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Automated Composition of Motion Primitives for Multi-Robot Systems
from Safe LTL Specifications™

Indranil Saha''?, Rattanachai Ramaithitima?, Vijay Kumar?, George J. Pappas® and Sanjit A. Seshia'

Abstract— We present a compositional motion planning
framework for multi-robot systems based on an encoding to
satisfiability modulo theories (SMT). In our framework, the
desired behavior of a group of robots is specified using a set of
safe linear temporal logic (LTL) properties. Our method relies
on a library of motion primitives, each of which corresponds
to a controller that ensures a particular trajectory in a given
configuration. Using the closed-loop behavior of the robots
under the action of different controllers, we formulate the
motion planning problem as an SMT solving problem and
use an off-the-shelf SMT solver to generate trajectories for the
robots. Our approach can also be extended to synthesize optimal
cost trajectories where optimality is defined with respect to
the available motion primitives. Experimental results show that
our framework can efficiently solve complex motion planning
problems in the context of multi-robot systems.

I. INTRODUCTION

Numerous applications, such as monitoring, surveillance
and disaster response, involve tasks that are performed better
by a team of robots rather than by a single robot. Collision-
free motion planning for such systems is a fundamental
problem in robot motion planning. Any generic solution to
the problem finds application in different domains, including
assembly planning [1], evacuation [2], search and rescue [3],
localization [4], object transportation [5], and formation
control [6].

In this paper, we address the motion planning problem
for multi-robot systems, where the robots have complex
dynamics, and complex specification of the system is given
in terms of a set of safe linear temporal logic (LTL)
properties [7]. Safe LTL is useful in capturing numerous
requirements related to multi-robot systems, for example,
maintaining a formation during the flight of the group of
robots, maintaining a precedence relationship between the
robots, maintaining a minimum distance between the robots
and so on.

The motion planning problem where the specification is
given in terms of some temporal logic has been addressed in
a number of recent works [8], [9], [10], [11], [12], [13], [14].
In these works, a finite model for the robot dynamics is first
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generated using an abstraction process based on discretiza-
tion of the configuration space [15], and then game theoretic
synthesis techniques [8], [13] are used to generate high level
motion plans and low level control policies on the abstract
model. However, the abstraction algorithm and the synthesis
algorithm both scale exponentially with the dimension of
the configuration space, thus limiting the application of this
approach to simple systems with lower dimensions.

To solve the safe LTL motion planning problem for a
multi-robot system where the robots have complex dynamics,
we need to deal with a significantly higher-dimensional
system. We deal with the complexity of the problem by
decomposing it into two subproblems. First, we design a set
of controllers to control different aspects of the members
of the multi-robot system. For example, for a UAV, one
may have different controllers for moving it to different
positions and orientations. A controller together with the
corresponding closed-loop trajectory of the robot is termed
a motion primitive. Second, we utilize these motion prim-
itives to build a system of constraints where the decision
variables encode the choice of motion primitives used at any
discrete-time point on the trajectory. For the specifications
considered in this paper, the system of constraints involves
a Boolean combination of linear constraints. We leverage
the power of an off-the-shelf satisfiability modulo theories
(SMT) solver [16] to solve the system of constraints. To
render the constraint solving problem easier, we use a simple
over-approximation of the trajectories to simplify the set
of constraints that ensure collision avoidance amongst the
robots. Moreover, we show how an SMT solver can be used
to synthesize an optimal trajectory for each robot, where
optimality is defined with respect to the available motion
primitives.

Our motion planning technique can be viewed as a com-
positional (modular) synthesis technique, where we use an
SMT solver to compose a set of motion primitives to generate
trajectories for a group of robots. Several compositional
frameworks for robot motion planning have been proposed
in the past - motion description language [17], [18], [19], the
maneuver automata [20], sequential composition of closed-
loop behavior in the absence of noise [21], [22] and in
the presence of noise [23]. The motion planning problem
has also been reduced to constrained dynamical simulation,
where the trajectories are computed iteratively by solving a
set of constraints on the system [24], [25], [26]. Recently,
SMT solvers have been used in motion planning with rectan-
gular obstacles [27] and in synthesizing integrated task and
motion plans from plan outlines [28]. However, composing a



set of motion primitives to synthesize trajectories for a group
of robot using an SMT solver has not been attempted before.

In our experiments, we synthesize a sequence of primitives
to generate optimal trajectories for a group of 4 UAVs in a
4m x 4m workspace that contains a few obstacles. We use
these primitives to fly 4 nano quadrotors successfully in our
lab space. Our results show that the proposed approach can
efficiently solve complex motion planning problems in the
context of multi-robot systems.

II. PROBLEM
A. Preliminaries

1) Workspace: The workspace is represented as a 3D
occupancy grid map, where we decompose the workspace
into blocks using a uniform grid. We specify the size of
the workspace by the number of blocks in each dimension.
Each block is assigned a unique identifier. The identifier of
the lower left block is assigned the identifier (0,0,0). If
the identifier of a block is ID = (I,,I,,I,) where I, I,
and I, are non-negative integers, then the identifiers of the
neighboring blocks are obtained by adding or subtracting 1
to the appropriate component(s) of I D. The unit of distance
is 1 block in the workspace. The distance between two
blocks with identifier IDy = (I;,,I,,,I;,) and ID; =
(Iz,,1y,, 12,) is given by dist(ID1, D) = (I, — Iy, , Iy, —
Iy17 z2 T Izl)

Each block may either be free, or may be occupied by
an obstacle. We denote by OBS the set of all the identifiers
corresponding to the blocks that are occupied by an obstacle.

2) Motion Primitives: Motion primitives capture a set of
precomputed control laws that can be used to avoid solving
complex dynamical system in real-time. A motion primitive
consists of a precomputed control law that regulates the
outputs of the system as a function of time, the closed loop
trajectory of the robot under the action of the controller, and
the cost of executing the controller for a predefined duration
of time. Let U denote the set of available control laws. A
control law can be applied to the robot if it is in a particular
velocity configuration. A velocity configuration represents a
velocity with a constant magnitude and a direction. Let us
denote the set of all possible velocity configurations by V.

Definition 2.1 (Motion Primitive): A motion primitive is
formally defined as a 7-tuple: (u,T,q;,qr, Xz, W, cost).
The symbol u € U denotes a precomputed control input. The
symbol 7 denotes the duration for which the control input is
applied to the robot. The symbols ¢; € V and ¢y € V are
the initial and the final velocity configurations of the robot,
respectively. The symbol X,.; € R3 denotes the distance of
the final position of the robot from the position where the
motion primitive is applied. The symbol W denotes the set of
relative blocks through which the robot passes to move from
its initial location to its final location. The symbol cost € R+
denotes an estimated cost for executing the precomputed
control law for 7 duration in free space.

3) Specification Language — Safe LT'Ly: We express the
behavioral specification of a multi-robot system using linear
temporal logic on finite traces [29], denoted by LT L. Let

II denote the set of atomic propositions. From the atomic
propositions 7 € II, any LT'L; formula can be formulated
according to the following grammar:

pu=m|=p[oNe| O¢|oU

Given the above grammar, we can define false and true
in the following way: false = ¢ A =¢ and true = —false.
Given negation (—) and conjunction (A), we can define
disjunction (V), implication (=) and equivalence (<) in
the standard way. Moreover, given the temporal operators
next (O) and until (), we can derive additional temporal
operators, for example, eventually (<») and always (7). These
operators are derived as ¢ = trueld¢ and O¢p = ~H—e.

The semantics of an LT L formula is defined over a finite
sequence o of the truth assignment to the propositions used
in the formula. Let us denote the length of the sequence o by
length(c). Let o(i) demote the set of atomic propositions
that are true at the ¢-th position of o, where 0 < i <
length(c) — 1. For an LTL; formula ¢, we denote by
0,4 = ¢ the fact that the sequence o satisfies the LT Ly
formula ¢ at location i, 0 < ¢ < length(o) — 1, and is
recursively defined as follows:

oilET iff m € o(4)

0,0 | ¢ iff 0,4 f£ ¢

O,i':¢1A¢2 iffO',Z'):(ﬁl anda,i)z@

o,i = Q¢ iff i <length(c) —1and 0,i+1FE ¢
0,1 = ¢p1lUpy  iff there exists i < k < length(o) — 1

such that o,k = ¢
and for all i < j < k,0,j = ¢1

The sequence o satisfies a formula ¢, if ¢,0 |= ¢.

In this paper, we consider only safety properties [7].
Hence, we use a subset of LT'L; called safe LT Ly which
is sufficient to express safety properties on finite traces.

Definition 2.2 (Safe LT Ly): An LT Ly formula is called

a safe LTLy formula if it can be represented using the
temporal operators next () and always ().
Intuitively, the formula ()¢ at any location 4 in the sequence
is true, if ¢ < length(o) — 1 and the formula ¢ is true at the
1+ 1-th location of that sequence. The formula [J¢ holds for
a sequence, if ¢ is true at every location till the end of the
sequence.

B. Problem Definition

In this subsection, we define our problem formally.

Definition 2.3 (State of a robot): The state of a robot is
a pair (q, X), where ¢ € V is the velocity configuration of
the robot and X € R? denotes its position.

Definition 2.4 (State of a Multi-Robot System): The state
of a multi-robot system with N robots is denoted by & =
[¢1,...,dn], where ¢; denotes the state of the i-th robot.

Definition 2.5 (Input motion planning problem instance):
An input motion planning problem instance is given by a
seven tuple P = (R, I, F, PRIM,OBS, L, U), where

e R={Ry,...,Ry} - The set of robots

o I - The set of initial states for the group of robots

o I - The set of final states for the group of robots



e PRIM - A vector [PRIMy,...,PRIMy], where
PRIM; denotes the set of motion primitives available
for the i-th robot

e OBS - The set of blocks in the workspace, that are
occupied by obstacles

e L - The total number of hops in the trajectory

e W - A set of safe LT Ly properties that should always
be satisfied by the group of robots. The properties can
be classified into two groups:

1) Safety properties:

— Obstacle Avoidance: No agent faces a collision
with an obstacle

— Collision Avoidance: The agents do not collide
with each other

2) Behavioral properties:
The behavioral properties are provided in terms
of a safe LT'Ly formula, and is denoted by &.
The propositions used in ¢ are defined using the
position component of the states of the robots.

The runtime behavior of a multi-robot system is given by a
discrete-time transition system 7, where the state transitions
are defined in the following way.

Definition 2.6 (Transition): Let ®1 = [¢11, . ..
Dy = [pa1, - . ., p2n] be two states of the multi-robot system,
and Prim = [primg, ..., primy], where prim; € PRIM,,
be a vector containing as elements the primitives applied to
individual robot in state ®; to bring them to state ®5. The
transition from ®; to ®, is given by the following rule:

) ¢1N] and

Prim

@1—)@2

iff Vi e {1,...,N}:

o $1i.q = prim;.q;

o $2i.q = prim;.qs

[ ¢27,X = ¢11X +pmm1er

o obstacle_avoidance(®1, P2, Prim, OBS)
e collision_avoidance(®1, ®o, Prim)

The inputs to the predicate obstacle_avoidance are ®; and
d,, the states before and after the transition, Prim, the
vector containing the primitives applied to individual robot
in state ®;, and OBS, the set of obstacles. This predicate
is true if no robot trajectory between the states ®; and
®, overlaps with the obstacles. Similarly, the inputs to the
predicate collision_avoidance are ®1 and ®5 and Prim. The
predicate is true if no two robots collide with each other
while moving from state ®; to state .

Definition 2.7 (Trajectory): A trajectory of a multi-
robot system for an input problem instance P =
(R,I,F,PRIM,OBS,L,¥) is defined as a sequence of
states & = (®(0), ®(1),...,P(L)) such that (0) € I and
®(L) € F and the states are related by the transitions in the
following way:

D(0) 21y (1) L2 p(2) .. (L —1) 2L (L),
With the sequence of states ®, we associate another
sequence ¢ = (sg,...,sr) of length L + 1, where s;,i €

{0,..., L}, captures the truth assignment to the propositions
used in £ in state (7).

Definition 2.8 (Valid trajectory): A trajectory ®, with o
to be the sequence of truth assignments to the propositions
used in ¢ in the corresponding states in P, is called a valid
trajectory, if o satisfies the formula &, i.e., 0,0 = &.

Now we formally define the motion planning problem that
we solve in this paper.

Definition 2.9 (Motion Planning Problem): Given an in-
put problem instance P with the number of hops in the
trajectory for each robot to be L, synthesize a valid trajectory
of length L.

C. Example

In this section, we present an illustrative example of
motion planning for a group of quadrotors. A quadrotor
is a nonlinear underactuated dynamical system which can
be described in twelve-dimensional space (3D-position and
orientation and the corresponding time derivatives). The
control input for the system is net body force for each
rotor. The space of all possible control inputs is denoted by
U € R+*. This system is known to be differentially flat [30].
This implies that full state space and control inputs can be
written as a function of the flat outputs and their derivatives.
For the quadrotor, the set of flat outputs are the 3D position
and yaw angle in an inertial frame, y = [rg,ry, 72, ].
Pivtoraiko et al. [31] has provided the method of offline
computation of motion primitives for a micro-UAV. We adapt
their method to compute the motion primitives.

Figure [I] shows the top view of a three
dimensional workspace. The black rectangular regions
denote the region occupied by some obstacles.
The set of obstacles OBS is given by OBS =
{(5,0,h),(6,0,h),(7,0,h),(8,0,h),(5,1,h),...}. We
assume that the quadrotors maintain the same height h
during their flight, and thus we are only interested in the
obstacles occupying the blocks with A in the z component
of the identifiers.

In this example, the group consists of four quadrotors.
The circles labeled with 11, 12, I3 and /4 denote the initial
positions of the quadrotors. Our objective is to fly the group
of quadrotors from the initial location to a specified final
location while avoiding the obstacles.

We want to impose the following invariant properties on
the quadrotors during their flight:

o Maintaining formation: During the flight, the quadro-
tors have to be either in a straight-line in X, y or z
direction, or they should maintain a rectangular forma-
tion.

o Maintaining minimum distance: The distance between
the quadrotors may be different at different time in-
stances, but they have to maintain a specified minimum
distance between each other.

e Maintaining precedence: The quadrotors should main-
tain relative positions with respect to each other. For
example, during the flight the x coordinate of the
quadrotors at the location I1 and 2 should always



X

Fig. . A 19 x 19 workspace with a few obstacles.

be less than the x coordinates of the quadrotors at the
location I3 and I4.

We aim to synthesize trajectories for a group of 4 quadro-
tors satisfying the following specification:

Spec 1: The quadrotors starting from location /1, I2,
I3 and I4 should reach location F'1, F2, F3 and F4
respectively, maintaining the above specified properties on
formation, minimum distance and precedence.

Spec 2: The quadrotors at the location /1 and /2 should
occupy any block in the rectangular region B and the other
two quadrotors should occupy any block in the rectangular
region A. We also want the quadrotors to maintain the
properties on formation and minimum distance.

Note that we do not include the property on maintaining
precedence in the second specification. This is due to the
fact that the final state in the second specification does not
satisfy the precedence constraint.

IIT. CONSTRAINT BASED MOTION COMPOSITION

In this section, we describe the system of constraints
that model the motion planning problem introduced in
Section Given an input problem instance P =
(N,I,F,PRIM,OBS,L,¥), our objective is to generate
a system of constraints where the primitive at each state
is considered to be the decision variable. For each robot
R; € R, at each time instant ¢ € {0,...L}, the state of
robot R; is denoted by ®,(t). For each robot R; € R, at
each time instant ¢ € {0, ... L — 1}, the primitive applied to
robot R; is denoted by Prim;(t + 1). The constraints can
be classified into two categories:

o General Constraints. These constraints are common
to any motion planning problem for a set of robots.
In Section [[II-Al we describe the general constraints
related to the motion planning problem for a group of
robots.

o Property Specific Constraints. These constraints de-
pend on the safe LT Ly properties we wish to impose

on the runtime behavior of the robots. In Section
we illustrate how we generate constraints to impose
some runtime properties on the group of robots.

The system of constraints that we solve is conjunction of
all these constraints.

A. General Constraints

Here we present the constraints that are common to any
motion planning problem for a set of robots.

Initial state: The state of the group of robots at time ¢ = 0
is an element of the specified set of initial states I.
d(0)er (IIL.1)
Final state: The state of the group of robots at the discrete
time point t = L is equal to an element of the set of specified
final states F'.
®(L)e F (I1.2)
Obstacle position: We use the predicate obstacle to indicate
whether a position is blocked by an obstacle. The input to
the predicate is a position X in the workspace. The predicate
is true if there is an obstacle at that position. Otherwise, the
predicate is false.

VX € OBS, obstacle(X) = true A

VY ¢ OBS, obstacle(Y') = false (IL.3)

Primitive selection: For each robot R; ¢ R, the primitive
Prim;(t+1) at the time instance ¢t € {0,..., L — 1} is cho-
sen from the set of primitives P RIMj for the corresponding
robot.

VR; € R, Vt € {0,...,L—1} : Prim;(t+1) € PRIM; (IlL4)

Ensuring continuity of trajectories: For each robot R; ¢
R, at each time instant ¢, the position ®,(¢).X is equal to
the vector sum of its position ®;(t — 1).X at time (¢ — 1)
and the relative position associated with the primitive chosen
at the time instant (¢ — 1).

VR; € R, Vte{l,...,L}:
CI)J‘ (t)X = q)j(t — 1).X -+ Primj (t).er

(1IL.5)

Ensuring conformance between two consecutive motion

primitives: For each robot R; € R, the initial configuration

of the primitive applied at each time instant ¢ is equal to the

final configuration of the primitive applied at the previous

discrete time instant (¢ — 1).

VR; € R, Vte{l,...,L —1}: (I1L6)
Prim;(t + 1).¢; = Prim;(t).qs ‘

Obstacle avoidance: This set of constraints ensures that
the robots do not collide with an obstacle when they move
from one point to another point. These constraints capture
the predicate obstacle_avoidance in Section [[I-B}

VR; € R, YVt €{0,...,L — 1}, Vw € Prim;(t+ 1).W :
obstacle(®;.X +w) =0
(I1L7)
Collision avoidance: This set of constraints ensures that
the robots do not collide with each other. These constraints
capture the predicate collision_avoidance in Section |lI-B

vt € {0,...,L —1},¥R: € R\YR; € R\{Ri}

Yw; € Prim;(t + 1).W,Yw; € Prim;(t+1).W :

(IIL.8)



B. Constraints Capturing Behavioral Requirements

In this section we illustrate how we capture safe LTL
specification in the system of constraints. Let £ denote the
behavioral property of the multi-robot system and o =
[s0,...,81] denote the sequence that captures the truth
assignment to the propositions used in ¢ at discrete time
instants 0, ..., L. For an atomic proposition 7w, we denote
m(s;) as the truth assignment of 7 in s;. We denote o; as
the suffix of the sequence o that starts from index ¢. If «
and [ are two subsequences of o, we denote by «; [ the
concatenation of the two subsequences. Now, we define the
encoding & of the safe LTL property £ recursively as the
following:

E(0,&) =true for o =[]
= 7(s0) for o =sg;01 and € =7
=&(0,&) NE(0,&) for { =& A&
=-&(0,¢) for £ = ¢
= N &(0i,¢) forg=0¢
1€{0,...,L}
=&(01,¢) for 0 = sg;01 and € = O¢’

We now illustrate the encoding above on the example invari-
ant properties introduced in Section The properties are
of the form & = [J¢’, where &’ is the Boolean combination of
the propositions using the position components of the states
of the robots.

1) Maintaining formation: We assume that the number of
robots N is a square of a natural number. Our objective is
to keep the robots always either in a straight line in x, y or
z direction, or in a rectangular formation. This is achieved
using the following set of constraints. The variable gxy;;
(9Ytij» 9#tiz) is set to 1 if and only if at the discrete time
instance t, the = (respectively, y, z)-coordinates of robot R;
and robot R; are the same, and either y (resp. z, x) co-
ordinates or z (resp. x, y) co-ordinates of the two robots are
not the same.

( 2= ,(t)
(@:(t). Xz £ ©; (). X.2) V (D:(t). Xy # D; (). X))
(I.9)

Now the following constraints ensure that for each discrete
time instance ¢, the value of the sum of gzy;; for all robots
R; and R; correspond to values specific to a straight line in
X, y or z direction, or a rectangular formation.

vt e {0,...,L}:
SUM-GTt = Y ic i1, N} Dojefl,... . NP\{i} ITtid A
Sum-gys = Zie{l ,,,,, NY 2ejeft,.. . Np\(i} 9Ytis A
SUM-G2t = D i1, N} 2uje{l,...,N}\{i} 9%tis A
((sum_gzy = N X (N — 1) Asum_gy: =0 A sum_gz; =0) V
(sum_gz: =0 A sum_gys = N X (N — 1) A sum_gz: = 0) V
(sum_gz: =0 A sum_gy: =0 Asum_gz; =N X (N —1)) V
(sum_gzs = N x (VN —1) Asum_gys = N x (VN —1) A
sum_gze = N x (VN —1)))

(IIL.10)

2) Maintaining minimum distance: At each discrete time
instant, the distance between any two quadrotors is at least
one block.

vt {0,...,L},VR; € R,VR; € R\{R:} :
| ©i(t). Xz —P;(t).Xx|>1V (IL11)
| (). Xy —®;(t).Xy|>1V ’
| ®i(t).X.z — P;(t).X.z|>1

3) Maintaining precedence: The robots have to maintain
relative position with each other. For N = 4, assuming that
the robots always maintain the same height, the constraints
maintaining precedence are given below:

vt € {0,...,L}

‘I)l(t).X.l' < @3(15) X.z A @1(15).X1‘ < ‘1)4(t).X.£L‘ A

D1(t). Xy < Do(t). Xy AP1(t). Xy < P3(t). Xy A
(I1.12)

The following theorem presents the completeness of our
method.

Theorem 3.1: Completeness of Primitive-Based Path
Planning. Given an input motion planning problem instance
‘P with the set of primitives for the robots given in PRIM
and a desired length of trajectory L, if the system of
constraints is not satisfiable, there does not exist a trajectory
of length L, that can be synthesized using the primitives in
PRIM.

C. Rectangular Abstraction for Collision avoidance

In Equation the constraints ensure that the trajectory
of one robot does not intersect the trajectory of another
robot. This is performed by comparing each block on the
trajectory of one robot with each block on the trajectory of
another robot and ensuring that there is no common block
on these two trajectories. However, block-wise ensuring
collision avoidance becomes a bottleneck in solving the
constraints due to the large number of constraints that are
generated in this manner. To alleviate this inefficiency, we
rather abstract a trajectory with a rectangular region. The
rectangular region is an over-approximation of the set of
blocks contained in the trajectory. Figure 2[a) and Figure 2Jc)
show the blocks covered by trajectories corresponding two
two different primitives, and Figure [2(b) and Figure [2(d)
show the corresponding rectangular over-approximation. In
Figure 2[a) and Figure 2fc), the circle with a label ‘T’
(‘F’) denotes the initial (final) point on the trajectory, and
the intermediate triangles denote the blocks through which
the trajectory passes. To ensure collision avoidance, we can
enforce that the rectangular region over-approximating the
trajectories of any two robots do not intersect with each
other. We introduce two new fields in the tuple representing
a primitive: ([ and ur. The field Il (ur) captures the relative
position of the lower left (upper-right) corner of the rectangle
over-approximating the area covering the relative positions
of the blocks on the trajectory corresponding to the primitive.
Now the following constraints ensure collision avoidance
between two robots.
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Fig. 2. Abstraction for checking collision avoidance

Vt€{0,...,L —1},YR: € R,YR; € R\{R:} :
(®i(t).X.x + Prim;(t + 1).ll.x >
®;(t).X.x + Prim;(t + 1).ur.x) V
(®i(t).X.x + Prim;(t + 1).ur.x <
D;(t).X.x + Prim;(t+1).ll.x) V...
(®;(t).X.z + Prim;(t + 1).ur.z <
D;(t).X.z+ Prim;(t + 1).1l.2)

(IIL.13)

We comment that the abstraction of the trajectories, though
makes solving the motion planning problem easier, causes
the loss of completeness.

D. Generating Optimal Trajectory

While generating a trajectory, an auxiliary goal is to
minimize the cost for all robots for traversing through the
generated trajectory. In our framework, this goal is achieved
in two steps. In the first step, we find the minimum value for
L such that a trajectory exists for that L. The algorithm for
finding the minimum value of L is given in Algorithm
The algorithm starts with guessing a suitable value for L,
given by Lg. It uses two variable (b and ub to bound the
search space for the optimal value of L. Initially, the values
of [b and ub are set to 0 and oo, respectively. In the first while
loop, we gradually increase the value of (b by a step size of
L. The loop terminates when we get a value for L that can
generate a trajectory. When this while loop terminates, the
difference between ub and [b is Ly. Now, in the second while
loop we perform a binary search in the range [Ib, ub] to get
Lopt, the optimal value for L. The search terminates when

the difference between ub and [b becomes 1.

Once we find the value of L,,;, we want to find the
minimal-cost trajectory of length L. Each primitive has an
associated cost. For robot R;, the cost for using a primitive
at the time instant ¢ is denoted by Prim;(t+ 1).cost, where
Prim;(t + 1) € PRIM,. Let total_cost denote the cost
incurred by all the robots to move from their initial location
to the final location. Thus, total_cost is given by

total_cost = Z Z

je{1,...N}te{o0,...,L—1}

Prim;(t+1).cost. (I11.14)

In our framework we can handle additional specification
that the total cost incurred by all the robots is bounded by a
specified cost C' by having additional constraint

total_cost < C. (IIL.15)

The trajectory with minimal cost can be found by solving
an optimization problem, where we minimize total_cost
subject to the constraints described in Section and
Section [[TI-B} Let C,,; denote the minimum value of C, such
that the constraint in together with the constraints

Algorithm III.1: Computation of optimal trajectory length.

Input: P, the input motion planning problem instance

Output: L, the minimum value for L for which a trajectory
exists

function findOptimalTrajectoryLength (P);

begin

L := Lo; Ib := 0; ub := oo;;

while true do

K := generate_constraints (P, L); ;

result := solve_constraints (k) ;;

if result = SAT then
ub:=1L;;
break; ;

else

\ L:=L+ Loy;
end

Ib:=1L;;

end
while (ub —1b > 1) do
L =T[(b+ ub)/2];;
Kk = generate_constraints (P, L);;
result := solve_constraints (k) ;;
if result = SAT then
‘ ub=L; Lopt =1L;;
else
‘ b=1L;;
end

end
return Lopt;;

end

described in Section and Section are satisfiable
To find the value of C,,;, we perform a binary search in the
range [Crin, Crmaz)s Where Chuipn and Chpq, are given by

Chmin = N X L x ( min ( min pr.cost)) (II.16)
LN}

ke{1,.. prePRIMy,
and
Craz = N X L x ( max ( max pr.cost)). (IIL.17)
..... N} \prePRIM,,

We comment that the method presented here finds the
optimal trajectory with shortest possible length, which may
not be the optimal trajectory in general. There may exist a
longer trajectory with a smaller cost.

IV. APPLICATION TO QUADROTOR AND EXPERIMENTAL
RESULTS

A. Tool Implementation

We implement our motion planning algorithm in a tool
called Complan (for COmpositional Motion PLANner). The
architecture of Complan is shown in Figure [3| Complan
has two main components: (1) a tool that takes as input a
problem instance P, and generates a system of constraints
in the input language of an SMT solver, and (2) an SMT
solver that solves the constraints and generates a trajectory
in terms of primitives to be used for all the robots at the
intermediate points on the trajectory. We use Z3 [32] as the
backend SMT solver to solve the system of constraints.
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B. Workspace, Quadrotor and Motion Primitives

Figure [A(a)] shows the workspace where we carry out
our experiments. Figure A(b)] shows the test vehicle used in
our experiment. The test vehicles are NanoQuad quadrotors
from KMel Robotics [33], each one has weight of 84g. All
quadrotors in our experiment share the same set of motion
primitives, which has been generated using the algorithm as
described in [34]. For two dimensional spaces, the velocity
profile has 9 configurations consisting of one hover state
and constant velocity in 8 uniform directions (N, E, S, W,
NE, SE, SW, NW). To reduce the complexity in synthesis,
we choose the same duration for all motion primitives.
Using the duration of 1.2sec, the algorithm in [34] yields
a set of 33 motion primitives. To generate the primitives
we use a cost function containing two components. The first
component is the estimated energy consumption which can
be derived from the control inputs. The second, the trajectory
smoothness, is the weighted sum of the snap of the trajectory
which penalizes the trajectories that require abrupt change
in acceleration and jerk. The cost corresponding to each
primitive is in the range of [0.298,1.201].

C. Results

We report two case studies based on the two specifica-
tions mentioned in Section [[I=C] In both case studies, the
quadrotors move in a two dimensional plane. Thus, we ignore
the z-coordinate when referring to their positions. In both
case studies, the quadrotors initially located in the blocks
with ID (0,8), (0,10), (2,10) and (2,8). In the first case
study, the robots fly to the blocks with ID (16,8), (16, 10),
(18,10) and (18,8) respectively, satisfying the constraints
on maintaining the specified formation, minimum distance
and the precedence. In the second case study, we want the
robots initially on the blocks with ID (0, 8) and (0, 10) to
fly in the region marked by B in Figure[I] and the other two
quadrotors to fly in the region marked by A, maintaining
specified formation and minimum distance. Our attempt to
generate a trajectory in the second case study reveals that

it is also not possible to generate a trajectory of reasonably
small length by maintaining the formation constraints. We
attempt to synthesize a trajectory until L = 20, but no
such trajectory exists. We then eliminate the constraints on
maintaining formation, and are able to generate a trajectory
that only satisfies the safe LTL specification on maintaining
the minimum distance between any two quadrotors at each
discrete time step.

Table[[ shows the experimental results for two case studies.
Our experiments were run in a 64-bit Linux Ubuntu 12.04.3
machine with an Intel(R) Core(TM) i7-3840QM CPU and
8GB RAM. For both the case studies, we carry out our
experiments with and without the rectangular abstraction for
collision avoidance as described in Section In each case,
we find the optimal value for the length L for which a
solution exists, the optimal cost, the total number of calls
to the SMT solver to compute the optimal trajectory (this
includes steps to compute L,,; and the optimal cost), and
the average amount of time the SMT solver took each time
it was invoked. In our search for the value of L, in
Algorithm [[IT] we start with Ly = 5. As evident from the
results of both cases, our tool synthesizes the trajectories with
equal length and cost whether the rectangular abstraction is
used or not. However, the synthesis time reduces significantly
when we use the rectangular abstraction in generating the
constraints.

Figure [5[a) and Figure [5(b) show the synthesized optimal
plans for the two case studies. The four quadrotors are shown
using four different colors. The location of the quadrotors
are time stamped at each discrete time instants. Figure [5{c)
shows a non-optimal trajectory for the second case study,
though the trajectories have an equal number of intermediate
points to the optimal trajectories shown in Figure [3(b).

In our experiments, robots states are tracked using a Vicon
motion capture system. The control inputs are computed on
external computer using PID control. All codes are written
in C++ and ROS. A video capturing our experimental re-
sults is available at http://youtu.be/pSjGwhH29Zsl
Experimental results confirm that the generated trajectories
satisfy the desired specifications.

V. DISCUSSION

We introduce a compositional multi-robot motion planning
framework that uses precomputed motion primitives for a
group of robots and employs an SMT solver to synthesize
trajectories for the individual robots. Our planning technique
is offline, and while it is neither complete nor optimal in
general, we achieve completeness and optimality with respect
to the given set of motion primitives. One strength of our
motion planning framework is that we can synthesize plans
so as to meet complex behavioral requirements specified in
safe LTL. Additionally, our encoding to SMT means that
our framework will directly benefit from enhancements to
the expressiveness and efficiency of SMT solvers, an active
research topic in recent years.
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Destination Specification Without rectangular abstraction With rectangular abstraction
Lopt | opt. cost | # steps | avg. time Lopt | opt. cost | # steps | avg. time
Spec 1 13 39.36 12 2m57s 13 39.36 12 1m18s
Spec 2 12 34.85 12 Smls 12 34.85 12 2m9s
TABLE 1

EXPERIMENTAL RESULTS ON TWO CASE STUDIES.
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Fig. 5. The trajectories for two case studies: [(@)] An optimal plan for specification 1, [()] An optimal plan for specification 2, and [(c)] A sub-optimal plan
for specification 2
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