceding reachability analysis.

VI. CONCLUSION AND FUTURE WORK

To the best knowledge of the authors, this paper is the first
work that describes how to pre-compute reachable sets of
robotic systems for an infinite number of possible reference
trajectories. A maneuver automaton is automatically gener-
ated to decide whether certain partial reference trajectories
can be connected such that the system behavior remains
within pre-computed reachable sets. Since those partial



reachable sets are computed offline, one can quickly plan
behaviors online, which formally guarantee that forbidden
regions in the state space, such as a region occupied by an
obstacle, will not be entered by the system.

The approach is demonstrated for the application auto-
motive collision avoidance. The results show that one can
continuously cover the set of relevant behaviors using of-
fline computed reachable sets and thus rigorously determine
whether a reference trajectory is collision-free or not. The
same approach can be applied for different vehicle models
or even different applications. The approach is not limited
to a fixed system description and may easily accommodate
different control strategies, for example to adapt controller
parameters to the distinct requirements of each maneuver
primitive. Future work includes the integration of real sensor
data from a collaboration with a car manufacturer to see
how well the approach works on recorded scenarios, and the
implementation of the software in a real vehicle.
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