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The Lion and Man Game on Polyhedral Surfaces with Boundary

Narges Noori, and Volkan Isler

Abstract—We study the lion-and-man game in which a group
of lions (the pursuers) try to capture a man (the evader).
The players have equal speed. They can observe each other
at all times. While the game is well-studied in planar domains
such as polygons, very little is known about its properties in
higher dimensions. In this paper, we study the lion and man
game when played on the surface of a genus-zero polyhedron
with boundary. We show that three lions with non-zero capture
distance δ can capture the man in time O(( A

δ2
+ L

δ
)2 δ

2
) where

A is the area of the surface, and L is the total edge length of
the surface.

I. INTRODUCTION
Many robotics applications such as tracking and search

can be modeled as pursuit-evasion games. In this paper, we
study a fundamental pursuit-evasion game known as the lion-
and-man game. In the original version of this game, a lion
tries to capture a man in a circular arena. Many variants of
the lion-and-man game have been studied to model various
aspects of the robotics applications. An overview of these
results can be found in the survey paper by Chung et
al. [1]. Briefly, assuming that the players move in turns,
and they can observe each other at all times, the lion wins
the game in circular arenas [2], [3] and in simply-connected
polygons [4]. Moreover, in polygons with obstacles three
lions are sufficient and sometimes necessary for capture [5].
The lion-and-man game has been studied in non-planar

environments as well. Kopparty and Ravishankar showed
that in Rd, d + 1 lions can capture the man if and only
if the man starts inside their convex hull at the start [6].
Alexander et al. [7] study pursuit in environments with non-
positive curvature (i.e. it is CAT(0)), and show that a single
pursuer can eventually capture the evader by greedily moving
toward it. More recently, Noori and Isler [8] showed that the
class of convex terrains, which includes positive curvature
examples, are still single pursuer-win. Klein and Suri [9]
showed that four pursuers are sufficient to capture the man
on a polyhedral surface with genus zero. In this paper, we
focus on polyhedral surfaces with boundary and show that
three lions suffice. A practical implication of our result is
that three pursuers guarantee capture on terrains which is a
special case characterized by unique height values for points
in the two dimensional plane (Fig. 1(a)).
We present a pursuit strategy that is based on guarding

shortest paths introduced by [10]. We show how the evader
can be constrained to a region formed by two shortest paths
each of which is guarded by a pursuer, along with the
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Fig. 1. (a) A terrain with holes. (b) An illustration of faces, edges and
vertices on S . (c) A polyhedral surface with boundary.

boundary of the surface. We use the third pursuer to split this
region to two smaller regions such that one of them contains
the evader. The splitting algorithm is applied iteratively. We
prove that the evader will be captured in finite time by
obtaining a lower-bound on how much the evader’s regions
shrinks at each iteration.
The paper is organized as follows. In Section II we present

the definitions we use throughout the paper. In Section III we
provide the details of the game model. Section IV presents an
overview of our pursuit strategy. In Section V we discuss the
required modules for our strategy. The details of the pursuit
strategy are given in Section VI. In Section VII we show
that the evader is captured in finite time. Concluding remarks
are presented in Section VIII. Due to space limitations, we
present the details of our proofs in [11].

II. NOTATION

The game is played on a polyhedral surface with genus
zero and boundary, denoted by S, which is defined as
follows. It is a piecewise linear two-dimensional surface
which is homeomorphic to a unit disk possibly with holes
in it. It is represented by a set of faces fi, a set of edges ei,
and a set of vertices vi (Fig. 1(b)). A face f is a polygon
which is bounded by a subset of edges of the polyhedron.
An edge joins exactly two vertices of the polyhedron; A non-
boundary edge joins exactly two faces, and the edges on the
boundary are adjacent to only one face. Finally, we denote
the boundary of S by ∂S (Fig. 1(c)).
In this paper, we denote the shortest path between points

a and b by Π(a, b), and its length by d(a, b). We drop (a, b)
if the source and destination points of Π are clear from the
context. For a given path l on S, which is not necessarily
a shortest path, we use |l| to denote the length of l. Given
two points p and q on l we denote the sub-path of l from
p to q by l(p, q). For given paths l1 and l2 we denote their
concatenation by l1+l2. We denote the line segment between
two points p and q by pq and its length by |pq|.
We next present the game model.
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Fig. 2. Shortest paths Π1, Π2, and Π3 are shown with dashed lines and ∂S
is shown with solid lines. (a) After guarding Π3 by P3, the evader will be
restricted to a smaller region. (b) Multiple shortest paths in polygons with
obstacles are caused by obstacles. (c) On a polyhedron multiple shortest
paths are caused by hills and valleys.

III. GAME MODEL

The pursuer is denoted by P and the evader is denoted by
e. The players take turns and each turn takes a unit time step.
They move on the surface of a polyhedron which is denoted
by S. In one time step each players’ path is at most one unit
in length. The players can observe each other’s location at
all times. The pursuer captures the evader if their distance is
less than the capture distance δ > 0. The non-zero capture
radius can model the non-zero area of robots. A collision
results in capture!

IV. OVERVIEW
The main idea of our three pursuer strategy for capturing

the evader on S is similar to the polygonal case with
obstacles [5]. We start by presenting the idea for polygons.
The pursuit strategy is divided into rounds. In each round,
the pursuers make progress by restricting the evader to a
smaller region. In the following, we refer to the subset of
S that the evader is restricted to during the ith round as
the contaminated region and denote it by Si. The main idea
has two components: guarding and splitting. Two pursuers
are used to guard the boundary of the current contaminated
region Si in order to prevent the evader from exiting Si.
In other words, the evader cannot cross the boundary of
Si without being captured by the dedicated pursuers. In
Section V-A we show that a pursuer can guard a shortest path
Π by locating itself on the projection of the evader onto Π.
Therefore, we maintain the invariant that the subsets of ∂Si

that are guarded by the two pursuers are shortest paths. The
third pursuer is used to split Si into two smaller regions. The
evader will be now restricted to one of these smaller regions
which is denoted by Si+1. The evader cannot re-contaminate
Si−Si+1. Furthermore, the splitting process can be continued
on the new contaminated region Si+1 because as we show
later in Section VI we always have a free pursuer.
The critical part of the strategy is the splitting procedure as

well as showing that progress toward capture is guaranteed
after each splitting step. First, let us explain the difficulties
in splitting step. Let Π1 and Π2 be the two shortest paths
on ∂Si that are guarded by pursuers P1 and P2 respectively.
Let a1 and b1 be the two endpoints of Π1 and a2, b2 be the
endpoints of Π2 which are initially chosen on the boundary
of S. If these endpoints are disjoint, i.e a1 ̸= a2, b2 and
b1 ̸= a2, b2, then it is not too difficult to see that either

Π(a1, b2) or Π(a2, b1) can be used for splitting (Fig. 2(a)).
Next, suppose a1 = a2 but b1 ̸= b2. In this case, we can
pick a point c along the portion of the boundary from b1 to
b2 and use the path Π(a1, c) to make progress.
The remaining case a1 = a2 and b1 = b2, i.e. when there

are two shortest paths between a1 = a2 and b1 = b2, is
challenging on a polyhedron. In the polygonal setting, this
case can be easily handled as follows. In polygons, multiple
shortest paths between two points a1, b1 are possible only
when they touch obstacles (Fig. 2(b)). The vertices on these
obstacles can be used as the endpoints of the splitting path
Π3. However, on a polyhedral surface, multiple shortest paths
exist because of the valleys and the hills on the surface
(Fig. 2(c)). Consequently, unlike the polygonal case with
obstacles, the evader is free to move in the region in between
Π1 and Π2. Thus, finding the third splitting path is not trivial
on a polyhedral surface (Fig. 2(c)).
In order to handle the multiple shortest path case on S, we

employ the capture distance δ of the pursuers. In particular,
for each of the shortest paths Π1 and Π2 we define a capture
region (Section V-B) which is the region around Π1,Π2

that the evader cannot enter without being captured by the
guarding pursuers P1,P2. We then use the intersection points
of the boundary of these two capture regions as the endpoints
of the splitting path (Section VI).
The second challenge is proving that after finite time the

evader will be captured. The first idea is to show that the
area of the contaminated region gets smaller at the end of
each round. In particular, it must be shown that area(Si)−
area(Si+1) is lower bounded, i.e. area(Si)−area(Si+1) is
not infinitesimal and there exists a constant number ϵ > 0
such that area(Si) − area(Si+1) ≥ ϵ. It turns out that this
approach is not directly applicable because of difficulties in
providing lower bound on the area removed from Si. Instead,
we partition surface of the polyhedron into small triangles,
triangles with edges shorter than δ

2
(Section V-B). We show

that at the end of each round the pursuers claim at least one
of these triangles as cleared for the rest of the game, i.e. the
evader cannot re-contaminate the cleared triangles.
Finally, consider the result by Aigner and Fromme [10]

who showed that three pursuers suffice for capture on planar
graphs. It might be tempting to use this result directly since
the vertices and edges of a polyhedral surface with genus
zero constitute a planar graph. However, this result does
not directly apply to the geometric version on the surface
because the players are not restricted to stay on the vertices.
Furthermore, mapping the locations to a nearest vertex may
not correspond to motion along the edges.

V. INGREDIENTS OF THE PURSUIT STRATEGY

In this section, we present the components of our pursuit
strategy. In Section V-A we discuss the projection of the
evader onto a shortest path which is used for guarding the
boundary of Si. In Section V-B we present the capture region
of a shortest path, and finally in Section V-C we discuss the
partitioning of S into small triangles.



A. Projection
Aigner-Fromme [10] discussed guarding of shortest paths

on graphs using projections. This idea is later used for
guarding shortest paths in polygonal [5] and polyhedral
environments [9]. The projection of the evader onto Π is
a point on Π which is closer to all the points on Π than the
evader. Therefore, in order to guard Π, the pursuer can locate
itself on the projection of the evader (in at most O(D) steps
where D is the length of the longest shortest path on S).
Afterwards, as the evader moves from e1 to e2 the pursuer
can move to the new projection of the evader. Therefore, the
evader cannot cross Π without being captured. As shown
in [5], [10], shortest paths are guardable using canonical
projection.
Definition 1 (Canonical Projection [5]): Given a shortest

path Π(a, b) between two points a and b, and the current
evader location e, a point p(e) on Π(a, b) is called the canon-
ical projection of e if d(a, p(e)) = min(d(a, e), d(a, b)).

B. Capture Regions
We are now ready to present the capture region of a

shortest path Π which is the region around Π protected by
the pursuer that is guarding Π.
Definition 2 (Capture region): For a given shortest path

Π, its capture region, denoted by C(Π), is the set of points
q on S such that:

C(Π) = {q ∈ S : ∃p ∈ Π, d(p, q) ≤
δ

2
}.

The following property of the capture region plays a crucial
role in our strategy.
Lemma 1: Let Π be a shortest path that is being guarded

by a pursuer located on the canonical projection of the
evader. Then, the evader cannot enter the capture region of
Π without being captured [11].
Remark 1: The capture region of a shortest path is not

necessarily a polyhedral subset of S because the boundary
of the capture region can be curved e.g. it can contain circular
arcs. In this paper, we assume that we have an oracle that
computes the capture region of a given shortest path.

C. Triangulation into Small Triangles
In order to show that the evader will be captured in finite

time we will partition S into small triangles. Later (in Sec-
tion VII) we prove that after each round the pursuers remove
at least one of the small triangles from the contaminated
region. In this section, we present the triangulation algorithm
of the faces into δ

2
-small triangles where δ is the capture

radius.
Definition 3 (Small Triangles): A triangle is α-small if all

of its edges are shorter than α.
We start by triangulating each face on S into triangles

that are not necessarily δ
2
-small. This can be done in

time O(n log n) where n is the number of vertices on the
face [12]. We show that each of these triangles can be
further partitioned into small triangles. Suppose that △abc
is a triangle which is not small.
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Fig. 3. Triangulation of △abc into small triangles. The three cases
discussed in the text are shown from left to right.

In the first step, we find the bounding rectangle of △abc
as follows. In any triangle we have at least two vertices
whose angles are less than π

2
. Let b and c be those vertices

in △abc. Then bc is one edge of the bounding rectangle
(Fig. 3). The length of the other edge of the rectangle, which
is perpendicular to bc, is the same as the height of the third
vertex a with respect to the edge bc (Fig. 3).
Let us denote the vertices of the bounding rectangle by

b, c, d, e as shown in Fig. 3(a). There are three cases whether
the edges of the rectangle are shorter than δ

2
or not.

Case (1): Both of the edges bc and bd are longer than δ
2

(Fig. 3(a)). In this case, we put a grid of squares of sides δ
2

on the rectangle. Since both bc and bd are longer than δ
2
we

have O( bc
δ
. bd
δ
) square cells. Notice that O( bc

δ
. bd
δ
) = O(Ai

δ2
)

where Ai is the area of △abc.
We next partition each square cell into four small triangles

using its diagonals. In the final step, we consider only the
small triangles that are covered by △abc. Some of these
small triangles may be cut into quadrilaterals as a result
of intersection with edges of △abc. We can easily partition
these quadrilaterals into small triangles by adding diagonals.
Therefore, the number of small triangles on △abc is O(Ai

δ2
)

where Ai is the area of △abc.
Case (2): Exactly one of the edges bc and bd is longer

than δ
2
(Fig. 3(b)). In this case, we create a grid of single

row with width equal to the longer edge. Using this grid,
we can partition △abc into O(Li

δ
) small triangles where Li

denotes the length of the longest edge of △abc.
Case (3): Both of the edges bc and bd are shorter than δ

2

(Fig. 3(c)). Similar to previous cases, we can partition △abc
into O(1) small triangles (Fig. 3(c)).
We apply the aforementioned partitioning algorithm to

each triangular face on S which is not small.
Lemma 2: Using the triangulation algorithm above, the

polyhedral surface S is partitioned into O( A
δ2

+ L
δ
) small

triangles where A is the area of S, L is the sum of the
length of the edges on S, and δ is the capture distance [11].

VI. THREE PURSUER STRATEGY
We are now ready to present the details of our pursuit

strategy. The pursuit strategy is as follows. Initially (first
round i = 1), two distinct edges on ∂S are chosen as Π1

and Π2. The two pursuers P1 and P2 guard Π1 and Π2 by
locating themselves on the canonical projection of the evader.
Definition 4 (The contaminated region Si): The contami-

nated region Si is the region bounded by shortest paths Π1
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Fig. 4. Possible configurations of the contaminated region Si throughout the game are shown. The shortest paths Π1(a1, b1) and Π2(a2, b2) are shown
in dashed lines, the boundary ∂S is shown in solid lines, and the boundary of the capture regions are shown in dots. The capture regions are shaded in
gray. (a) Case 1-a, (b) Case 1-b, (c,d) Case 2, (e) Case 3 of Lemma 6 are illustrated.

and Π2 excluding the capture regions C(Π1) and C(Π2).
The evader cannot exit Si without being captured.
Therefore, initially S1 = S − (C(Π1) ∪ C(Π2)) which is

bounded by ∂C(Π1), ∂C(Π2) and ∂S. We show that the
capture regions have the following properties [11]:
Lemma 3: Given a shortest path Π, its capture region

C(Π) is connected [11].
Lemma 4: Given two shortest paths Π1 and Π2, their

capture regions C1 = C(Π1) and C2 = C(Π2) are pseudo-
disks [11]. This property is formulated as follows. Let C be
one of the connected components of C1 ∩ C2. Then in the
neighborhood of C at least one of the sets C1 − C2 and
C2 − C1 is connected [12].
In order to show that we can free a pursuer at each

iteration, we will need the following technical lemma.
Lemma 5: Let R be the region that the evader is con-

strained to after we choose the splitting path Π3 for P3 in
iteration j. This region is bounded by ∂S along with the
capture regions ∂C(Πi) where C(Πi) is the region guarded
by pursuer Pi (i ≤ 3). Let li = ∂R ∩ ∂C(Πi). At most one
li is disconnected.
In Lemma 5, li is the contribution of Pi for keeping the
evader contained in R. The lemma limits the interaction
(i.e. number of crossings) between lis. Its proof is presented
in [11].
By exploiting the properties discussed above, we show that

the pursuers can maintain the following two invariants:
Invariant on the shortest paths: The shortest paths Π1

and Π2 are selected such that they do not intersect each other.
Invariant on the structure of the contaminated region:

At each round i, Si is guarded by at most two pursuers
P1,P2. Since by Lemma 5 we encounter ∂C(Π1) and
∂C(Π2) at most once as we traverse the boundary of Si, we
can enumerate the possible configurations of ∂Si as follows.
(See also Fig. 4).
Case (1): ∂Si is composed of the boundary of the capture

regions of P1 and P2, and also the boundary of the surface,
i.e. ∂C(Π1), ∂C(Π2) and ∂S.
Case (2): ∂Si is composed of only the boundary of the

capture regions of P1 and P2, i.e. ∂C(Π1) and ∂C(Π2).
Case (3): ∂Si is composed of the boundary of the capture

region of exactly one of the pursuers e.g. only ∂C(Π1).
We now present interesting examples for the cases we

presented above. An abstract illustration of case (2) is shown
in Fig. 4(d) and a specific example of this configuration is
presented in Fig. 5. The example in Fig. 5 is the following.

Imagine a cone and cut it at height δ
2
from its base and then

mount a half-sphere on top of it (Fig. 5(a)). The endpoints of
Π1 are chosen as the antipodal points on the base circle as
well as the endpoints of Π2 that are antipodal on the cutting
circle (Fig. 5(a)). The perimeter of the base circle, the circle
that a1, b1 lie on it, is chosen small enough such that C(Π1)
includes the whole base circle and also the portion of the
surface up to height δ

2
. Now, observe that if a2, b2 are chosen

as antipodal points on ∂Si, there would be infinite number
of shortest paths between them (because of the half-sphere).
With the choice of the evader location shown in Fig. 5(b),
which provides a top view of the environment, we will have
the configuration illustrated in Fig. 4(d).
A similar example for case (3) is shown in Fig. 5(c) and

Fig. 5(d). The example is a cone, and the endpoints of Π1

are the antipodal points on the base circle of the cone. The
perimeter of the base circle is chosen small such that the
base circle is completely inside C(Π1).
Remark 2: Notice that for simplicity the examples pre-

sented above are not polyhedral. It is not difficult to see that
these examples can be approximated by polyhedral surfaces
such that the argument above is still valid.
By maintaining the invariant on the structure of Si we

guarantee that guarding the boundary of Si requires at most
two pursuers. Consequently, at the end of each round at least
one pursuer is free (we prove this later in Lemma 6). The free
pursuer P3 is used for splitting the contaminated region as
follows. A third shortest path is found inside the closure of Si

such that its endpoints are two distinct points on ∂Si. Let Π3

be this third path (we will show how such Π3 can be chosen
in Section VI-A). The free pursuer P3 locates itself on the
canonical projection of the evader onto Π3. After placing
P3 on guard position at Π3, the evader cannot cross Π3.
The path Π3 divides Si into two smaller subsets. The new
contaminated region Si+1 is the subset of Si that contains
the evader defined by either Π3,Π1 or Π3,Π2. Therefore,
one of the pursuers P1 or P2 is free. Thus, we can repeat
splitting Si+1 using the free pursuer.
We show that our pursuit strategy guarantees capture

in two parts. In the first part (Section VI-A), we show
that we can maintain the invariant on the structure of the
contaminated region Si and thus we can continue shrinking
the contaminated region by using the free pursuer to split Si.
In the second part (Section VII), we show that Si is shrunken
to Si+1 such that progress is ensured and finite time capture
is achieved as follows. After each round, the pursuers mark
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Fig. 5. Here, the shortest paths Π1(a1, b1) and Π2(a2, b2) are shown in dashed lines, and their capture regions are shaded in dark gray. (a, b) Side view
and top view of an example for case 2 are shown respectively. (c,d) Side view and top view of an example for case 3 are shown.

at least one small face as cleared. We show that each small
face is marked exactly once and thus the number of rounds
is bounded by the number of small faces.

A. The Structure of Si and Selection of Π3

In this section, we show that the pursuers can maintain the
invariants that we presented at the begining of Section VI. In
particular, we show that the three cases for possible boundary
configurations are the only possibilities for the structure of
Si. In addition, we discuss the selection of the endpoints of
the splitting path Π3 for each of these cases. Let us denote
the endpoints of Π3 (to be determined) by a3 and b3. Before
proceeding let us first present the following definition:
Definition 5 (Connected Component): The region Si is

composed of one or more connected components. See
Fig. 4(c) for an illustration. We sometimes refer to these
subsets of Si as components.
Observe that the evader cannot move from one component

to another without being caught. This is because in order to
commute between components the evader has to cross the
capture regions which will result in capture by the guarding
pursuers P1 or P2 (Lemma 1).
We now show that in each of the three cases we can select

a shortest path Π3 inside the closure of Si such that in the
next round Si+1 also has a structure which is characterized
by one of the three cases. This implies that we always have
a free pursuer since the boundary of the contaminated region
can be guarded by at most two pursuers. Therefore, we can
split Si using the free pursuer.
Lemma 6 (Invariant on the structure of Si): At each

round i, we need at most two pursuers to guard the
boundary of the contaminated region Si.

Proof: We prove the claim by induction on the round
number i. In particular, we assume that the structure of Si

is in one of the three cases we discussed. In a constructive
approach, we show that for each of the three cases we can
select the endpoints of Π3 such that Si+1 also falls into one
of the three cases. The lemma follows from the fact that in
each of the three cases we need at most two pursuers to
guard the boundary of the contaminated region.
For the induction basis, recall that initially Π1 and Π2 are

chosen as two edges on the boundary of S. According to
Lemma 5, the boundary of S−C(Π1)∪C(Π2) is composed
of subsets of ∂S and connected sub-paths of ∂C(Πi), i ≤ 2.
Therefore, in the first round, S1 is covered by the three cases.

Next, for the inductive step, assume that Si is in one of
the cases we presented. In the following, we show that the
third path Π3 can be chosen such that Si+1 remains in one
of the three cases. We present the correctness proof only for
case (1). Similar proof is applicable to the remaining cases.
Case (1-a): In the first sub-case, the boundary of Si from

both a1 to a2 and also from b1 to b2 are subsets of ∂S
(Fig. 4(a)). Let qi, 1 ≤ i ≤ 4 be the intersection points
between boundary of the capture regions and ∂S as shown in
Fig. 4(a). Then, {a3, b3} is selected from one of the following
pairs: {q1, q4} or {q2, q3}.
Suppose that we pick q1, q4 as the endpoints of Π3.

Without loss of generality suppose that the evader is in
between Π1 and Π3. The subset of Si which is determined by
Π3 and Π1 defines Si+1. First, observe that by construction
all the points on ∂Si+1 are on ∂C(Π1), ∂C(Π3) or ∂S.
Next, notice that q1 ∈ C(Π1). Thereore, there exists a point
p ∈ Π1 such that d(q1, p) ≤ δ

2
. Thus, p ∈ C(Π3) (because

there exists the point q1 ∈ Π3 such that d(q1, p) ≤ δ
2
).

Thus, C(Π1)∩C(Π3) ̸= ∅. Consequently, Si+1 is completely
guarded by P1 and P3: P2 is not required anymore to
confine the evader inside Si+1. Finally, C(Π1) and C(Π3)
are pseudo-disks (Lemma 4) and ∂Si+1 includes connected
sub-paths of their boundary. Hence, Si+1 will again fall into
case (1-b) or case (2) (case (3) is possible if the evader is
inside a connected component of a single pursuer).
In the following, we only present the selection of the

endpoints of Π3.
Case (1-b): Let us denote the intersection point between

the capture regions by w as shown in Fig. 4(b). In this case,
we select {a3, b3} to be either {q1, w} or {q2, w}.
Case (2): Consider the intersection points between

∂C(Π1) and ∂C(Π2). Let {w1, w2, · · · , wk} denote these
intersection points. Let wi, wi+1 be the points which deter-
mine the component that contains the evader. Then, we select
{a3, b3} to be the pair {wi, wi+1}.
Case (3): The endpoints a3, b3 are chosen as two arbitrary

distinct points on ∂Si (∂C(Π1) in Fig. 4(e)).
In the next section, we show that there can be a finite

number of rounds before the evader is captured.

VII. MAKING PROGRESS
We now prove that the evader will be captured after finite

time.
Theorem 1 (Capture in finite time): For a given polyhe-

dral surface with boundary S, three pursuers with non-zero



capture radius δ can capture the evader in time O(( A
δ2

+
L
δ )

2 δ
2
) where A denotes the area of the surface, and L is the

sum of the length of the edges on S.
Proof: Before proceeding let us denote the shortest path

that splits the contaminated region Si at round i by Πi
3. We

start by marking all faces of the polyhedron as contaminated.
Recall that we partitioned S into small triangles. Thus, each
face is a δ

2
-small triangle. In each round i, we mark the small

triangles that are touched by the splitting path Πi
3 as clear.

We show that a small triangle cannot be marked clear more
than once. Therefore, the number of rounds is less than the
number of small triangles on S.
We now present the details of our proof. In each round,

we mark the small triangles that are touched by Πi
3. A small

triangle f is touched by Πi
3 if Πi

3 ∩ f ̸= ∅. Moreover, the
splitting path Πi

3 is computed inside the closure of Si. Hence,
Πi

3 ∈ cl(Si) where cl(Si) denotes the closure of Si. In
summary, for a small triangle f :

f is marked clear at ith round if Πi
3 ∩ f ∩ cl(Si) ̸= ∅ (1)

Clearly, Πi
3 is touching at least one face f . This is because

the endpoints of Πi
3 are distinct (Otherwise Si = ∅ which

means that the evader is already captured.). Therefore, at
least one small triangle is marked clear in each round.
Next, we show that each small triangle is marked clear at

most once. Assume the contrary and suppose that a small
triangle f is marked twice: at rounds i and j where i < j.
The main idea is the following. At each round i, we compute
the splitting path Πi

3 inside cl(Si), and then we remove
the capture region of Πi

3 from Si in order to obtain the
new contaminated region Si+1. Since f is marked at the
ith round, it is being touched by Πi

3. Shortly, we show that
since f is touched by Πi

3 the capture region of Πi
3 contains

f . Therefore, f does not appear in the contaminated region
Si+1 and also in the future regions Sj , j > i. The splitting
path Πj

3 is computed inside cl(Sj). Hence, the small triangle
f cannot be marked by Πj

3 (because Π
j
3 marks the faces that

it is touching in Sj and Sj does not contain f ). The formal
proof is as follows.
First we show that a small triangle f that is marked at

the ith round is completely inside the capture region of Πi
3

(f ⊆ C(Πi
3)). This is because f is a δ

2
-small triangle and the

distance between any pair of points inside a δ
2
-small triangle

is at most δ
2
(Definition 2).

The region Si+1 is obtained by removing the capture
region C(Πi

3) from Si (Definition 4). Thus, we have Si+1 ∩
C(Πi

3) = ∅. Together with the observation that f ⊆ C(Πi
3)

we must have f ∩ Si+1 = ∅. According to our contrary
assumption, f is marked at the jth round as well. Thus,
according to (1) we must have f ∩ Sj ̸= ∅.
Now observe that Sk+1 ⊂ Sk for all k since Sk+1 is

obtained by removing C(Πi
3) from Sk. Therefore, we have

Sj ⊂ Si for j > i. Thus, Sj ⊆ Si+1. Using the properties of
sets we have f ∩Sj ⊆ Sj ⊆ Si+1. Therefore, f ∩Sj ⊆ Si+1.
Moreover, f∩Sj ⊆ f . Consequently, f∩Sj ⊆ f∩Si+1. But,
f∩Si+1 = ∅ and f∩Sj ̸= ∅ which is a contradiction. Hence,
each small triangle is marked at most once. Therefore, the

number of rounds (N ) is bounded by the number of small
triangles on S which is O( A

δ2 + L
δ ) (Lemma 2).

Finally, let us compute the capture time. Each round i,
takes O(D) steps where D is the length of the longest
shortest path inside the polyhedral surface. This time is
required for initializing the pursuers on the projection of the
evader. It is not too difficult to show that D = O(N δ

2
) where

N is the number of δ
2
-small triangles. Also, there are O(N)

rounds. Thus, the capture time is O(N2 δ
2
). According to

Lemma 2 we have N = O( A
δ2

+ L
δ
) where A is the area

of S, and L is the sum of the length of the edges on S.
Therefore, the capture time is O(( A

δ2
+ L

δ
)2 δ

2
).

VIII. CONCLUSION
In this paper, we studied the lion and man game on the sur-

face of a polyhedron with boundary, which is homeomorphic
to a disk (that can contain holes). We show the existence of
a capture strategy with three lions when the capture radius is
non-zero. We leave the computational aspects of the strategy
for our future work. In particular, computing the capture
region of a shortest path is a challenging problem. We believe
that our proposed strategy applies to polyhedral surfaces
that are homeomorphic to a sphere as well. In general,
determining the class of polyhedral surfaces such that the
evader will be captured with less than three pursuers is open.
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