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Abstract— We begin to bridge the gap between high-level
motion planning and execution by adopting models to abstract
the complicated skid-steer vehicle dynamics and evaluating
their suitability as motion predictors for a feed-forward control
framework. We consider three kinematic motion models and
a drivetrain model in experiments on two surface types with
a small tracked vehicle. We perform statistical analysis of the
predictive accuracy of these models when used to create optimal
open-loop plans for a set of canonical maneuvers and discuss
the applicability of these models for a closed-loop control
framework.

I. INTRODUCTION

Though it is perhaps the simplest drive design to imple-
ment, the humble skid-steer ground vehicle platform actually
represents an incredibly complex dynamic system that can
only by fully understood by delving into the murky realms
of contact mechanics and shear deformations. Though we
often like to analyze the system as if it touched the earth
with two point ground contacts, the fact that it does not
means that any turn can only be accomplished by some
surface sliding across another. Even for the canonical case of
sliding on homogenous surfaces, we must deal with models
involving empirical parameters and discontinuous effects;
if we consider sliding over granular media such as dirt or
gravel, we must begin to think about continuum mechanics.

In reality, there is a large gap between the abstract treat-
ment of vehicles in a kinematic planning framework (e.g.
[1]) and the actual execution of planned trajectories. These
issues are commonly avoided by just moving very slowly so
that the vehicle acts more like a purely kinematic system,
but we want to be able to plan and act with the full speed of
our vehicles, motivated by any number of requirements on
operation tempo or scale.

One argument would be to rely on feedback to avert
the issue of unmodeled dynamics and accurately track our
required trajectories. We contend that this is not the complete
answer for three reasons:

1) There is no obvious error signal available at the rate
and scale of a single, rapid maneuver: GPS errors are
too large to be helpful on the scale of meters; visual
odometry is slow and dependent on favorable, feature-
rich environments; accurate inertial navigation is too
expensive and bulky; and odometry is subject to the
same dynamic errors that we are trying to use feedback
to counteract!
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2) Feedback assumes that we approximately understand
the relationship between control signals and error dy-
namics and that this relationship can be linearized. In
reality, vehicle platforms have motor saturation, time
delays, and velocity profiling on top of the nonlinear
effects of terrain interaction.

3) Trajectory tracking for nonlinear systems works best
when incorporated into a two-degree-of-freedom con-
troller [2] that requires feed-forward planning in addi-
tion to feedback.

Having a good feed-forward model also lets us broaden
our considerations to include optimality and use techniques
such as receding horizon control [3].

In this paper, we begin to bridge the gap between high-
level trajectory generation and execution by adopting models
to abstract the complicated skid-steer vehicle dynamics and
evaluating their suitability as motion predictors for a feed-
forward control framework. After discussing the related
work, we present the modeling methodology and then apply
it to developing predictive kinematic motion models for a
treaded skid-steer vehicle on two different experimental sur-
faces. By comparing to ground truth, we perform statistical
analysis of the predictive accuracy of these models when
used to create optimal open-loop plans for a set of canonical
maneuvers. Finally we conclude with a discussion about
the applicability of these models for a closed-loop control
framework.

II. RELATED WORK

Though fully understanding the motion of a skid-steer
vehicle requires modeling the dynamics of terrain interaction,
some authors have presented useful kinematic approxima-
tions. Understanding and estimating the kinematic slip is
performed for a four-wheeled vehicle in [4] and for a tracked
vehicle in [5]. Central to the model is the concept that turning
motions with slip have instantaneous centers of rotation
that are located forward or backward from the centerline
of the platform, in contrast to the ideal differential drive
model. Other models treat the slip as simple ratios between
wheel/tread speed and effective travel speed [6] or velocity-
dependent disturbances with longitudinal, lateral, and angular
components [7].

Simplified dynamics are studied in [8] after discussion
of kinematic approximations. A more thorough treatment
of the vehicle-terrain interaction is given in [9] for the
case of treaded vehicles driving on loose dirt/sand and in
[10] for wheeled vehicles in a variety of soil types. [11]
summarizes decades of study in terramechanics for off-road
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Fig. 1. Frames and coordinates of our planar treaded robot. The ideal
differential drive velocity is vx forward and vθ turning, but we correct
these values with a kinematic slip model to find the more accurate velocity
v(vx, vθ, α).

wheeled and tracked vehicles and provides what is perhaps
the only complete dynamic model for a turning tracked
vehicle, though it is for quasi-static motion and may not
be applicable to small platforms.

It is important to note that some of these works explicitly
seek to perform online estimation of the slip models by using
an IMU [4], differential-GPS [7], or visual odometry [12].

The work of [13] takes the approach of using a dis-
continuous Coulomb friction model to study the stick-slip
behavior of a four-wheeled skid-steer vehicle and finding
transition relations that enable the resulting hybrid system
to match periodic position measurements. Because the entire
tread is slipping during motion, it is not directly applicable,
but suggests that it is not impossible to build discontinuous
dynamic models in a real system.

III. METHODOLOGY

Our system model must be composed of two separate
pieces: the interaction between tread and ground to produce
motion, and the platform dynamics at work when turning
commanded velocities into actual tread velocities. We choose
to focus here on developing kinematic approximations to
vehicle slip rather than more expressive dynamic models
to see how well they perform before increasing the model
complexity.

A. Kinematic Motion Models

We treat the effects of unmodeled vehicle dynamics,
including tread-terrain interactions, by incorporating cor-
rections to the effective velocity of the platform. These
corrections are established by experimentally fitting relevant
models from the literature [8], [12] to a series of maneuvers
performed over a range of speeds and turning rates. By
comparing the difference between the predicted and actual
final position at the end of each motion, we show the value
of using these corrections to help remove the systematic bias
from the trajectory integration.

The frames and coordinates are summarized in Fig. 1.
The position of the robot is found by integrating the planar
kinematics to find position:

TABLE I
VELOCITY MODELS USED IN KINEMATIC EQUATIONS

Model Equation |α|

Ideal Differential Drive v =

vx0
vθ

 0

Effective Wheel-Base [8] v =

 vx
0

α · vθ

 1

General Kinematic Slip [12] v =

vx0
vθ

 + C(vx, vθ) · α 9

ρ̇ =

ẋẏ
θ̇

 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


︸ ︷︷ ︸

A(θ)

v(vx, vθ, α) (1)

Here α is our set of kinematic correction parameters and
vx and vθ are the forward and turning velocities we would
expect to achieve under an ideal differential drive model
given our tread velocities. For a platform tread width of B,
these can be found from the left and right tread velocities
(vL and vR) as:

vx =
vL + vR

2
vθ =

vR − vL
B

The three kinematic models considered are summarized
in Table I. The ideal differential drive model treats the
treads as point contacts with the ground and assumes they
do not slip. In the Effective Wheel-Base model [8], we
consider that rolling resistance from the treads skidding over
the ground during turning can reduce the effective turning
velocity and scale it accordingly. The authors of [8] point
out that this is equivalent to considering an ideal differential
drive model with an effectively larger wheel base. Lastly, in
the General Kinematic Slip model (our modification of the
model presented in [12]), we consider that slip conditions
may lead to velocity changes in both the longitudinal and
lateral directions. Following the authors of [12], we allow
the correction to be velocity-dependent by defining:

C(vx, vθ) =

cx cy
cθ


3×9

(2)

cx =
[
vx |vθ| vx|vθ|

]
cy =

[
vx vθ vxvθ

]
cθ =

[
vx vθ vxvθ

]
To fit values of α for the models, we would ideally need

to establish motions where we can compare the expected
velocity and actual velocity under a wide range of conditions.
However, since we lack the sensor capabilities to accurately
measure platform velocities in the field, we settle instead
for studying the perturbative effect of the parameters on the
integrated trajectory in the spirit of [14]. As presented in
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[12], this could be done by looking at a larger motion where
we can get accurate relative pose information over extended
time-slices (such as by visual odometry or a tactical-grade
INS) and then fitting parameters to minimize the error
between expected final pose and actual final pose. For this
effort, we chose to use a motion capture system for the sake
of establishing an accurate baseline to compare these more
field-appropriate techniques to in the future.

We seek to choose α to minimize the squared-distance
between our measured trajectory, ρm(t), and our predicted
trajectory, ρ(t;α), found by solving Eq. 1 from start time
t0 to end time t1 with parameter values α. The objective
function is:

f(α) =
1

2

∫ t1

t0

‖ρ(t;α)− ρm(t)‖2dt (3)

We can solve this more quickly by utilizing the results
of [14] to find the sensitivity of the integrated trajectory to
the parameters. The crux of the technique lies in recognizing
that the derivative of Eq. 1 with respect to the parameters:

ρ̇(t) = A(θ)v(t)

∂ρ̇

∂α
=

d

dt

∂ρ

∂α
=
∂(Av)

∂ρ

∂ρ

∂α
+A

∂v

∂α

has special structure that allows us to explicitly evaluate
the linear transition matrix, Φ(t, t0), and write the derivative
of the pose as a function of time:

∂ρ(t)

∂α
= Φ(t, t0)

∂ρ(t0)

∂α
+

∫ t

t0

Φ(t, τ)A(θ(τ))
∂v(τ)

∂α
dτ (4)

With this relationship, we can use the Jacobian of Eq. 3
(assuming that all poses are relative to the trajectory start so
ρ = ρm = 0),

∂f

∂α
=

∫ t1

t0

[
(ρ− ρm)

T
∫ t

t0

Φ(t, τ)A(θ(τ))
∂v(τ)

∂α
dτ

]
(5)

in a nonlinear least-squares technique (i.e. Levenberg-
Marquardt) to quickly arrive at a fit. Evaluation of Eq. 5
is done efficiently by recognizing that at each time step of
the evaluation of the outside integral, we can reuse the inside
integral from the last time step and push it through Eq. 4 with
the addition of the next piece of the inside integral.

B. Drive-System Modeling

The kinematic motion models presented above assume
known tread velocities vL, vR as measured based on encoders
situated on the motors themselves. This is suitable when
the goal is to accurately estimate the platform motion –
the so-called odometry problem. We are instead interested
in predicting the platform motion given time-varying control
inputs to the treads. While instantaneous tread-speed models
that rely on the underlying closed-loop system to match
control inputs may be suitable for certain low-speed regimes,
we are focusing on operating in high-speed regimes that

Delay & Input 

Shaping

Speed Controller

Kp + sKd +
Ki

s

Motor

K

(b+ Js)(Ls+R) +K2

vc(t) vd(t)

v(t)

Tread speed

Fig. 2. Block diagram of the input-output system for the left and right
treads

approach the capability limits of the platform. Thus, we must
consider dynamic models for the input-output response of the
full powertrain.

We can model a tracked or skid-steered vehicle with
two independent closed-loop motor systems that have com-
manded tread velocity vcL(t), vcR(t) as input and measured
velocity vL(t), vR(t) as output. In general, we consider a
drive-system consisting of three components as depicted in
Fig. 2: (1) command-velocity time-delay, shaping, and/or
profiling, (2) a closed-loop control system, e.g., proportional-
integral-derivative (PID) control, and (3) the second-order
system describing the electrodynamic system including the
direct-current motors and gearing.

Time-delay of the input signal to each motor controller
is the result of network or communication delays incurred
between the algorithms performing trajectory generation and
the motor controller itself. We model this delay by assuming
that the input to the closed-loop motor control system vd(t)
will be delayed from the commanded input vc(t), i.e.,
vd(t) = vc(t− τ). Other input shaping such as acceleration
and velocity limits are found through system specifications
or experimental identification.

We assume a PID control loop is working to achieve the
desired motor velocity. Performing standard transfer function
analysis, we can model the dynamic system that results from
a PID control loop wrapped around a direct current (DC)
motor. The PID control transfer function is given by

C(s) = Kp + sKd +
Ki

s
(6)

where the controller proportional, integral, and derivative
gains are given by Kp,Ki,Kd respectively. The DC motor
transfer function is

M(s) =
K

(b+ Js)(Ls+R) +K2
(7)

with parameters for the moment of inertia of the rotor
(J kg m2), the viscous friction constant (b N m s), the electri-
cal resistance (R Ohm), and inductance (L H). The force and
motor torque constants are equal and given by K V/rad/s or
K N m/Amp. The transfer function for the full closed-loop
system is then

C(s)M(s)

1 + C(s)M(s)
. (8)

This model can be used to generate differential equations
which can be simulated for given system parameters and
control inputs.
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Fig. 3. Examples of the parameterized control inputs

C. Trajectory Design

Optimization-based trajectory design is the process of
minimizing a cost function defined over the vehicle trajectory
ρ(t) by choosing time-varying control inputs u(t), t ∈ [0, tf ].
While trajectory design or motion planning methods that
search lattices of states induced by discrete sampling over
control inputs [1] are popular in recent literature, we are
more interested in trajectory design on the continuous space
of control input functions.

Consequently, we adopt the general strategy presented by
Howard and Kelly [15] in which the control input function
is parameterized u(t;p) and we seek to minimize a cost
functional Ψ(p) which will generally be defined as an
integral along the predicted path of the vehicle. For this
work, we are interested in platforms that have control inputs
u =

[
vx, vθ

]T
but we will parameterize our input function

as u(t) =
[
vx(t), κ(t)

]T
where κ(t) = vθ(t)/vx(t) is the

curvature of the path. Using curvature rather than angular
velocity directly allows us to decouple the shape of the path
and the desired speed along the path. While this decoupling
breaks down in light of the slip models presented in Sec. III-
A, we have observed that it does improve the performance
of numerical optimization.

Again from [15], we consider two forms of time-varying
parameterized functions for the components of u(t). First,
we consider a basic trapezoidal velocity profile as depicted in
Fig. 3(a) with parameters

[
v0, a0, vtrav, af , vf

]
representing

the initial velocity, initial acceleration, traveling velocity,
final acceleration, and final velocity respectively. We also
rely on a spline-based representation of control input where
the parameters are a set of evenly spaced knot points[
k0, k1, . . . , kN

]
as depicted in Fig. 3(b).

For the purposes of this work, we assume that a desired
trajectory for the platform is given ρd(s)∀ s ∈ [0, sf ] and
we wish to track it as closely and quickly as possible. That
is

Ψ(p) = wttf + wp

∫ tf

0

min
s
‖ρ(t)− ρd(s)‖ dt (9)

where weights wt and wp favor the performance, i.e., mini-

Fig. 4. Our treaded vehicle on our two experimental surfaces: dusty
concrete and artificial turf.

mizing time to reach the goal, or safety, i.e., minimizing the
deviation from the desired path, respectively. The optimiza-
tion problem to be solved can then be written

min
p

Ψ(p)

subject to ρ(tf ) = ρd(sf ) (10)

ρ(t) = ρ(0) +

∫ t

0

ρ̇(τ) dτ.

There are numerous ways to address the optimization prob-
lem in (10). One approach is to achieve vehicle-model
independence by relying on numerical estimates of the partial
derivatives necessary to compute the system Jacobian and
Hessian with respect to the input parameterization and apply
standard gradient-descent methods [15]. From the point of
view of a practical and efficient implementation, we rely on
the NLOpt library [16]. In particular, we employ the con-
strained optimization by linear approximations (COBYLA)
method [17]. Problems with time horizons of 4 s and pa-
rameter vectors of dimension 20 are solved between 0.5 and
1.0 s.

As discussed in [15], the speed of this nonlinear opti-
mization is highly dependent on the initial conditions for the
parameter vector p. We shall see that in our experiments,
this is trivially satisfied since we start with time-varying
control inputs that produce the desired path under an ideal
differential drive model.

IV. EXPERIMENTS

All experiments for this work were conducted with the
iRobot Packbot [18] as depicted in Fig. 4. The Packbot is a
ground platform equipped with a skid-steer tracked drive sys-
tem with on-board computation. The base platform weighs
18 kg and is capable of 2 m/s speeds. The robots used in our
experiments are additionally equipped with an ad hoc 802.11
wireless radio, Microstrain 3DM-GX2 inertial measurement
unit (IMU), Hokuyo UTM-30LX scanning laser range finder
with 30 m range, and Quad-Core Intel i7 computing payload.
For the purposes of modeling and verifying the performance
of different kinematic slip models before implementation in
the field, we utilize a high-quality VICON motion capture
system [19] to provide ground-truth pose measurements in a
laboratory setting.
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Fig. 5. Commanded (green), actual (blue), and modeled (purple) tread
velocity after parameter identification

TABLE II
DRIVE-SYSTEM MODEL PARAMETERS

Input shaping
τ = 0.049 ms amax = 5.5 m/s2

Control system
Kp = 56.49 Ki = 1.11 Kd = 2.77

Motor system
J = 0.059 kg m2 R = 0.254 Ohm L = 0.253 H
K = 0.0294 N m/Amp b = 0.456 N m s

We procede with experimental results detailing the model
identification and parameter selection for the dynamic motor
model presented in Sec. III-B and the kinematic motion
models presented in Sec. III-A. With model parameter values
that improve the ability to predict vehicle motion given
control-input functions, we show how optimization-based
trajectory generation techniques can be used to improve the
performance of a high-speed trajectory tracking application.
We demonstrate all of these results on two surfaces: smooth
concrete and artificial turf as depicted in Fig. 4.

A. Drive-System Model Identification

The Packbot utilizes two independent speed controllers
for the left and right treads. Parameter identification of
the closed-loop drive-system is accomplished by analysis
of the commanded input vcL(t), vcR(t) and the measured
tread speeds vL(t), vR(t). By commanding the tread with
a step input and measuring the response, we can charac-
terize the time-delay τ and acceleration limits amax. Over
100 experimental trials, we measure the time between the
commanded step input and the first non-zero measured tread
speed to estimate delay τ = 0.049 s. Examining the initial
response of the tread velocity to a step input, we find a linear
response indicating an acceleration limit of approximately
amax = 5.5 m/s2.

We then construct a set of time-varying control inputs that
satisfy the maximum acceleration constraint imposed by the
Packbot velocity shaping and again measure the tread speed
time response. Using the commanded input and measured
output, we can optimize the parameters of the second-order
model described in (8) with gradient-free methods such as
Nelder-Mead given reasonable initial conditions. Figure 5
depicts the actual motor response to a commanded input
signal along with the simulated output of the second-order
system (8) using optimized parameters in Table II.

B. Kinematic Slip Model Identification

In order to evaluate the kinematic slip models presented in
Sec. III-A, we execute a series of time-varying control inputs,

TABLE III
POSE ERROR STATISTICS FOR DIFFERENT MODELS AND SURFACES

∆ρx (m) ∆ρy (m) ∆ρθ (rad)
Model µ σ2 µ σ2 µ σ2

C
on

cr
et

e Ideal -0.762 0.248 -0.115 0.372 -0.043 0.768
Eff.WB -0.019 0.016 -0.092 0.028 -0.006 0.026
Gen.KS -0.011 0.014 -0.015 0.007 -0.016 0.021

Tu
rf

Ideal -0.371 0.056 -0.021 0.088 -0.006 0.166
Eff.WB 0.023 0.009 -0.043 0.007 0.019 0.009
Gen.KS 0.016 0.008 -0.002 0.006 0.002 0.007

integrate vehicle motion according to the kinematic models
in Table I and the measured tread speeds, and compare the
resulting vehicle pose with accurate measurements from an
external motion capture system. To ensure that the sample
trajectories adequately represent all possible control inputs,
we employ a trapezoidal profile to specify both the linear
velocity and the curvature of the input, i.e.,

p =
[
v0, a0, vtrav, af , vf , κ0, aκ0, κtrav, aκf , κf

]
with v0 = vf = κ0 = κf = 0.0, a0 =
af = 5 m/s2, aκ0 = aκf = 1 1/m s2. The travel-
ing velocity and curvature are swept through all com-
binations of vtrav ∈

[
0.5, 0.6, . . . , 2.0

]
m/s and κtrav ∈[

± 1
4 ,±

1
2 ,±

3
4 ,±1,±1 1

2 ,±2
]

1/m subject to a maximum
tread velocity of 2 m/s. The time-length of each control
input was chosen so that the path length was approximately
4 m. Each time-varying control input was executed twice,
resulting in a set of over 300 trajectories, accumulating nearly
1 km of data.

Given this large set of trajectory data with measured tread
speeds and accompanying ground truth positions, we apply
the methods described in Sec. III-A to learn parameters
and compare the performance of the different kinematic
motion models. The value of using these kinematic models
is demonstrated in Fig. 6, where we show the final pose
error, ∆ρ = ρ(t1) − ρm(t1), for each of the kinematic
models applied to the measured tread velocities of all of
the trajectories captured while driving on the concrete floor.
Each point shows where the system thought the robot ended
up relative to where it actually ended up according to the
motion capture system. The 9-parameter General Kinematic
Slip model gives a tight, near-Gaussian distribution with
little bias. The Effective Wheel-Base model has a much
improved bias, but the distribution appears non-Gaussian.
Nevertheless, it is clear that even this 1-parameter model
provides substantial benefits over the ideal differential drive
model. Table III enumerates the mean and variance of the
final pose error for each model type on the two surface
types tested – concrete and artificial turf. The resulting model
parameters are in Table IV.

C. Open-loop Trajectory Tracking

Given a full system model that accurately predicts the
motion of the vehicle for a given time-varying control input,
we demonstrate the improved performance of optimization-
based trajectory generation. In particular, we consider the ap-
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TABLE IV
EXPERIMENTALLY-DETERMINED SLIP PARAMETERS FOR TWO MODELS ON TWO SURFACES

Effective Wheel-Base: α General Kinematic Slip:

 α1 α2 α3

α4 α5 α6

α7 α8 α9


Surface Left Right Left Right

Concrete 0.7061 0.6471

 −0.0022 0.0355 −0.0386
0.0409 −0.0173 −0.0602
−0.0549 −0.2785 0.0605

  −0.0035 −0.0525 −0.0082
0.0165 −0.0155 −0.0368
0.0435 −0.3126 0.0245



Turf 0.7938 0.7758

 −0.0162 −0.0053 0.0384
0.0102 0.0160 −0.0323
0.0130 −0.2001 −0.0297

  −0.0044 −0.0277 0.0090
0.0245 0.0216 −0.0427
−0.0080 −0.2615 0.0492



∆ρθ

∆ρx

∆ρy

Fig. 6. Comparison of error in final trajectory pose for three different
kinematic models. The upper plot shows error in orientation and the lower
plot shows error in translation. The ellipses signify the 2-σ covariance of
the data, though really only the results of applying the General Kinematic
Model have a distribution that appears it could be Gaussian.

plication where a global motion planning algorithm produces
a path that is obstacle-free and satisfies certain high-level
objectives such as achieving a particular waypoint. While
modern motion planning algorithms are designed to generate
kinematically feasible paths that are derived from achievable
control inputs, they do not typically account for complete
models of the vehicle motion such as those presented above.

In the following results, we aim to address some of the
questions that arise when attempting to compute a time-
varying control input that produces vehicle motion to match
a path derived with ideal or simplified motion models.
We present three canonical trajectories generated with the
trapezoidal velocity profile, spline-based curvature profile,
and ideal differential drive model: a sharp left turn, a sharp

TABLE V
CANONICAL REFERENCE INPUTS

pv = [0 m/s, 5 m/s2, 1 m/s, 5 m/s2, 0 m/s]

Input parameters tf v κ0 κ1 κ2 κ3 κ4 κ5
pL 4 s pv 0 0 1.5 0 0 0
pR 4 s pv 0 0 −1.5 0 0 0
pS 6 s pv 0 0 −1 0 1 0

right turn, and s-curve. The parameter vectors for each
trajectory’s control input are in Table V.

Given the path defined by each canonical trajectory, we
compute optimal time-varying control inputs using spline-
based profiles for velocity and curvature as per the method
described in Sec. III-C. For each trajectory type, we compute
optimal control inputs for the ideal differential drive model,
the Effective Wheel-Base model, and the General Kinematic
Slip model. That is, we find inputs that minimize (9) with
wt = 0.5 and wp = 1.0 in order to follow the desired path as
closely and quickly as possible. Each of these control inputs
is executed 20 times to observe the statistical behavior. The
resulting trajectories according to the motion capture system
are depicted in Fig. 7.

There are many metrics that can be used to evaluate the
performance of a trajectory optimization and tracking appli-
cation. Of primary interest is the maximum path deviation
defined as

max
t

min
τ
‖ρm(t)− ρd(τ)‖dt

where ρd(t) is the desired path and ρm(t) is the measured
path. Measuring the maximum path deviation for each of 20
trials across the three canonical trajectory types, we can com-
pare the performance of the ideal differential drive model,
the Effective Wheel-base model, and the General Kinematic
Slip model. The distribution of maximum path error for
trials conducted on the concrete surface is depicted in Fig. 8
(computed by automatic kernel density estimation [20]) and
statistical values are in Table VI. Maximum deviation from
the desired path is drastically reduced when moving away
from the ideal differential-drive model. Additional improve-
ment is observed when moving from the Effective Wheel-
base to the General Kinematic Slip model.

Of secondary interest in evaluating optimized control
inputs for the canonical trajectories is the minimization of
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Fig. 7. Execution of canonical trajectories on concrete with optimized control inputs using the ideal differential drive model ((a), (d), (g)), the Effective
Wheel-Base model ((b), (e), (h)), and the General Kinematic Slip model ((c), (f), (i)). The thicker green path depicts the desired trajectory, the dashed
red path depicts the trajectory optimized under the given motion model, and the thin black paths depict the actual paths according to the motion capture
system.
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Fig. 8. Distribution of maximum path deviation when executing optimized
control inputs for the canonical trajectories on the concrete surface. Each
distribution is the result of 20 trials on each of the three trajectory types.

TABLE VI
MAXIMUM PATH DEVIATION ON CONCRETE AND GRASS

Ideal Differential Drive
Concrete Grass

Mean Max Std. Dev. Mean Max Std. Dev.
0.61 0.93 0.16 0.90 1.50 0.15

Effective Wheel-Base
Concrete Grass

Mean Max Std. Dev. Mean Max Std. Dev.
0.23 0.58 0.14 0.74 1.13 0.18

General Kinematic Slip
Concrete Grass

Mean Max Std. Dev. Mean Max Std. Dev.
0.18 0.53 0.10 0.77 1.13 0.20

time necessary to complete the trajectory. Vehicle speed
while traversing each trajectory is limited by many factors
including the saturation of individual tread speeds, accel-
eration limits, and transverse slip velocities incurred when
considering the General Kinematic Slip model. On average,
the optimization process was able to find trajectories that
were 70%, 80%, and 79% the time of the original nominal
trajectory for the ideal differential drive, Effective Wheel-
base, and General Kinematic Slip models respectively. An
example of an optimized control input for the sharp left turn
trajectory is depicted in Fig. 9.
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Fig. 9. Optimized control inputs v(t) and κ(t) for the sharp left turn using
the General Kinematic Slip model. The dashed line in each plot represents
the nominal control input and the solid line is the optimized input from
(10). Note the increased commanded curvature to account for tread slip and
the simultaneous decrease in commanded forward velocity to avoid motor
saturation.

Though the maximum path deviation is improved on
average using model-based trajectory optimization for the
artificial turf surface, e.g., see Table VI , the improvement is
not as clear as the concrete surface. We hypothesize that this
is due to having inadequate samples of high-velocity, high-
curvature trajectories in the training set used to fit kinematic
motion model parameters. Good performance on the concrete
surface may be due to a more linear slip phenomena that
extrapolates better outside the training regime. This is a topic
we will address in future work as it has many implications
with respect to the choice of model, necessary training, and
generality to new surface types.

V. CONCLUSION

This work aims to provide a clear guide towards the
modeling, system identification, and implementation of a
system for enabling high-speed navigation on small tracked
vehicles. We provide an overview and analysis of state-of-
the-art kinematic motion models for this class of vehicle
along with the dynamic models necessary to accurately
predict the response of the motors, i.e., tread velocities, and
the resulting vehicle motion. This analysis was conducted
to establish baseline performance and evaluate the utility of
more complicated dynamic slip models in the future.

Through extensive experimentation, we fit parameters for
the Effective Wheel-Base and General Kinematic Slip mod-
els and provide statistical evidence towards their increased
accuracy in predicting vehicle motion. We then go a step
further and use these more accurate models in a trajec-
tory optimization framework to design control inputs that
compensate for the effects of control system delay, motor
dynamics, and tread slip.

In comparing the performance of the Effective Wheel-
Base and General Kinematic Slip models, we note that a
significant improvement in model prediction is to be had
with the addition of a single parameter. In fact, the Effective
Wheel-Base parameter is instantaneously observable via an-
gular rate measurements from an IMU and lends itself well to
online estimation [6]. This design trade-off over slip model
complexity and performance is certainly a subject of future
study.

Finally, we note that while this work focuses on demon-
stration of motion model improvements with trajectory op-
timization and open-loop execution, we do not advocate for
an open-loop framework. Instead, we see this work as a first
step towards a realistic implementation of a robust system for
high speed navigation of the large class of tracked and skid-
steered vehicles. We are confident that even a low-complexity
slip model such as the Effective Wheel-Base model offer
enough improvement to make closed-loop optimal trajectory
generation feasible.
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