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Abstract— In this paper we address the problem of musical
genre recognition for a dancing robot with embedded micropho-
nes capable of distinguishing the genre of a musical piece while
moving in a real-world scenario. For this purpose, we assess and
compare two state-of-the-art musical genre recognition systems,
based on Support Vector Machines and Markov Models, in
the context of different real-world acoustic environments. In
addition, we compare different preprocessing robot audition
variants (single channel and separated signal from multiple
channels) and test different acoustic models, learned a priori,
to tackle multiple noise conditions of increasing complexity in
the presence of noises of different natures (e.g., robot motion,
speech). The results with six different musical genres suggest
improved results, in the order of 43.6pp for the most complex
conditions, when recurring to Sound Source Separation and
acoustic models trained in similar conditions to the testing
scenarios. A robot dance demonstration session confirms the
applicability of the proposed integration for genre-adaptive
dancing robots in real-world noisy environments.

I. INTRODUCTION

Dance expresses the deepest parts of our being in a way
no words or book could ever do. Almost every culture in
the world has music and dance. Dancing, through its group
synchronization and body movement, is a fun activity that
powerfully bonds people together [1]. While at times shyness
make it difficult to engage in collective dance, a dancing
robot has the potential to entertain and unite people of
various ages and backgrounds. In festivals or events, dancing
robots could entrain the people around it to move their
bodies, when music alone is not enough to fill an empty
dance floor.

In this paper, we propose musical genre recognition for
a dancing robot in noisy environments. Our long-reaching
goal is a robot that can dance to live music or an arbitrary
piece of music. Towards this goal, we need to make a robot
recognize the genre of the music to perform appropriate
movements, such as head-banging to rock music, or hip hop
moves for popular music. This is difficult because, although
offline genre classification for clean music signals is well-
studied [2], live recognition with noisy auditory input has
never been attempted. In addition, the robot’s own motor
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noises (the so-called ego noise [3]) during dancing further
degrade the music signal [4].

To this extent, we assessed and compared two state-of-the-
art musical genre recognition algorithms, based on Support
Vector Machines (SVM) [5] and Markov Models (MM)
[6], with two different preprocessing robot audition variants
(single channel and separated signal from multiple channels)
and the use of acoustic models learned a priori under
different noise conditions. We assessed all these variants
in terms of genre recognition accuracy with six musical
genres, using a most common dataset used in MIR (Music
Information Retrieval) [7]. To verify the applicability of the
proposed integration for dancing robots, we conclude this
paper by introducing a demonstration session of a dancing
robot that is able to quickly adapt on-the-fly to the musical
genre in a real-world noisy environment.

II. RELATED RESEARCH

The automatic genre recognition of musical content has
been widely studied for the last two decades to give response
to the increasing amount of musical data stored in music
databases, catalogues, libraries, and stores, which need to be
categorized [2]. More recently, and with the improvement
of pattern recognition and machine learning techniques,
we can already find musical genre classifiers installed in
online music recommendation services [8], radio-on-demand
broadcasting [9], and even in cars [10].

However, musical genre recognition has never been at-
tempted in musical robotics under real-world scenarios, whe-
reby experiments were yet much restrict to beat tracking [4]
and mood classification [11], [12]. Moreover, when dealing
with different noise conditions for robot audition, much of
the work has been undertaken on environmental sound source
identification [13] and speech recognition [3], [14], [15].

Considering the latter as the most investigated topic in
robot audition, different strategies are used in order to
enhance speech recognition under multiple noise conditions.
These include the use of multiple acoustic models, trained
under different noise conditions, and the use of Sound
Source Separation (SSS) to recognize the speech of three
different speakers [14]; the use of compensation and adaption
methods to reduce the mismatch between the training and
test conditions [15]; and the use of ego noise suppression
strategies to tackle the unpredictable diffuse noise generated
by the robot motion while performing automatic speech
recognition [3] or beat tracking [4].
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Inspired by [14], we tested acoustic models learned in
different noisy conditions and multi-channel SSS in order to
enhance the musical genre recognition of a dancing robot
while moving in the presence of background and speech
noises in a real-world environment.

III. MUSICAL GENRE RECOGNITION

As depicted in Fig. 1, our musical genre recognition robo-
tic system integrates two state-of-the-art genre classification
algorithms, one based on Support Vector Machines and other
based in Markov Models, and considers two preprocessing
robot audition variants: single channel and separated signal
from multiple channels through Sound Source Separation.
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Fig. 1. System architecture.

A. Preprocessing robot audition modules

1) Sound source separation: The SSS module is respon-
sible for splitting the captured audio signal into individual
sound sources discriminated by their given directions. These
directions are typically measured by means of Sound Source
Localization (SSL), but in order to assure a continuous
signal acquisition, we directed the SSS to a particular sound
source direction towards the musical source. The integra-
ted SSS implementation applies the Geometric High-order
Decorrelation-based Source Separation (GHDSS) [16].

B. Genre classification algorithms

Genre classification typically recur to supervised machine
learning algorithms that infer genre information from low-
levels features extracted from the musical signal. These
features may be related to different dimensions of music,
including melody, harmony, rhythm, timbre, and spatial
location [2].

1) Audio Features: In order to focus the assessment of
this paper to the comparison of different genre classification
algorithms and pre-processing robot audition variants, in the
context of different real-world noisy conditions, we restrain
our features to timbre, in the form of the most popular Mel-
Frequency Cepstrum Coefficients (MFCC). These model
the short-time spectral characteristics of the signal onto a
psychoacoustic frequency scale. We selected the 12 first
MFCCs for the feature vector which is used as input to both
genre classification algorithms.

2) SVM-based Genre Classifier: This musical genre clas-
sification algorithm was proposed and described in [5],
and implemented in MARSYAS 1. This algorithm starts by
computing a running mean, mθ(t), and standard deviation,
sθ(t), over the past M = 1 sec (in frames) of the feature
vector. These mθ and sθ are then collapsed into a single
feature vector representing all extension of the considered
audio clip by calculating the mean and standard deviation
across the whole clip:{

mθ(t) = mean[θ(t −M+1), ..,θ(t)]
sθ(t) = std[θ(t −M+1), ..,θ(t)]

. (1)

This results in a 24-dimension feature vector, which is further
normalized. This feature vector is used for both training and
test stages of the genre classification by recurring to a multi-
class Support Vector Machine. This algorithm is hereafter
referred to as SVM.

3) Markov Model-based Genre Classifier: This musical
genre classification algorithm was proposed and described
in [6]. This algorithm starts by quantizing the 12-dimension
MFCC feature vector using a hierarchical clustering ap-
proach, based on Gaussian Mixture Models (GMM) and the
K-means algorithm, to create clusters that can be interpreted
as codewords in a dictionary.

The training data is modeled for each class as codeword
transition matrices based on probability Markov Models. For
classification, the incoming data is also modeled as proba-
bility transition matrixes based on Markov Models, which
are then compared to each training model. The resulting
classification is given by the training model that best fits
the transition matrix of the incoming data. This algorithm is
hereafter referred to as VQMM.

IV. EXPERIMENTAL SETTINGS

A. Hardware specifications

Our experiments were run on HEARBO, a humano-
id robot from Honda Research Institute Japan (HRI-JP)
(see Fig. 2(a)). HEARBO integrates a 16-channel omni-
directional microphone array on top of its head (see
Fig. 2(b)). All audio signals were synchronously captured
from the 16 channels, at a 16 kHz sampling rate. All recor-
dings and evaluation procedures were processed on an Intel
Core i7 quadcore PC at 2.3 GHz, with 16 GB of RAM.
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Fig. 2. HRI-JP humanoid robot HEARBO.

1See http://marsyas.info.
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B. Software specifications

All system’s modules were implemented and integrated
into HARK (HRI-JP Audition for Robots with Kyoto Uni-
versity). The robot control and communication were handled
by ROS (Robot Operating System). The whole system was
processed at time increments of 10 ms, using a Complex
window of 512 samples and 32% overlap (i.e., hop size of
160 samples) for computing the audio spectrum.

C. Auditory signals

1) Musical stimuli: In order to enable a baseline compa-
rison with state-of-the-art genre classification algorithms, we
tested oursystem with one of the most popular dataset used
in the MIR community, the ISMIR2004 genre classification
dataset [7]. This dataset is originally composed of 1458
full music recordings of 6 different musical genre classes
annotated by experts: classical, electronic, jazz-blues, metal-
punk, rock-pop, and world. We trimmed each recording to
30 sec extracted from the middle of each song. We used
all 1458 clips for training acoustic models under different
conditions, and selected 120 clips (20 from each genre)
where both algorithms scored 100% (using the F-Score
described in Section IV-E.1) under clean conditions for the
recognition tests.

2) Speech data: The speech data consisted of 8 audio files
with the utterances of 4 male and 4 female Japanese speakers
used in a typical human-robot interaction dialog. Each audio
file was constituted by a set of 236 different Japanese words
concatenated into continuous streams, with a silence gap of
≈1 sec in between them. Each was individually played at a
time.

D. Periodic dance motions

We measured the effect of ego-motion noise in the musical
genre recognition accuracy by using the same 3 periodic
dance motions used in [4]. Each of them was composed
of 2 key-poses interpolated (i.e., transited) during motion
generation. In order to maximize the disturbing effects of
the robot’s ego noise, the dance motions were designed to
simultaneously move 6 joints: the shoulders pitch and yaw,
and the elbows pitch (see Fig. 2(a)); each with a rotational
variation in the range of [10-20]◦, thus also maximizing the
number of transitions. The dance motions were continuously
generated and interleaved during recordings for generating
dance sequences with a uniform number of periodic repetiti-
ons of the 3 dances. The periodic dances were generated at
random tempi (i.e., random velocities) in the octave of 40 to
80 bpm, which represent the maxima motor-rate frequencies
achievable by our robot.

E. Evaluation criteria

In order to assess and compare the two algorithms integra-
ted in the system based on different preprocessing variants
and different auditory conditions, we performed a 10-fold
cross validation where we normalized the frequency of each
genre class per fold.

1) F-Score: We recurred to the classic F-Score to assess
the algorithms’ overall classification accuracy among all
genre classes, which is calculated for each fold as follows:{

F = mean[ fc, ... fC]
fc = 2× precisionc×recallc

precisionc+recallc

, (2)

where C is the number of genre classes, per-class precisionc
represents the fraction of music clips classified as class c
that were annotated as c, and per-class recallc represents the
number of music clips annotated as class c that were actually
classified as c. The overall F-Score is calculated as the mean
of the F-Scores of each fold.
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Fig. 3. Experiments for the four proposed real-world acoustic conditions
with increasing levels of noise complexity.

V. EXPERIMENTS AND RESULTS

As illustrated in Fig. 3, and akin to the experiments run
in [4], we created four real-world experimental conditions to
assess our musical genre recognition systems in incremental
levels of noise complexity:

• Experiment1: musical genre recognition under back-
ground noise.

• Experiment2: musical genre recognition under back-
ground and speech noises.

• Experiment3: musical genre recognition under back-
ground noise and ego noise from the robot dance
motion.

• Experiment4: musical genre recognition under back-
ground and speech noises and ego noise from the robot
dance motion.

Akin to [4], the musical stimulus was played from a
single loudspeaker standing at -60◦ and 1 m away from
the robot position in all experiments. The music signals
were recorded with decreasing Music-Signal-to-Noise Ratio
(M-SNR) among the four experiments, using the recor-
ding of experiment1 as a baseline: M-SNR= 1dB for
experiment2, M-SNR= 0dB for experiment3, and M-
SNR= −2dB for experiment4. For the experiments using
speech stimuli (i.e., experiment2, and experiment4) we
played it from a second loudspeaker standing at 60◦ and also
1 m away from the robot.

All recordings were processed in a noisy room environ-
ment with the dimensions of 4.0 m x 7.0 m x 3.0 m and a
Reverberation Time (RT20) of 0.2 sec.
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A. Acoustic models

Besides testing different preprocessing conditions, we te-
sted the recognition accuracy using acoustic models trained
a priori under different noise conditions:

• A0: original music clips, in clean conditions.
• A1: music clips captured by a single (frontal #1 see

Fig. 2(b)) microphone with background noise.
• A2: A1 with synthesized speech noise.
• A′2: music clips captured by a 16-channel microphone

array with background noise and synthesized speech
noise, refined by SSS.

• A3: A1 with synthesized ego noise.
• A′3: music clips captured by a 16-channel microphone

array with background noise and synthesized ego noise,
refined by SSS.

• A4: A1 with synthesized speech and ego noises.
• A′4: music clips captured by a 16-channel microphone

array with background noise and synthesized speech and
ego noises, refined by SSS.

For synthesizing speech and ego noises in the training
data, we used the data recorded under background noise
as reference and merged variations of the speech and/or
ego noises recorded individually without music. All models
where trained with all the 1458 30 sec music clips described
in Section IV-C.1.

B. Compared variants of the system

In order to demonstrate the capability of the proposed
system under the presented experimental conditions, we
evaluated and compared the genre recognition accuracy of
both algorithms using different input signals, resultant from
different preprocessing strategies:

• T0: original music clips, in clean conditions.
• Tx: audio captured from a single (frontal #1 – see

Fig. 2(b)) microphone under different noise conditions,
where x represents the index of the experiment.

• T′x: separated audio signal, captured from a 16-channel
microphone array, where x represents the index of the
experiment.

All test recordings for assessing the musical genre recogni-
tion accuracy used the 120 music clips selected as described
in Section IV-C.1.

C. Results

Fig. 4 depicts the baseline genre recognition accuracy of
both algorithms using a 10-fold cross validation of the whole
1458 files’ dataset under the different experimental conditi-
ons. In these results we considered the same conditions of
the recognition across all experiments.

Fig. 5(a) and Fig. 5(b) respectively depict the genre
recognition accuracy of the SVM-based and MM-based
algorithms using a 10-fold cross validation of the 120 music
clips recorded under the different experimental conditions,
and regarding different pre-processing auditory conditions. In
these results we considered multiple acoustic models trained
under different noise conditions.
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Fig. 4. Baseline musical genre recognition accuracy under different expe-
rimental conditions using acoustic models trained under the test conditions.

Fig. 6(a) and Fig. 6(b) illustrate the confusion matrix
among all six genre classes when classifying respectively
with SVM and VQMM under the A’4 condition.

Ultimately, Fig. 7 illustrates the results of the SVM and
VQMM algorithms under the A’4 condition by using time-
windows of different sizes to test the real-time accuracy of
these algorithms to different amounts of information. The
results were measured by splitting each 30 s instance into
30/W chunks, where W is the size of the considered time-
window (in secs), and classifying each chunk individually.

VI. DISCUSSION

A. On the use of noisy acoustic models

The baseline results depicted in Fig. 4 revel that, when
the acoustic models exactly match the test conditions, the
recognition accuracy is statistically equivalent among all ex-
perimental conditions. Despite the conditions, both algorith-
ms slightly decreased on average solely 4.1 pp (percentage
points) when compared to their 75.1% average accuracy
under the clean audio files.

Fig. 5 depicts that the use of acoustic models based on
the clean music clips results in extremely low genre reco-
gnition accuracies when tested under all noise conditions,
by on average 43.3% among both algorithms. Yet, when the
acoustic models are trained under synthetic noise conditions
that partially simulate their real-world test equivalents, the
results tend to improve in proportion to the degree of
similarity of both training and test conditions. These results
are maximized when the synthetic conditions used to train the
acoustic models simulate the real-world test conditions, by
improving the results achieved with clean acoustic models
by on average 34.8 pp, despite the harshness of the noise
conditions.

B. On the noise robustness to different conditions

By looking into Fig. 4, the disturbing effect of background
noise is rather small and on average in the order of 8.9 pp for
both algorithms, when considering acoustic models trained
under the same condition. As expected, the introduction of
speech noise in the test conditions increased the disturbing
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Fig. 5. Musical genre recognition accuracy under different experimental
conditions, considering different preprocessing variants and using acoustic
models also trained under different noise conditions.
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Fig. 6. Confusion matrix among musical genres, under A’4 conditions.

effect in the performance of both algorithms, by decreasing
their musical genre recognition accuracy by an average
13.4 pp, although considering acoustic models trained with
synthetic speech noise. The introduction of ego noise in
the test conditions caused a slightly bigger decrease in the
recognition accuracy of both algorithms, in the order of
an additional 2.0 pp, when using acoustic models trained
with synthetic ego noise. Ultimately, the disturbing effect
when simultaneously introducing speech and ego noises in
the recordings caused an average decrease of 17.8 pp below
the accuracy under the experiment1 conditions, when
considering acoustic models trained with synthetic speech
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Fig. 7. Real-time accuracy to time-windows of different sizes, under A’4
conditions.

and ego noises.

C. On the use of Sound Source Separation

The results depicted in Fig. 4 reveal that the use of
SSS is able to improve the genre recognition accuracy
by on average 10.1 pp, when comparing to their single
channel equivalents and when considering acoustic models
trained in similar synthetic separated noise conditions. The
contribution of SSS to this improvement is rather relevant
when in the presence of directional noise, as is the case of
speech. This is corroborated by the increasing improvement
of using SSS under experiment2 and experiment4 when
compared to experiment3, by on average more 9.4ṗp
among both algorithms. Under the most harsh conditions of
experiment4, the recourse to SSS and an acoustic model
trained in equivalent synthetic conditions enabled an average
recognition improvement in the order of 6.9 pp among both
algorithms in comparison to their single channel equivalents.

D. SVM vs. MM

The baseline results depicted in Fig. 4 for both algorithms
under the clean audio files suggest that both perform stati-
stically equivalent, with a slight outperformance of the SVM
by 2.2 pp. Yet, when directly comparing the baseline and
experimental results of both algorithms under all real-world
conditions, the SVM outperforms the VQMM by on average
6.5 pp. This suggests that although both are equivalently
accurate, the SVM is more robust to noise than the VQMM,
probably due to the reliance of VQMM on codebooks, which
seem more prone to noise distortions.

E. Genre Confusion and Real-Time Performance

Not unexpectedly, by looking into Fig. 6, we that verify on
A’4 conditions the most typical confusions regard classical
with world and jazz-blues, and metal-punk with rock-pop.
These are equally observed both with SVM (Fig. 6(a)) and
VQMM (Fig. 6(b)).

Regarding the real-time accuracy of both algorithms under
different amounts of data, by looking into Fig. 7 we verify
different behaviors between the SVM and VQMM algorith-
ms. Although the SVM enables better offline results, when
in the presence of the whole 30 sec instances, the VQMM
seems more robust to small amounts of data. This might be
justified by the reliance of VQMM on 12xW dimensional
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feature matrixes while SVM relies on the same amount of
data collapsed into a single 24-dimensional vector of means
and standard deviations of the analyzed features.

VII. ROBOT DANCING WITH STYLE DEMONSTRATION

In order to demonstrate the applicability of the proposed
system in a dancing robot capable of reacting to the genre
of a continuous musical stream on-the-fly with style-specific
dance motions, we designed a live robot dancing scenario in
the same real-world environment considered in the assess-
ment of the system (see Section V).

This robot dancing scenario considered all the following
conditions (which replicate A’4):

• Music played from a speaker standing 1 m away from
the robot from its back (180◦) direction.

• Audio captured from the robot single back (#8) micro-
phone, in frontal line to the music source.

• Use of continuous music stream composed of 10 music
clips, selected from the 120 files used in the system
assessment, and concatenated without any gaps to re-
produce unexpected changes of the musical genre.

• Real-time musical genre recognition using VQMM for
fast live adaption to changes in the musical genre. To
achieve such real-time processing, we followed Fig. 7
and considered audio chunks of 3 sec processed without
overlap, and respond also every 3 sec with the recogni-
zed musical genre.

• Six different periodic dance motions, composed of 2
interleaving key-poses as described in Section IV-D, and
each one matching their respective musical genre.

• Moving head in all dance motions to interchange the
direction of the music source in relation to the back
microphone.

• Periodic dance motions performed at random tempi in
the interval of [40-180] bpm.

A video with excerpts of this robot dancing demonstration
is sent in attachment.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the integration of genre reco-
gnition in a dancing robot with embedded microphones to
enable it to recognize the genre of a musical piece while
moving in a real-world noisy scenario. For this purpose, we
assessed and compared two state-of-the-art musical genre
recognition algorithms under different real-world noisy envi-
ronments of increasing complexity. The results demonstrate
that an accurate and robust musical genre recognition system
demands the use of acoustic models trained in matching
noise conditions. Also, the additional use of SSS as a
preprocessing is able to improve the algorithms’ accuracy by
a total average of 43.6 pp under the most harsh conditions,
when compared to tests run on single channel using acoustic
models trained in clean conditions. In these conditions, when
considering SSS, matching acoustic models, and an SVM
genre classification algorithm, one could achieve a top mean
genre recognition accuracy of 87.3%. Envisioning real-time
genre recognition on the same conditions, VQMM was able

to perform up to 58% accuracy by solely relying on 3-sec
time-windows of music data without overlap.

Ultimately, a demonstration session confirms the applica-
bility of the proposed integration for genre-adaptive dancing
robots in real-world noisy environments.

In the future, and akin to [4], we should consider ego
noise suppression as a preprocessing to genre recognition
under ego noise from the robot dance motion. We should
also investigate universal acoustic models for genre classifi-
cation under multiple noise conditions. Ultimately, we should
consider novelty detection strategies in order to enhance the
reaction time to changes of the musical genre in continuous
music streams, and compare the reaction time and real-time
performance of the system under different conditions.
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