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Abstract— This article presents the implementation and ex-
perimental validation of a control system dedicated to human
robot physical interaction during object handovers. Our control
law defines the trajectory of the robotic arm towards a
previously unknown handover location based on the Dynamic
Movement Primitives formalism adapted for human robot
object handover. The control law was deployed on a Kuka
Light-Weight Arm equipped with the Azzurra anthropomor-
phic hand. We employed an industrial-like setting involving
three different human postures for object handover in order to
evaluate the performance and user experience of our control law
and its generalizability. The evaluation was conducted over 1000
object handover trials between the human and robot partners,
and the kinematic data and subjective experience were gathered
for each trial. The outcomes of this evaluation validate the
current implementation and guide the next steps towards more
efficient and fluid human robot interaction.

I. INTRODUCTION

It is broadly accepted that robots will have a great im-
pact on human activities in a near future [6]. The recent
advancements on robotic technologies foresee a strong col-
laboration between humans and robots for the achievement
of domestic and industrial tasks. As stated in the European
strategic agenda for robotics, such collaboration relies on
natural physical interaction between the two partners, which
highlights the importance of human-robot object handover
actions [1].

Previously, various research has addressed the importance
of fluid interaction using a human-robot object handover
as an example task [21]. One of the main streams in the
literature addresses an estimation of the most preferred
handover location where the robot should bring the object
at. In [2] cost functions are defined to maximize the comfort
of the handover, considering both the mobile base positioning
and the arm configuration. In [18], the A∗ algorithm permits
to estimate the best handover location based on a 3D cost
map which reflects three cost functions respectively focused
on the safety, visibility and comfort criteria.

Once the handover location is defined, several techniques
are available to define the robot motion towards this site.
In [8], different motion profiles (minimum-jerk, trapezoidal
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velocity profiles) are experimentally evaluated with humans,
and, based on the results, a decoupled minimum jerk tra-
jectory generator is proposed [9]. In [19], the Soft Motion
Trajectory planner provides an active control of maximum
jerks, accelerations and velocities.

As highlighted in [2], [21], the use of such off-line
planning-like approaches permits to get a good reachability
score but lacks adaptability to the human motion (the robotic
hand may move too far and push the the human hand for
example), and may not provide motions or handover config-
urations that feel natural to the human. Another alternative
consists of explicitly learning good exchange strategies from
the human. In [2], a learning technique is proposed in which
the users are involved in the definition of the preferred
handover configurations. In [23], the robot motions are
defined from a human motion database. An adapted sliding-
window search is proposed to find the most likely states
in the database related to the current human position, and
the related human receiver postures are then combined to
define the robot motion. In this last work, the capability of
appropriately responding to the human behavior implicitly
depends on the database completeness, since the robot does
not have mechanisms to handle novel user motions.

In [12] a reactive mechanism is proposed in which the
robot is driven through visual servoing towards the human
hand location. The robot velocities, however, are proportional
to the distance to the object which tends to produce motion
speeds that could be perceived as unsafe by the users, in
particular at the beginning of the interaction.

The approach we present in this paper permits to produce
robot motions inspired by human behaviors while maintain-
ing a feedback mechanism to provide flexibility. This duality
aspect is nicely handled by the concept of Dynamic Move-
ment Primitives (DMP) that permits to combine a shape-
driven control strategy (to reproduce human-like trajectories)
with a goal driven strategy (to ensure an on line convergence
towards the real observed handover location).

We previously introduced the theoretical specialization
of the DMP mechanism to object exchange in [14] and
compared it in simulation with human behaviors in [15]. In
this paper we extensively describe an implementation of this
control law onto the robotic platform designed in the context
of the European project Coglaboration. The next section
summarizes the key aspect of the control law itself. Section
III describes this implementation onto the Light-Weight
Robot (LWR) equipped with the Azzurra anthropomorphic
hand. Section IV describes the experiments we performed to
evaluate the control law during object handovers with human
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partners using an industrial scenario, and highlights the main
outcomes of that evaluation.

II. ROBOT CONTROL LAW

This section highlights the main characteristics of the
DMP formalism and its extension for the case of human
robot object handover (see [14], [15] for more detail).

A. Dynamic Movement Primitives formalism

The DMP concept was initially introduced for trajectory
learning and reproduction by Ijspeert in [10]. Since then,
several works were derived from the basic formalism, to
handle obstacle avoidance [7] or to boostrap reinforcement
learning methods for example in [4], [22].

Let x(t) be a one dimension trajectory that transits from
x(t0) = x0 to x(t f ) = g. The DMP formalism consists of mod-
eling the reference trajectory with a second order dynamical
system named transformation system:

τ v̇ = (1− s)K(g− x)+ sK
(

f (s)
s

+ x0− x
)
−Dv (1a)

τ ẋ = v (1b)

The first term K(g− x) can be seen as a goal attractor that
ensures the convergence towards the desired position g. The
second term K

(
f (s)

s + x0− x
)

acts like a shape attractor
stimulating the system to follow the reference motion pattern.
The contribution of these two terms are weighed by the phase
variable s which exponentially decreases from 1 towards 0
following the canonical system:

τ ṡ =−αs (2)

Thus, the shape attractor plays a predominant role at the be-
ginning of the movement when s≈ 1 while the goal attractor
becomes predominant towards the end of the trajectory when
s→ 0.

The shape attractor encapsulates the learned trajectory
through the forcing term f that represents a non linear
function as a sum of weighted functions:

f (s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

s, with ψi(s) = exp(−hi(s− ci)
2) (3)

The forcing term does not explicitly depend on time but on
the phase variable s instead. The system is thus time-scalable
by adjusting the time constant τ .

B. Specialization for object handover

The main benefit of using the DMP formalism for learning
and reproducing a trajectory is that during the reproduction
of the learned motion pattern, the target position g in (1a) can
be modified to adjust the final position of the trajectory while
maintaining dynamics similar to the reference trajectory.
This is particularly convenient for our specific application
in which the handover location, i.e. the target position,
is not known a priori. Thus, in contrast with the work
performed in [18], we do not perform an initial estimation
of the hand-over location which is affected by the quality
of the estimator and inflexible against unpredictable human

behaivor. Instead, we propose to consider the target location
g as the human hand location, therefore, constantly updated
during a handover. The previously mentioned dominance
shift in attractors permits to limit the impact of the target
position on the early phase of the motion (when the human
hand is far from the future handover site), and progressively
increases its influence when the two partners get closer to
the handover site, with the transformation system becoming
linear when s→ 0.

Nevertheless, the goal attractor in the basic DMP model
starts dominating the control law too early for this approach
to work. As demonstrated in [14] the exponential evolution
of the phase variable quickly decreases from 1, so that
the purely shape-driven motion is only present during a
limited period of time. In addition, the basic DMP model
does not permit to adjust when and how fast the weight
switches between the two phases. This is considered as a
limitation for our object handover application, where human
behavior studies have shown that the transition in between
the feedforward (or shape-driven) and the feedback (or goal-
driven) strategies tends to occur at the middle of the reaching
motion [5].

In order to account for this issue, we proposed in [14]
to decouple the weights applied to each of the terms in the
transformation system from the phase variable, and to use
instead an arbitrary function of the phase variable to compute
these weights:

τ v̇ = (1−wg)( fw + x0− x)+wgK(g− x)−Dv (4a)
τ ẋ = v (4b)
τ ṡ =−αs, (4c)

where fw(s) is now defined as:

fw(s) =
∑

N
i=1 ψi(s)wi

∑
N
i=1 ψi(s)

. (5)

In our implementation, the weighing function wg(t) is se-
lected to be a sigmoid function related to the Cumulative
Distribution Function (CDF) of the Normal distribution:

wg(t) = 0.5
[

1+ er f
(

t−µ

σ
√

2

)]
, (6)

where er f stands for the Gauss error function. This weighing
function relies on two parameters, the mean µ of the Normal
distribution and the standard deviation σ of the distribution,
that respectively permit to decide when the transition occurs
and how long it lasts. With these two parameters we can
easily control when the goal-attractor starts influencing the
generated motion.

Furthermore, in order to better adjust the convergence to
a varying goal, we also proposed to incorporate a velocity
feedback term to the transformation system:

τ v̇ = (1−wg)( fw + x0− x)+wg[K(g− x)+Kvġ]−Dv (7)

The evolution of this last system is the one driving the
robot motion according to the perception feedback that
adjusts the goal location. We will now describe how this
model is implemented onto our robotic platform.
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III. IMPLEMENTATION

A. Overall architecture

The previously described technique has been used to
design a controller for the hardware platform presented on
Fig. 1, the LWR from Kuka equipped with the Azzurra hand
from Prensilia [3]. The perception is performed with the
Kinect sensor mounted above the arm. The software system
has been implemented using mainly ROS [16] framework
(the low level arm connexion also involves Orocos [20]),
and distributed in components as shown in Fig. 2.

The Perception component is in charge of providing the
pose of the target location with respect to a fixed reference
frame, using the output of a Kinect sensor. Depending on the
handover direction, that pose can represent the pose of the
human hand (robot → human) or the pose of the object in
the human hand (human → robot). A detailed description of
the algorithms used by this component is beyond the scope
of the current paper.

Interface to the robotic hardware is managed by the LWR
FRI, and the IH2 Azzurra components. The first component
interfaces with the robot arm and is, in turn, composed by an
Orocos subsystem which deals with the low-level interface
to the robot using the network-based Fast Research Inter-
face (FRI); details are given in III-B. The later component
communicates with the Prensilia hand as described in III-C.

The DMP Controller component receives data from the
perceptual layer and from the robot interface components,
and computes the motion commands sent to the robot in
order to reproduce the learned trajectories (see III-D).

In order to coordinate the operation of the aforementioned
components, the CogLab Master component runs a state
machine which selects the appropriate configurations for
each component at every step of the system operation.
Section III-E gives an overview of this coordinator.

Fig. 1: Azzurra hand from Prensilia mounted onto the Kuka
Light Weight Arm

Fig. 2: Simplified software component architecture

B. LWR FRI component

As described above, the LWR FRI ROS node is in itself
a composition of Orocos components. The main component
of this subsystem is the one actually interfacing with the
robot. The robotic arm is controlled using the FRI offered
by the Kuka Robot Controller (KRC) [17]. This interface
offers several control modes through a simple protocol using
UDP messages over an Ethernet connection. Joint position is
selected as the control input since it allows complete control
over the robot posture, while avoiding the complexities of
a joint torque-based controller, which does not benefit our
approach of imitating observed human motions.

Since the FRI requires that the motion commands received
are reachable within the selected control cycle period (set
to 100Hz in our case). To meet this requirement, we have
incorporated an interpolator component in this subsystem. It
uses a state of the art on-line trajectory generation algorithm,
based on the work of Kröger [11]. This component accepts
velocity set-points and generates attainable commands for the
robot, which respect specific velocity, acceleration and jerk
limits at the target communication frequency. These velocity
commands can be safely integrated into positions reachable
in a single FRI period and directly transmitted to the KRC.

C. Prensilia IH2 Azzurra component

The IH2 Azzurra anthropomorphic hand by Prensilia em-
beds internal microprocessors which perform the low-level
finger motor control. The communication protocol permits
to send through a serial link high-level commands which
allow to set position targets for each finger individually or
to automatically execute pre-defined grasps. A helper Python
library was developed and later used to build a ROS node to
interact with the hand using an Actionlib-based interface.

D. DMP based controller implementation

Currently only Cartesian position data is available both
in the learning dataset used to train the DMP, and in the
output of the Perception component. Therefore, we propose
to learn position-only trajectories from human demonstration
and to encode and reproduce those with the DMP system.
Afterward we augment this position trajectory with a desired
Cartesian orientation interpolation from the initial orientation
of the robot end effector to the target orientation based on a
pre-defined per-object delivery orientation.

This component reads the position of the pose output from
the Perception component and uses this to set the g parameter
in the DMP system in (7). Integration of the system for
a fixed time step generates new desired Cartesian position
and velocity for the robot. Desired orientation and rotational
velocity are computed separately with an ad-hoc strategy
which lets the end-effector move solidarily with the robot’s
forearm during the initial phases of the motion, and uses
Bezier curves to make it converge to the desired orientation
during the final approach phase.

In order to combine these position and orientation com-
mands we have implemented a system based on prioritised
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task Jacobians, instead of combining them into a single end-
effector pose and transforming them to joint space commands
using the geometric Jacobian. The benefits of using such a
scheme are twofold. On one hand, it allows dealing with
close-to-singular configurations by removing the offending
constraint while maintaining the feasible sub-tasks. On the
other hand, including the generic task support in the inverse
kinematics algorithm provides greater flexibility if different
types of tasks need to be taken into consideration (e.g. to
keep an object upright, which only constrains two of the
three rotational degrees of freedom).

Since the tasks are resolved to joint velocities, each task
setpoint needs to account for a drift. This is straightforward
to formulate in the position case, where the adjusted linear
velocity can be computed as:

vdes = vdmp +Kpos
(
xdmp−xrob

)
(8)

where vdes is the velocity for which the instantaneous inverse
kinematics will be computed, xdmp and vdmp are the target
Cartesian position and translational velocity generated by the
DMP system, xrob is the current Cartesian position of the
robot, and Kpos is a gain which determines how fast the
system should try to eliminate the tracking error.

The rotational velocity component is computed in a similar
manner:

ωdes = ωtgt +Krotdi f f (Rtgt ,Rrob), (9)

where Rtgt and ωtgt are respectively the current desired
rotation and angular velocities that are interpolated along
time as previously mentioned to converge towards the desired
final hand orientation at the exchange location. In this case
a di f f function provided by KDL is used to compute the
rotational velocity which makes an object initially oriented
as in Rrob converge to Rtgt in one second.

The following step consists of transforming these new
desired linear and rotational velocities of the end-effector
to robot joint velocities. In order to do this, the two task
Jacobians are directly obtained by dividing the geometric
Jacobian of the robot in two submatrices, one relating the
joint velocities with the linear end-effector velocity, and the
other to the rotational end-effector velocity:[

v
ω

]
= J(q)q̇ =

[
Jlin(q)
Jrot(q)

]
q̇ (10)

The joint velocity command q̇lin which satisfies the desired
linear Cartesian velocity is computed as:

q̇lin = J+linvdes (11)

where J+lin stands for the Moore-Penrose pseudo-inverse of
Jlin (dropping the dependency on q for compactness).

In order to respect the desired linear velocity achieved by
qlin, we need to project this second velocity to the null space
of the linear velocity Jacobian by using:

q̇rot = (JrotPlin)
+ (ωdes−Jrot q̇lin) , (12)

where the null space projection matrix Plin of Jlin is:

Plin = I7−J+linJlin (13)

In (12) the term Jrot q̇lin is inserted to take into consideration
the rotational velocity induced by the translational part.

Finally, the joint velocity command that is sent to the LWR
FRI subsystem is:

q̇rob = q̇lin + q̇rot , (14)

where q̇lin and q̇rot are respectively deduced from eq. (11)
and (12). This command is interpolated and integrated to
joint positions by the LWR FRI component before being
transmitted to the robot.

E. CogLab Master

The Coglab Master coordinates the behavior of the whole
system. It runs a hierarchical state machine (using the
SMACH Python library) which at the top level can transition
between two idle states, one for the robot resting with
an object in its hand, and the other for the robot empty
handed. Transitioning between these two idle states is done
through a series of states containing sub-state machines
which execute different actions: hand over an object from
the robot to the human and vice versa, take/put the object
from a storage location, and two convenience actions to allow
the experimenter to manually put/remove an object from the
robot’s hand.

The two most relevant states are those dealing with the
object handover. For instance, when the robot is required
to hand over an object to a person, the state machine first
requests the object’s relevant data from a database and
configures the DMP Controller component with the appropri-
ate parameters: primitive to use, motion speed, appropriate
delivery pose with respect to the human hand, etc. Then,
it simultaneously starts the human hand tracking behavior
of the Perception component and triggers the start of the
DMP-controlled motion towards the human partner’s desired
handover location. When the robot end-effector gets close to
the actual handover location, it monitors the torques on the
robot joints to detect when the human has firmly grasped
the object. It then commands the IH2 Azzurra component
to open the hand and release the object. Subsequently, the
coordinator commands the DMP Controller component to
move the robot back to a resting position using a secondary
control mode where a motion to a target joint-state position
is interpolated and commanded to the robot.

In addition to reacting to the system state, the CogLab
Master component can also react to a series of events
which can be sent from a custom experimenter’s GUI built
with HTML and a javascript/ROS bridge component. This
allows the person running the experiment to trigger specific
transitions of the state machine and to configure some of the
parameters involved (e.g. even if the torque-based contact
detection has been used in some of the experiments, in the
trials focused on the approach phase that are described here,
the contact trigger was manually provided by the operator).

IV. EXPERIMENTAL VALIDATION

In the context of the CogLaboration project [13], we
selected two experimental scenarios in which a robot could
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provide assistance to a person: a industrial scenario, and a
domestic scenario. In the analysis we present here, we focus
on the first scenario, studying the velocity aspects and verbal
vs vision based triggering.

A. Experiment description

1) Experiment design: The design of the experiment was
inspired by the industrial scenario of a car mechanic with a
robot assistant and was implemented with three configura-
tions, with different human postures:
• ’Engine Bay’ with the mechanic bent forward over the

engine, able to view the handover, generally reaching
to the right and slightly backwards with only slight
movement restriction (Fig. 3 a).

• ’Hydraulic Lift’ with the mechanic under a car on a
hydraulic lift, reaching above the head, free to observe
the handover, generally reaching to the right side with
only slightly impaired freedom of movement (Fig. 3 b).

• ’Lying under car’ with the machanic lying on the back
under the car, limiting the field of view and the range
of arm movement (Fig. 3 c)).

2) Experiment procedure: Each scenario configuration
was tested on a separate day to avoid frequent reconfigura-
tions of the setup and minimize participant fatigue. We tested
with 7 (4 male, 3 female) naı̈ve participants, recruited from
Tecnalia staff, 5 of whom had little or no prior experience
of interacting with robots. In each scenario a base case, and
variations in two factors were tested: velocity and movement
triggering.

To test the effect of speed-accuracy trade-off on the user
experience the Robot movements were executed at 5 different
speeds ranging between approximately 1 and 1/4 times as fast
as an average human reaching movement calculated from an
existing data set of a similar setup.

Another manipulation was a switch from the default vision
based robot movement triggering (mocked by the operator
manually starting the robot motion), used in the speed trials,
to verbal triggering in which participants provided a verbal
”GO” command.

Each session started with 5 base handovers (medium
speed, approximately 1/2 human speed, and visual trigger-
ing), to familiarize the participant with the robot and the
evaluation protocol. All other trials were performed in a
random order with each of the 5 speeds repeated 3 times and
the verbal triggering repeated 5 times. Each trial consisted
of the following sequence.

Fig. 3: Human postures in the 3 car mechanic configurations:
a) Engine Bay; b) Hydraulic Lift; c) Lying under Car

1) Delivery from robot to human (R→ H)
• Human requests object by reaching to robot
• Robot brings the object to the human
• Human takes object to task area
• The participant evaluates the handover

2) Retrieval from human to robot (H→ R)
• Human holds object out to the robot
• Robot reaches to the object
• Robot takes the object back to itself
• Human evaluates the handover

The evaluation after each handover was provided in four
criteria by rating the following statements:
• Q1: It was easy to receive the object
• Q2: I was satisfied with the interaction
• Q3: The interaction was comfortable
• Q4: I felt safe during the interaction

The participants were asked to enter an evaluation score
between 1 (fully disagree) and 9 (fully agree) using a touch-
screen. Once all trials were completed, the participant was
interviewed to provide additional feedback and qualitative
evaluation of their experiences.

In addition to the qualitative evaluation, we also recorded
(i) the location of the human hand as a function of time,
providing movement kinematics, (ii) the articular pose of
the robot as well as the measured efforts per joint, and (iii)
the timing of the events during the handover procedure (e.g.
motion start, end).

3) Experiment setup & equipment: The car mechanic
scenario was simulated using the setup shown in Fig. 4.
The metal frame defined the task area, i.e. the car. The task
surface was moved from the waist height (’Engine Bay’),
to above the participant’s head (’Hydraulic Lift’, shown in
Fig. 4 left image). For the ’Lying under the car’ configuration
participants lay on a height adjusted bed, to accommodate
the workspace limitations of the robot (Fig. 4 right image).
The work frame and bed were positioned such that partic-
ipants were 100-125cm from the robot. This allowed their
outstretched hand to be inside the robot’s workspace while
their body remained safely beyond reach of the robot. A
Liberty magnetic motion tracking system (Polhemus Inc.,
Vermont, USA) with four magnetic markers, was used to
record the position and orientation of the participant’s arm
at 240Hz during the object handover. The magnetic markers
were placed onto the participant’s right arm (one on the
shoulder, one on the back of the hand, one on the thumb

Fig. 4: Setup: Standing configuration for ’Engine Bay’
and ’Hydraulic Lift’ (left image) and Lying under the car
configuration (right image)
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and one on the index finger). This system was used only for
off-line analysis, as the control system only used the Kinect
sensor for real-time visual input.

The object used for the handovers was a plastic flashlight
which was always grasped using a cylindrical power grasp.

B. Main outcomes of the experiments

In order to evaluate the performance of our control system
for Human-Robot Interaction, the results of the experiments
are evaluated not only in terms of success in achieving object
handovers but also in term of the subjective experiences of
the participants.

1) Success rate: Table I summarizes the overall object
handover success rate. Notably the experiment configuration
had only a minor impact on the success rate despite the
large differences in the participants sensory and movement
capacities in the three configurations.

Success rates are grouped per behavioural conditions on
Table II. As it shows, the lowest success rate was observed
in the trials with the highest robot velocity (Sp. 1).

Handover failures in the high speed conditions were pri-
marily due to the torque limit of the Kuka LWR triggering the
safety stop in the mid-motion. On the other hand, the failures
in the verbal triggered trials were caused by participants
instructing the robot to start moving before they had moved
their own hand into the operating space of the robot.

2) Subjective user experience: Preliminary analysis of
the subjective rating responses showed a skewed response
distribution with more than 60% of ratings scored above 8
and less than 10% of ratings at 5 or less (Fig. 5). These high
ratings show that the participants had a generally positive
impression of their interaction with the robot. The skewed
response distribution however violates a basic assumption
of parametric statistical tests (i.e. normal-distributed data),
thus requiring the use of non-parametric tests for statistical
evaluation.

Comparison between the subjective rating histograms of
the five robot movement speeds (see color coding) revealed
that faster movement trials (Sp. 1, same speed as human) had
more 9 ratings for Comfort, Satisfaction and Ease than the
slower movement trials (Sp. 5, 1/4 speed of a human). For the
’Safe’ rating however this pattern was reversed, with more 9
rated trials for slower movements. Comparison between the
verbally triggered and the equivalent visually triggered move-
ments (Sp. 3) suggests that participants found the interactions
slightly Easier, more Satisfying and more Comfortable when
they could explicitly trigger robot movement through verbal
commands (higher fraction of 9 ratings) but that visual or

Total Eng. Bay Hydr. Lift Lying u. Car
R→ H 495/525 = 94% 163/175 167/175 165/175
H→ R 501/525 = 95% 165/175 173/175 163/175

TABLE I: Successful handovers per scenario
Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Verbal

R→ H 51/63 60/63 58/63 62/63 61/63 98/105
H→ R 62/63 61/63 58/63 62/63 63/63 100/105

TABLE II: Successful handovers per behavioural condition

Fig. 5: Histograms showing fraction of trials that received
each quality rating. The colors indicate the trial type.

verbal triggering had no impact on their sense of Safety.
These results are consistent with the statements participants
made during the post-session interviews. Kruskal-Wallis non-
parametric ANOVA tests confirmed that effects of movement
speed (Table III) and verbal triggering (Table IV) manipu-
lations on subjective experience of the human users were
statistically significant. In addition to confirming that the
speed manipulation significantly affected Ease, Satisfaction,
Comfort and Safety ratings, we note that speed had the least
effect in the ’Lying under Car’ configuration. A possible
reason may have been the reduced ability to see the robot
motion and the reduced speed of the human movements
in this posture. This illustrates the complex nature of the
perceived handover quality, which was affected by more than
just pure robot velocity. For the verbally triggered condition,
compared to the visually triggered medium speed trials, there
was generally a stronger effect on the Ease, Satisfaction
and Comfort ratings and a much weaker effect on the Safe
rating. In the Engine Bay and Hydraulic Lift configurations,
the effect of verbal triggering is much more significant in
the H → R handovers than in the R→ H interactions. In
contrast to the speed manipulation, the effect of the verbal
trigger manipulation is highly significant in the Lying under
Car configuration, possibly due to a greater appreciation
for the sense of control gained by ’verbal triggering’ when
participants are restricted by the lying posture.

Kruskal-Wallis p-values Easy Satisfied Comfort. Safe
Engine Bay R→ H .015 .205 .001 .000
Hydo. Lift R→ H .000 .000 .000 .892

Lying u. Car R→ H .026 .200 .605 .186
Engine Bay H→ R .014 .722 .001 .000
Hydo. Lift H→ R .000 .002 .000 .478

Lying u. Car H→ R .160 .935 .082 .152

TABLE III: Speed manipulations effect on qualitative rating
responses (Kruskal-Wallis ANOVA, d f = 4,16 < N < 21).

Kruskal-Wallis p-values Easy Satisfied Comfort. Safe
Engine Bay R→ H .890 .165 .133 .954
Hydo. Lift R→ H .035 .133 .193 .088

Lying u. Car R→ H .000 .000 .009 .909
Engine Bay H→ R .000 .000 .001 .049
Hydo. Lift H→ R .030 .055 .519 .137

Lying u. Car H→ R .000 .000 .000 .178

TABLE IV: Verbal/visual trigger manipulation effect on
qualitative rating responses (Kruskal-Wallis ANOVA, d f =
1,26 < N < 33).
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3) Quantitative properties of handover movement: We
considered the following quantitative motion measures.

1) Two temporal aspects of handover motion
a) End time difference (end time of robot movement

minus end time of human reaching)
b) Peak velocity time difference, (time of robot peak

velocity minus time of human peak velocity)
2) Two spatial aspects of handover motion

a) Movement distance difference (distance between
start and end of human reaching minus distance
between start and end of the robot movement)

b) End position error (distance between the robot
and the human reach end-points, before the hu-
man made an optional final adjustment for pick-
ing up/placing the object from/in the robot hand)

3) One spatio-temporal aspect of handover motion
a) Robot peak-velocity

The means of each of these measures are summarized in
Fig. 6, showing that the movement were very similar for both
handover directions, R → H and H → R. The experiment
configuration, however, did change some of the movement
properties, especially the ’End position error’. Fig. 7 provides
a more detailed summary of the movement properties by
showing the mean changes as a function of the speed or
triggering manipulation used on a trial.

4) Quality perception and the Speed-Accuracy trade-off:
Based on participant comments that suggested a preference
for faster robot movements we analysed the correlation
between the qualitative rating changes and quantitative mea-
sures of the human and robot movements for the speed ma-
nipulation trials in order to identify if changes in perceived
interaction quality were primarily due to timing or spatial
accuracy aspects of the movements.

The Spearman rank-correlation was computed between
each of the four qualitative ratings and the five movement
measures for both the R→H and the H→ R handovers. The

Fig. 6: Mean results for the movement measures, averaged
across participants and behaviour manipulations (error-bars
indicate 25th and 75th percentiles).

Fig. 7: Mean effect of speed/trigger manipulation, expressed
as deviation from the participants’ mean values (error-bars
indicate 25th and 75th percentiles).

results are summarized in Fig. 8. The three subplots provide
the results for the ’Engine Bay’ (top), ’Hydraulic Lift’
(middle) and ’Lying under the car’ (bottom) configurations
respectively. The abscissa lists the quantitative measures (e.g.
’End time difference’) grouped by measures relating to ’tim-
ing performance’ on the left (first 2) and measures relating
to ’spatial performance’ on the right (last 2). The ordinate
lists the four qualitative ratings. Colors indicate the value
of the Spearman rank-correlation coefficient (ρ), with warm
(red) colours for positive correlations and cold (blue) colours
for negative correlations (see legend on right). Correlations
of |ρ| < 0.2 are considered not significantly different from
zero (p > 0.1). The Safe rating and the Easy-Comfortable-
Satisfied ratings have generally opposing relationships to
the quantitative behavior properties, i.e. participants were
more satisfied but felt less safe for faster robot movements
and shorter end-point differences. The ’timing performance’

Fig. 8: Correlation analysis between the qualitative and
quantitative results for the speed manipulation trials.
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related measures were more strongly correlated with the
qualitative ratings than the ’spatial performance’ measures,
indicating a willingness by participants to engage in a speed-
accuracy trade-off in favour of rapid interactions. Overall, the
strongest correlations between qualitative ratings and move-
ment measures were found in the ’Hydraulic Lift’ configura-
tion for the Easy-Comfortable-Satisfied ratings whereas the
’Safe’ ratings showed strongest correlations in the ’Engine
Bay’ configuration. ’Lying on the Bed’ yielded the weakest
correlations, probably because the reduced visibility and
reduced freedom of movement dominated the participants’
experiences. ’End position error’ had its strongest (negative)
correlations in the ’Lying under the car’ configuration. Users
may prefer a greater weight on speed when they themselves
have the space to make compensation movements, while they
prefer to wait for more accurate robot behaviour when they
themselves are constrained in their movement space.

V. CONCLUSION

In this article we presented the implementation of a robot
arm control based on the Dynamic Movement Primitives
formalism adapted to human robot object handover. The
proposed control law has been implemented onto a LWR
robot equipped with the Azzurra hand and experimentally
tested through more than 1000 handovers with a range of
configurations and behavior manipulations. The results of the
behavioral experiments validate the proposed control mode
with a success rate of more than 95%. Although the setup
of the experiment only covers a specific scenario and object
for handover, the proposed method is not limited to any of
them, and further experimentation will evaluate the system in
a different scenario and with other objects requiring different
grasping modes.

The next steps towards fluent object handovers in that
framework will consist of increasing the autonomy and
adaptability of the control strategy. In that line we would like
to extend the situation awareness by permitting the system
to automatically detect when the user launches an interaction
procedure, or when the same user decides to stop it for any
particular reason.

The adaptability will be addressed in terms of object
affordance on the one hand and individual preferences in
handover location and speed on the other hand. Concerning
object afforcances we would like, through perception, to
better understand how the user would like to grasp an object
or how he would like to deliver it. Concerning individual
preference, the experiment showed that the humans implicitly
adapted their behavior to the robotic partner, we would
like the robotic system to perform a similar effort, taking
into account, through the accumulation of exchanges, the
preferred handover location or exchange speed of the human.

Finally, some preliminary internal experiments (not eval-
uated here) on the automatic detection of the contact in
between the two agents, through forces analysis at the hand
wrist, to trigger the object grasping or release show promis-
ing results for possibility of using such data to recognize the
handover events.
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