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Enhancing software module reusability using port plug-ins: an
experiment with the iCub robot

Ali Paikan, Vadim Tikhanoff, Giorgio Metta and Lorenzo Natale

Abstract— Systematically developing high–quality reusable
software components is a difficult task and requires careful
design to find a proper balance between potential reuse,
functionalities and ease of implementation. Extendibility is an
important property for software which helps to reduce cost of
development and significantly boosts its reusability. Thiswork
introduces an approach to enhance components reusability by
extending their functionalities using plug-ins at the level of the
connection points (ports). Application–dependent functionalities
such as data monitoring and arbitration can be implemented
using a conventional scripting language and plugged into the
ports of components. The main advantage of our approach
is that it avoids to introduce application–dependent modi-
fications to existing components, thus reducing development
time and fostering the development of simpler and therefore
more reusable components. Another advantage of our approach
is that it reduces communication and deployment overheads
as extra functionalities can be added without introducing
additional modules.

The details of the plug-in system is described in the paper
and its advantages for the development of robotics applications
are demonstrated by developing a step–by–step example on the
iCub humanoid robot.

I. I NTRODUCTION

Robotics software community is continuing to grow.
Within the community, researchers have been developing
large number of software components using some of the most
common robotic middleware, such as ROS [1], YARP [2],
OROCOS [3], OPROS [4] and Open-RTM [5] or based on
their customized frameworks using standard communication
libraries (e.g., CORBA [6], ICE [7], ØMQ [8]). They try
to adopt lessons learned from best practices in robotics [9],
[10] and software architecture techniques and standards [11]
to build their modules as reusable as possible. Even so, it
is quite unlikely that components from different commu-
nities fit into a specific off–the–shelf deployment scenario,
without any adaptation by third party users. Heterogeneity
and lacking standards are not the only bottlenecks burdening
reusability. Even within a community of developers who
share the same middleware, software components can be
developed with different taste and hard reuse. Systematically
developing high–quality reusable software component is,
indeed, a difficult task. Many developers keep their modules
simple. However, simplicity does not necessarily lead to
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more reusable software. On the other hand, with reusability
in mind, there is a risk of over–generalization and increased
complexity: to build a more generic and reusable component,
the developer tries to foresee all possible future needs and
add them as reconfigurable functionalities to the software.
Such a commitment leads to complex components, polluted
with application–dependent functionalities that are more
costly and difficult to maintain and use correctly. Thus, a
proper balance must be found between potential reuse and
ease of implementation [11].

Software should be extensible enough to be adapted
to possibly unanticipated changes [12]. Extensibility is an
important property for software which significantly boosts
reusability. One direction to extend a module is via its
interfaces. In distributed systems interfaces are implemented
by exchanging messages through special connection points
that are call ports. This plays an important role in nowadays
robotic software architectures. This paper concentrates on
enhancing robotic software module’s reusability by extend-
ing its port’s functionality using a scripting language. The
basic idea is to extend the port’s functionalities in order
to dynamically load a run–time script and plug it into the
port of an existing module without changing the code or
recompiling it. In our framework a port extension is called
Port Monitor: in brief it allows to access the data passing
though a connection from/to the port for monitoring, filtering
and transforming it (See Section III). Multiple port monitors
can interact to allow an input port to select data from
multiple sources in an exclusive way. We call this object
a Port Arbitrator: in other words, a port arbitrator allows a
module to arbitrate data coming from other components to
its input port and coordinate the corresponding modules (See
Section IV).The detailed explanation of the port monitoring
and arbitration system and their potential applications is
given in [13].

The paper is structured as follow: Section II overviews the
state of the art and related work. The detail of the Port Mon-
itor and an overview of its API is described in Section III.
Section IV represents the Port Arbitrator. The applicability
of our approach is demonstrated in Section V through a step–
by-step example using the iCub robot’s software repository.
In Section VI we conclude the paper.

II. RELATED WORK

Plug-in platforms, in general, extend a core system with
new features implemented as components that are plugged
into the core at run time and integrate seamlessly with it.
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When an application supports plug-ins, it enables customiza-
tion, thus, provides a promising approach for building soft-
ware systems which are extensible and customizable to the
particular needs [14]. Probably one of the more prominent
example of a platform which broadly supports plug-ins is
Eclipse IDE [15]. Eclipse offers a framework to develop
plug-ins in Java which are delivered as JAR libraries. There
are also some generic frameworks for plug-in development
and management such as Pluma [16] which allows loading
plug-ins as dynamic linked libraries or FxEngine [17] for
data flow processing and the design of dynamic systems.
Plug-ins can also be developed using scripting languages.
Scripting languages have been used for decades to extend the
functionality offered by software components and they have
special interests within the game developer communities.
The main advantage of script–based plug-ins is that they are
usually easier to be developed and maintained.

Despite plug-in system has been broadly used by software
developers over the last decades, to our knowledge, less
attention has been devoted to study their potentials in the
robotic field. The work presented in this paper is an approach
to extend a YARP component’s port as it can act as a plug-in
manager to load plug-ins written in a scripting language1.
The current implementation offers a plug-in development
using Lua but it can be easily extended to support other
languages.

III. PORT MONITOR

To better illustrate the concept of the Port Monitor, we can
consider, as an example, an application for tracking faces in a
humanoid robot as shown in Fig. 1. The application involves
two simple modules. The first one is a Face–Detector module
which receives image data from the robot’s camera, detects
human faces and streams out, through its output port, the
3D position of the detected face together with a confidence
level. The second module is called Head–Control; which
in its turn receives a 3D position and controls the head
of the robot to look at the corresponding point. A simple
head tracking application can be achieved by connecting
the output of the Face–Detector to the input of the Head–
Control. Now suppose we want to extend the application and
track the face only if the confidence level is above a certain
threshold. This can be achieved by modifying the Head–
Control module to take into account the extra information,
but then it would be inadvertently polluted with application–
dependent functionality. A more appropriate choice would
be to develop a third module which receives data from
the Face–Detector and filters out messages corresponding to
detections that do not satisfy the required confidence level.
The drawback of this approach is that it introduces extra
implementation effort whilst adding further communication
and deployment overhead to the system.

One could argue over the immaturity of the involved
modules and proposes that, for example, the Face–Detector

1The source code and relevant examples can be found at
https://github.com/robotology/yarp/tree/master/src/carriers/
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PortMonitor.create = function() 

    return true; 

end 

 

PortMonitor.destroy = function() 

end 

 

PortMonitor.accept = function(reader) 

    return true 

end 

 

PortMonitor.update = function(reader) 

    return reader() 

end 

Fig. 1. Conceptual representation of port monitor. The output port of Face–
Detector modules is extended with a plug-in which provides access to the
outgoing data through scripting language (e.g., Lua).
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Fig. 2. The life cycle of port monitor.

module could be improved and reimplemented so that it
can be reconfigured by specifying the desired confidence
level. This solution requires higher development cost and
in general it easily leads to complex design. In addition, it
makes it even more arduous to connect the Face–Detector
to multiple modules with different confidence requirements,
thus preventing runtime reusability.

In our approach it is possible to solve this problem by
extending the ports of components using run–time scripts.
Fig. 1 represents the concept of the Port Monitor (shown as
a box with M) attached to the output of the Face–Detector
module. The Port Monitor can load a script file (written using
a standard scripting language such as, in our case, Lua [18])
and can access and modify the data traveling through the port
using a simple API. Thus, some extra functionalities of a
component such as data filtering, transformation, monitoring
can be added during the application development time and
without the need to modify and rebuild the component itself.
Similarly the same script can be loaded by the input port of
the Head–Control module.

This mechanisms offers the following advantages. Firstly,
it avoids adding to the component application–specific func-
tionalities. That is, some application–dependent function-
alities can be freely added to the component using the
scripting language during the application development stage.
Secondly, it allows to simplify the implementation of the
components, since the developer does not necessarily need
to provide all possible configurations supporting different
application scenarios. Finally, by embedding the extra func-
tionalities inside the port, our approach intrinsically reduces
communication and deployment overhead that would be
introduced if the same functionalities were added as separate
modules.



A. Port monitor life cycle and API

Fig. 2 illustrates the states that define the life cycle of a
port monitor. A callback function is assigned to each state
(except Waiting) which can have a corresponding implemen-
tation in the user’s script. Using these callbacks, users have
full control over the port’s data and can access it, modify it
and decide whether to accept the data or discard it. Listing 1
represents the callback functions corresponding to the port
monitor’s states in Lua.

The Port Monitor starts in theCreate state in which
PortMonitor.create callback is called. The initializa-
tion of the user’s code can be done at this point. Returning
a true value means that the user’s initialization was suc-
cessful and the monitor object is able to start monitoring
data from the port. When data arrives to the monitor,
PortMonitor.accept is called. In this callback, user
can access (for reading purposes only) the data, check it
and decide whether to accept or discard it. The return
value of this function indicates whether the data should be
delivered (accepted) or discarded. If the data is accepted,
PortMonitor.update is called, at which point the user
has access tomodify the data.

PortMonitor.create = function() return true end

PortMonitor.accept = function(dt) return true end

PortMonitor.update = function(dt) return dt end

PortMonitor.trig = function() return end

PortMonitor.destroy = function() end

Listing 1. Port monitor callback functions in Lua

A port monitor will usually act as a passive object [19]
where accept and update callbacks are called only upon
data reception. However, one may need to periodically
monitor a connection (within a specific time interval) and,
for example, generate proper events in the case of delay in
the communication. For this purpose, a port monitor object
can be configured to callPortMonitor.trig within
desired time intervals. Finally,PortMonitor.destroy
is called when the port monitor is detached from the port
upon disconnection. As an example listing 2 illustrates the
pseudo–script in Lua that in the hypothetical application that
requires filtering out messages from Face–Detector when the
confidence level is below a threshold of 80%.

1 PortMonitor.accept = function(data)

2 -- read face_pos from ‘data’

3 if face_pos.certainty < 0.8 then

4 return false

5 end

6 return true

7 end

Listing 2. An example of filtering Face–Detector data.

IV. PORT ARBITRATOR

A port Arbitrator is an extended functionality of aninput
port which can be configured to arbitrate data from multi-
ple source based on some user–defined constraints. Fig. 3
represents a simple search–and–track application where a
humanoid robot looks around in search of a person’s face
and tracks it. The robot should look around only if it

Head

Control

pos_3Dpos_3D
Face

Detector

image

Look

Around

pos_3D

PortMonitor.create = function() 

    return true; 

end 

 

PortMonitor.destroy = function() 

end 

 

PortMonitor.accept = function(reader) 

    return true 

end 

 

PortMonitor.update = function(reader) 

    return reader() 

end 

PortMonitor.create = function() 

    return true; 

end 

 

PortMonitor.destroy = function() 

end 

 

PortMonitor.accept = function(reader) 

    return true 

end 

 

PortMonitor.update = function(reader) 

    return reader() 

end 

M

M

C1

C2

Fig. 3. Conceptual representation of port arbitrator
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Fig. 4. The architecture of port arbitrator. Straight linesshow the data flow
and zigzag lines represent event flows.

is not tracking a face. The application involves modules
described in the face–tracking example from Section III and
an extra module to look around. Look–Around generates
some random 3D position which makes the robot randomly
look around when it is provided to the Head–Control module.
To obtain the desired behavior, the Head–Control module
shouldnot receive data from the Look–Around module when
the Face detector module is sending detected face positions.

This is a common coordination problem which can be
solved in different ways (e.g., using a separate coordinator,
extending modules to interact with each other). One way to
achieve this is to use a selector in the input port of the Head–
Control module and constrain it to receive data from each
module under specific conditions. The concept is shown in
Fig. 3 where a port arbitrator is used in the input port of the
Head–Control (shown as box labeled with two ’M’). The
arbitration logic can be written using a scripting language
and is loaded by the port arbitrator. Our previous work [20]
has demonstrated that this type of arbitration mechanism
can be effectively used to implement complex tasks without
resorting to centralized coordinators.

A. Architecture of Port Arbitrator

Fig. 4 represents the internal architecture of the port
arbitrator. A port arbitrator consists of multiple port monitors,
a set of selection constraints, an event container and a
selector block. Port arbitrator extends the port’s scripting API
for setting constraints and altering events in the container. In
fact, when a port monitor is used in an arbitrator, the user’s
script can access the extended API for arbitration.

A port monitor can be attached to each connection (Ci)
going through the port arbitrator. It monitors the data from



connection and inserts the corresponding events into a shared
container. A port monitor can also remove an event (if
previously inserted by itself) from the container2. Normally
events have infinite life time. This means that they remain
valid in the container until they are explicitly removed by
the monitor object. An event can also have a specific life
time. A time event will be automatically removed from the
container when its life time is over. For each connection
Ci, there is a selection constraint written in first order logic
as a boolean combination of the symbolic events. Upon the
reception of data from a connection, the selector evaluatesthe
corresponding constraint and, if satisfied, it allows the data
to be delivered to the input port; otherwise the data will be
discarded. Clearly a consistency check on the boolean rules
must be performed to guarantee that only a single connection
Ci can deliver data at any given time. Listing 3 represents
the extended port monitor’s API in Lua which can be used
with port arbitrator.

PortMonitor.setEvent(event, life_time)

PortMonitor.unsetEvent(event)

PortMonitor.setConstraint(rule)

Listing 3. Port monitor extended API in Lua for arbitration

We refer to the search–and–track example from Fig. 3
to demonstrate how selection constraints are represented
and how they can be evaluated based on events from a
container. As we previously mentioned, the Head–Control
module should receive data from the Look–Around module if
the Face–Detector module is not sending any data. To do this,
we first need to inform the port arbitrator about the status
of the data from the Face–Detector (i.e., if it is sending any
data or not) by setting an event into the container. Listing 4
represent a simple script to set the‘e_face_detected’
into the event container. The life time 1.0 indicates that
‘e_face_detected’ will be automatically removed af-
ter one second if the Face–Detector is not sending any data.

1 PortMonitor.accept = function(data)

2 setEvent("e_face_detected", 1.0)

3 return true

4 end

Listing 4. An example of setting a time event into a container.

At this stage, the selection rule that allows the data from
the Look–Around module (C2) to be delivered to the Head–
Control module when‘e_face_detected’ does not
exist in the event container, can be simply written as fol-
lows: setConstraint(‘not e_face_detected’).
The data from the Face–Detector module should be
freely delivered to the Head–Control. Thus the selec-
tion rule for the connectionC1 is written as follows:
setConstraint(‘true’). As we previously described,
constraints can be expressed as boolean combinations of
symbolic events. To evaluate the expression, every symbolic
event is substituted with a boolean valuewhich represents
its logical state. If the event is present in the container, it

2This is similar to the Event–Mask mechanism used in user interface
programming or in operating systems.

Fig. 5. The experimental setup of table–cleaning application. The reachable
zone is depicted in green, the orange zone represents the zone reachable with
the tool and finally the red zone indicates the unreachable space, for which
the robot needs human intervention.
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Fig. 6. The simplified activity diagram that illustrate the table–cleaning
application.

represents a true value in the expression; otherwise it is
evaluated as false.

V. A STEP–BY-STEP EXAMPLE

To demonstrate the applicability and advantages of our
approach, we present an experiment3 with the iCub hu-
manoid robot [21]. This experiment is completely built using
modules from the iCub software repository4. The experiment
focuses on reusing (with no modifications) existing modules
and by extending the required functionalities using port
plug-ins. The overall behavior of the experimental task is
demonstrated using a simplified activity diagram in Fig. 6.
The goal of the task, as shown in the activity diagram, is to
clean the table by removing all the object and place them in
a bucket located alongside the table. We allowed the robot
to use a tool at his disposal (a rake), located on a rack, to
reach objects of interest that are out of his workspace. The
modules that allow the robot to grasp and use the tool are
implemented as described in [22]. Furthermore, we consider

3The video which demonstrates the complete experiment can beaccessed
at http://www.youtube.com/user/robotcub.

4Modules can be downloaded from: https://github.com/robotology/icub-
main.git and https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib

http://www.youtube.com/user/robotcub


also the case in which the object is so far that it cannot be
reached even by the use of the tool. In this case the robot
should look for a human and asks his intervention (put the
object within reach). Fig. 5 shows the experimental setup and
it illustrates the three areas in which objects can be placed.

The activity diagram depicted in Fig. 6 may give the
impression that the task is only composed of a few simple
steps that the robot should follow to accomplish it. But in
fact, there are many uncertainties and unexpected conditions
which should be taken into consideration to make the task
robust. For example, the proper decision should be taken if an
object drops from the hand while the robot is placing it into
the bucket. Similarly the robot should behave appropriately
while it is holding the tool to pull the object closer, the
human might intentionally intervene and move the object
within the iCub’s workspace. Considering all possible un-
certainties, in fact, reveals the underlying complexity ofthe
task which requires that many modules (e.g, for perception,
action and coordination) are properly used and orchestrated
(e.g, coordinating robots, gaze, arm, speech) to perform the
required task.

TABLE I

A SUBSET OF MODULES USED FOR THE EXPERIMENT

Module Input Output Type

Face–Detector image pos_3D perception
Object–Detector image List<pos_3D> perception
Bucket–Detector image pos_3D perception
Look–Around - pos_3D implicit action
Head–Control pos_3D - action
Pick–and–Place msg_cmd msg_status action
Pull–Object msg_cmd msg_status action
Speak msg_text - action

The modules used in this experiment are chosen from the
iCub software repository and listed here in Table I. To build
the desired application, a few modules might simultaneously
require to grab the camera image frames from the robot,
control the arms and hands in various modes, such as
Cartesian or joint space using velocity or position control.
However, for the sake of brevity, only a subset of these
modules are described in this paper. We use the previously
mentioned Face–Detector and the Look–Around modules.

Object–Detector gets as an input image from the cameras
and produces a list of blobs and extracts 3D positions of
all the possible graspable objects as its output. Bucket–
Detector is, in fact, an instance of a generic object detector
which is configured and trained to recognize this specific
object. As we previously mentioned, Look–Around randomly
produces positions in 3D space which are used by Head–
Control to move the gaze in various positions. The Pick–
and–Place module receives a set of commands (e.g.,take

<3D_pos>, put <3D_pos>) to take an object and release
it on a specific position. The internal status of the module
(e.g., e_taken, e_arm_idle) is continuously sent out
using status messages. Pull–Object is a complex set of
modules which together get the position of an object on
the table and use a tool to bring the object closer [22].

A B

Fig. 7. The iCub performing table–cleaning on reachable objects. The
robot takes the object (A) and places it into to bucket (B).

Similar to Pick–and–Place, the internal status of the Pull–
Object module is advertised via its output. The Speak mod-
ule receives a text message and performs a text–to–speech
synthesis. Generally speaking, in order to be able to integrate
some modules for building an application, two important
points should be considered:i) data type on both side of
the connections should match andii) a proper coordination
mechanism should orchestrate modules to perform the task.
We start with the simplest case in which the objects are
reachable by the iCub and progressively extend it to build
the complete table–cleaning application.

A. Handling reachable objects

First our application should select the closest object within
the reachable area and take it (see Fig. 7-A ). To do that, we
connect the output of Object–Detector to the input of Pick–
and–Place. Using the port monitor, we implement a simple
script that goes through the list of objects, select the one
that is closest to the robot and produces the proper ‘take’
command (i.e.,take <3D_pos>) for execution. Similarly,
to put the object into the bucket we connect the output of
Bucket–Detector with the same input of Pick–and–Place and
attach to this connection another port monitor that generates
the ‘put’ command (i.e.,put <3D_pos>) for execution
(see Fig. 7-B )

Furthermore, an object should be taken only if the hand
of the robot is free and the robot is not performing another
action using the arm. On the other hand, the ‘put’ command
should be sent to the Pick–and–Place module if the robot
is holding an object. To this aim, the status of the Pick–
and–Place module should be monitored and the required
arbitration rules should be added to the system to properly
coordinate taking, placing and releasing actions. Fig. 8
represents the configuration of the modules that perform this
simple task on the reachable objects. As shown in the figure,
the status output of the Pick–and–Place module is used to
inform the arbitrator about the internal state of the module.
Below we illustrate how this is achieved.

As we have mentioned previously, a monitor object is
assigned to each connection going through the port arbitrator.
Listings 5, 6 and 7 respectively represent pseudo–scripts
which will be loaded by each monitor object for connections
C1, C2, and C3. Listing 7 demonstrates the script which
is assigned to the monitor object of connectionC3. This
monitor receives status messages from Pick–and–Place (i.e.,
e_taken, e_arm_idle) and adds them to the event
container of the port arbitrator. These events will be used
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Fig. 8. Configuration of the modules for handling reachable objects on the
table.

for the selection ofC1 and C2. Notice that the connection
C3 and the corresponding script (Listing 7) are created to
make the status events available for the arbitration. These
events will be never delivered to Pick–and–Place. This is
achieved by refusing to accept the data from the connection
C3 (return false).

1 PortMonitor.create = function()

2 setConstraint("not e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.accept = function(object_list)

7 -- find closest_obj in the object_list

8 if closest_obj.dist > HAND_REACHABLE then

9 return false

10 end

11 return true

12 end

13

14 PortMonitor.update = function(object_list)

15 return command("take", closest_obj.pos)

16 end

Listing 5. Monitoring and arbitrating connectionC1.

1 PortMonitor.create = function()

2 setConstraint("e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.update = function(bucket_pos)

7 return command("put", bucket_pos)

8 end

Listing 6. Monitoring and arbitrating connectionC2.

1 PortMonitor.accept = function(status_event)

2 setEvent(status_event, 0.5)

3 return false

4 end

Listing 7. Monitoring connectionC3 for generating events.

Listing 5 deserves particular attention: First, within the
‘create’ callback, the required selection rule for the connec-
tion C1 is set into arbitrator. The rule implies that data from
corresponding connection should be delivered if the robot
has not already taken (not e_taken) an object and if it
is not performing an action (e_arm_idle). In the ‘accept’
callback, first the closest object to the robot is selected from
the list of detected objects. If the object is reachable (thedata
is accepted), the ‘update’ method will be called to generate
the ‘take’ message to be delivered to Pick–and–Place. If
the object is out of reach, it will be discarded (return

false). Similarly, Listing 6 represents the script to generate
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Fig. 9. The iCub performing table–cleaning using a tool (rake). The robot
take the tool (A), reaches for the object (B,C), pulls the object (D), grasps
the object (E) and finally places it into the bucket (F).
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Fig. 10. Configuration of the modules for handling objects within tool–
reach space.

the ‘put’ command and it also specifies the constraints for
performing the corresponding actions.

1 PortMonitor.create = function()

2 setConstraint("not e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.accept = function(object_list)

7 -- find closest_obj in the object_list

8 if closest_obj.dist > TOOL_REACHABLE then

9 return false

10 end

11 return true

12 end

13

14 PortMonitor.update = function(object_list)

15 if closest_obj.dist < HAND_REACHABLE then

16 return command("cancel", nill)

17 end

18 return command("pull", closest_obj.pos)

19 end

Listing 8. Monitoring and arbitrating connectionC4.

B. Handling objects using tool

Now, we extend the previous application to allow the iCub
to use a tool to bring unreachable object within its workspace
(see Fig. 9 ). Fig. 10 represents how Pull–Object is integrated
in the application. The output of Object–Detector module
provides a list of objects; this list should be filtered to select
one object that is within the tool–reach area and out of the
robot’s workspace. The position of this object should be
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Fig. 11. The iCub performing table–cleaning with human assistance. The
robot detects an unreachable object (A), detects the presence of a human
and asks assistance (B,C), grasp the object (D) and finally places it into the
bucket (E).

given to the Pull-Object to trigger a sequence of actions to
take the tool from the rack, reach for the object with the tool,
pull the object and finally putting back the tool on the rack
(see Fig. 9-B, C, D ). Once the object is located within the
reachable area of the robot, the previous picking–and–placing
application is activated. Appropriate selection rules should be
added to the system to properly arbitrate pulling and pick–
and–placing. Listing 8 represents the pseudo code of the
script which is used in the port monitor of connectionC4. The
selection constraint (not e_taken and e_arm_idle)
filters messages to Pull–Object when the robot is already
involved in other actions (i.e. picking and placing an object).
Similar to Listing 5 from the previous application, first the
closest object is extracted from the list of detected objects.
This object is accepted and generates a ‘pull’ command if
it is within the tool–reach area. Otherwise it is discarded.
An interesting behavior is the fact that the pulling action
is composed of several sub–actions that should be aborted
if the tool becomes unnecessary (e.g. if a human moves
the target objects in the workspace of the robot). This is
achieved by continuously monitoring the target object in the
‘update’ function and generating the ’cancel’ command when
necessary. Notice that as opposed to Pick–and–Place, Pull–
Object ignores redundant ‘pull’ commands until all ongoing
sub-actions are accomplished or aborted (with the ‘cancel’
command). Therefore, unlike Pick–and–Place, we do not
need to monitor the internal status of Pull–Object and filter
conflicting ‘pull’ commands.

Clearly Pick–and–Place and Pull–Object are conflicting
behaviors. To avoid conflicts the selection rule for connec-
tion C1 must be updated to prevent generation of ‘take’
commands while Pull–Object is active (i.e. not idle). This
is achieved by making the internal state of the Pull–
Object available in the arbitrator of Pick–and–Place via
connectionC5 and by modifying the selection constraint of
Listing 5 as follows:‘not e_taken and e_arm_idle

and e_pull_idle’. As for the connectionC3, Listing 7
is used for the port monitor of connectionsC5 and C6

to inserts the status events into the corresponding event
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Fig. 12. Configuration of the modules for table–cleaning application.

containers.

C. Handling objects with human assistance

In Section IV we explained how the Face–Detector and
Look–Around modules can be properly used with the Head–
Control module to implement a basic face tracking appli-
cation. In this section, we use these modules to complete
our table–cleaning application. When an object is completely
unreachable, the robot should look for a person and asks
assistance (see Fig. 11). Fig. 12 depicts the complete system.
The output of Object–Detector arbitrates the connections
from Face-Detector and Look-Around viaC7 and C11 so
that when required, the robot will look around searching and
tracking human faces.

1 PortMonitor.accept = function(object_list)

2 -- find closest_obj in the object_list

3 if closest_obj.dist > TOOL_REACHABLE then

4 setEvent("e_unreachable")

5 else

6 unsetEvent("e_unreachable")

7 end

8 return false

9 end

Listing 9. Monitoring connectionC7 andC11.

1 PortMonitor.create = function()

2 setConstraint("e_unreachable")

3 return true;

4 end

5

6 PortMonitor.accept = function(data)

7 if time() - time_prev < DESIRED_TIME then

8 return false

9 end

10 time_prev = time()

11 return true

12 end

13

14 PortMonitor.update = function(data)

15 return msg("Please put the object closer!")

16 end

Listing 10. Monitoring and arbitrating connectionC10.



This is achieved in Listing 9 by monitoring the closest
object and generating an event’e_unreachable’ when
the latter is out of the tool–reach area. Notice that this event
is cleared (removed from the container) only when the object
becomes reachable again. Messages from Look–Around and
Face-Detector are discarded depending on the internal state
of Pick–and–Place and Pull–Object via connectionsC12 and
C13 and the event generator script (i.e., Listings 7). This
prevents moving the head when the robot is picking, placing
or attempting to pull an object. Finally the output of Face–
Detector generates a voice message synthesized by the Speak
module. This is achieved by connecting the two modules
(C10) and adding a script to the corresponding port monitor.
This script generates a text message (a valid command for
the Speak module) if a human face is detected, but only if a
certain amount of time has passed from the last command, to
reduce verbosity (Listing 10). Notice that these commands
are arbitrated byC11 so that the speech is activated only
when necessary.

VI. CONCLUSIONS ANDFUTURE WORKS

This article has introduced an approach that enhances
software components reusability using port plug-ins. The key
idea of our approach is to extend modules functionalities by
adding scripts to the ports that allow to monitor, filter and
transforming data and generating events. Another important
concept is ‘port arbitration’; this allows to enhance the
port capability by adding rules to arbitrate input data from
multiple sources. The main advantage of our approach is that
it allows to limit application specific functionalities to scripts
that are external to the modules and are added and executed
at runtime. This maintains modules clean from unnecessary
complexity and enhances their reusability. Finally, by using
embedded scripts inside the ports, we can avoid introducing
specific modules to achieve the required functionalities,
thus, reducing communication and deployment overhead. To
demonstrate the potential advantages of our approach, we
illustrated the implementation of a complex application on
the iCub humanoids robot which was completely built out of
existing modules without code changes. All the functionality
specific to the application were implemented and integrated
as plug-ins scripts.

The port plug–ins can be implemented in other distributed
frameworks, as for example by extending existing connection
ports with the functionalities required to load code and
execute it to parse incoming or outgoing data. This extension
can be easily implemented if the framework provides a
callback mechanism or by actively monitoring a port using a
dedicated thread. Perhaps one of the limitation of port plug–
in is that it cannot be easily used in a service–oriented system
where coordination of subsystems required interactions of
components using bidirectional communication and remote
procedure calls. However, port–arbitrated coordination does
not constrain the application designer to a specific mech-
anism for the orchestration of components. For example,
a subset of components can be coordinated using state
machines and another subset using port arbitration.

In its current implementation, port arbitration requires that
constraints are set via scripts and manually checked for
consistency in the design phase. We are currently studying
tools for automating generation and verification of rules
starting from a high level behavioral representation.
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