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Abstract—Robots are inherently limited by constraints on
their motor power, battery life, and structural rigidity. Using
simple machines and exploiting their mechanical advantage can
significantly increase the breadth of a robot’s capabilities. In
this work, we present an autonomous planner which allows a
robot to determine how arbitrary rigid objects in its environ-
ment can be utilized in machine designs to overcome physical
challenges. First, the designed structure must be sufficient to
achieve a task given the input force and torque that can be
applied by the robot. Second, the structure must be accessible
to the robot given its kinematics and geometry so that it
can actually be used to perform the task. The output of our
algorithm is the configuration of the design components, the
pose of the robot to make contact with the design, and the
motor torques needed to actuate it. We demonstrate results
with the robot Golem Krang, using levers as simple machines,
to overturn 100 kg load and to push 240 kg wheeled obstacle.

I. INTRODUCTION

A robot can exert a limited force to its environment due to
constraints on its motor torques, battery power and structural
rigidity. However, a variety of tasks require going beyond the
physical limitations of oneself by using the available tools
at the time. Pushing, raising, and overturning heavy objects
are common examples of such tasks in construction and
debris removal fields (i.e. search and rescue tasks). People
mostly turn to simple machines such as levers, pulleys and
wrenches at such times where the work can be accomplished
by applying less force over a longer distance and time.

For robots to take part in our daily lives, they need to
recognize and adopt the use of simple machines as means to
interact with the world. In designing simple machines for a
robot, a planner needs to consider both kinematic constraints,
such as the arm length in reaching out for objects, and dy-
namic constraints, such as the maximum force the robot can
apply while keeping its stability. The incorporation of such
kinodynamic constraints in the purposeful manipulation of
the environment is a significant leap towards full autonomy.

The design of a simple machine involves discrete choices
for which objects to use and continuous choices for the
placement of the objects in the design. Given a set of
available objects, our goal is to find a subset for which
there is a feasible assignment of configurations that satisfy
geometric, dynamic and kinodynamic constraints. The geo-
metric constraints express the contact rules (i.e. lever placed
on fulcrum) while the dynamic constraints address force
interactions (i.e. lever exerting force to the load). Lastly, the
kinodynamic constraints ensure that the system can be driven
into action with the physical limitations of the robot [1].

In this work, we present an autonomous planner that
chooses which objects to use in the design and configures
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Fig. 1.
100 kg objects respectively with fulcrum repositioned for reachability

Golem Krang using 1.7 m and 2.5 m sticks to overturn 50 kg and

them such that they satisfy the constraints of the domain
through optimization. The key idea we build upon is to
represent the three types of design constraints as generic non-
linear equality and inequality functions within a constraint
optimization framework. Then, the set of configurations that
satisfy all the constraints, that is a global minimum with zero
error, is considered a feasible design. However, if the global
minimum of the system is nonzero for the chosen objects,
e.g. the lever is not long enough, other object choices are
evaluated until all the options are exhausted.

Within this framework, an autonomous planner can search
for a design with a large continuous configuration space that
is constrained by highly nonlinear functions that represent the
domain constraints. Moreover, the representation of domain
knowledge as a set of generic constraint functions allows
simpler expressions of complex problems such as the manip-
ulation of a heavy load through applying a force to a lever
that sits on a fulcrum. Figure 1 demonstrates the output of
the proposed planner for two overturning scenarios where
the weight of the load is 50 kg and 100 kg respectively.

The robot Golem Krang, designed in Humanoid Robotics
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Lab at Georgia Tech, weighs approximately 150 kg, reaches
1.9 m height and actively balances on two wheels for
locomotion and manipulation. In Figure 1, at the top, the
planner places the fulcrum on its base and dictates Krang
where to stand and where to hold the 1.7 m two-by-four
object to overturn the 50 kg load. At the bottom, we
demonstrate the solution for the second scenario where the
planner autonomously chooses a longer lever (2.5 m) for the
heavier load at 100 kg and places the fulcrum on its side to
ensure that the contact point is still reachable.

In the rest of this paper, we formulate our approach and
present results on real world examples. Our contributions can
be summarized as follows:

1) Expression of simple machine principles as geometric
and dynamic constraints

2) Incorporation of robot kinematics and dynamics into
design parameters in the same nonlinear constraint
optimization framework

3) The application of the approach to lever designs in
overturning and pushing heavy objects

II. RELATED WORK

Manipulation of the environment towards goals has been
studied in the artificial intelligence and planning commu-
nities extensively. The monkey and banana problem, where
a monkey has to move a desk, climb onto it and finally
use a stick to reach out to the banana, is a classic example
[2]. The earlier work in planning focuses on exhaustive
search in the space of discrete and high-level actions, such
as “jump to desk” or “pick up stick”. However, for the
robotics applications where specific configuration of objects
are needed, the search algorithms have been adapted by
discretizing the continuous space of configurations either as a
grid or based on a domain-specific knowledge [3]. However,
such discretization methods can fail to capture solutions at
finer resolutions and suffer from large search spaces.

In order to accomplish manipulation and motion planning
in continuous spaces, the rapidly-exploring random trees
(RRTs) method has been widely adopted [4] where a tree
of random samples in the configuration space is grown
based on nearest-neighbor principles. A significant extension
to this work towards adopting everyday objects has been
the accommodation of task-space constraints that limit the
motion of objects such as shelves in drawers or doors on
hinges [5]. The idea is to improve on the random samples
by moving them towards the subspaces that fulfill the task-
space constraints using local nonlinear optimization. Local
optimization has also been used successfully for grasping
arbitrary objects [6], [7]. However, these methods do not
address the use of multiple objects to achieve goals.

Recent progress has been made in assembly problems in
architecture by using constraint minimization approaches to
make design choices [8] and Monte-Carlo sampling methods
to design placement of objects in interior decoration [9]. A
similar line of thought has also been followed in operations
research field where the temporal constraints in a scheduling
problem are expressed within an optimization framework

[10]. The key idea is the branch-and-bound approach where
the continuous space is partitioned based on discrete choices
and then constraint optimization is applied to search for
solutions in each subspace [11].

Based on the branch-and-bound approach, we recently
proposed a complete planner that constructs functional struc-
tures such as bridges and stairs by using blocks in a 2D
world [12]. The key idea was to plan in the space of abstract
choices of how objects interact with each other (e.g. object
A on object B), which effectively partitions the space of
configurations, and then solve for the specific configurations
of the objects through convex optimization assuming all the
constraints are linear. In this work, we extend our framework
to capture the complexity of simple machines and limitations
of robotic manipulation and incorporate nonlinear constraint
optimization to find feasible design solutions.

III. PROBLEM DEFINITION

Let O be the set of available objects in the environment.
The goal of the planner is to choose a subset of the objects to
function as a fulcrum and a lever, {oy,0;} C O, and set their
configurations {x7,x;} such that there is a configuration g for
the robot Golem Krang where it can manipulate the lever o;
with the joint torques 7 to actuate the load object 0;,. Before
expanding on the design constraints, let us first clarify our
assumptions about the capabilities of the robot.

A. Manipulation assumptions

First, we assume that the robot can maintain its initial
position {x,y} € R? in world coordinates throughout the
manipulation of the load. The motivation of this simplifying
assumption is the observation that the upper body motion of
the robot is often sufficient to actuate the system in numerous
experiments and the omission of a timeline, as would be
required in full-fledged motion planning, shrinks the number
of variables in the problem significantly.

Secondly, we constrain the motion of the robot only to its
wheels and the waist joint, and choose not to use the arm
joints to apply force. This assumption allows us to guarantee
the safety of the joints which maintain their positions with
mechanical breaks throughout the motion, and also avoid
possible collisions with the body throughout their already
limited workspace. Third, we assume that the robot uses its
left hand to manipulate the object as opposed to both hands.
Figure 2 demonstrates the kinematics of the robot along with
the wheel joint 6; and the waist joint 8, that are actuated.

Lastly, having simplified the robot model as a planar two-
link revolute manipulator, we enforce that for the overturning
task the robot pushes primarily in the —z direction and for the
door opening task in the +x direction. Such an assumption
guarantees that a set of torque assignments can be determined
for any pose of the robot, except singularities, as opposed to
constraining the pose space of the robot significantly to solve
for arbitrary directions with a 2D manipulator.

B. Solution space

Let g, be the degrees of freedom of the base of the
robot which are the {x,y} position on the ground plane, its
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Fig. 2. The kinematics of the robot Golem Krang: The wheel and the waist
joints are actuated while the left hand maintains contact with lever.

heading 6, the angle of the base from the vertical 6; and
the waist joint angle 6,. Along with the joints for the 7-
dof arm ¢;, the robot kinematics comprise 12 variables in
total. In addition, the torques T = {7q,,Tp, } € R? around the
wheel and waist joints, and the 6 degrees of freedom for the
lever and fulcrum objects, in total, the solution space is 20
dimensional. Note that we incorporate additional variables to
simplify the constraint expressions - see Section IV.

C. Constraints

The design of a functional structure imposes geometric
and dynamic constraints on its components. The geometric
constraints express the contact rules between the different
components (e.g. the lever in contact with both the load
and the fulcrum), while the dynamic constraints focus on
mechanical advantage (e.g. lever arm longer than load arm).
Once a design is to be actuated, the user constraints such as
reachability and manipulability also need to be considered.

Figure 3 demonstrates a lever design. First, note that we
make the assumption that a lever needs to make a line
contact (rather than a point) with the edges of the load
and the fulcrum in order to ensure the stability of the
force interactions. Second, the figure presents the three main
geometric constraints: (1) lever in contact with fulcrum, (2)
lever in contact with load, (3) fulcrum in contact with the
ground along a face. The first two constraints are simple
embodiements of what it means to be a lever. The third
constraint on the fulcrum pose on the other hand is actually
an assumption. It is indeed possible to place a fulcrum on its
edge on the ground but it would most probably topple over
due to horizontal forces as the lever is moved.

Fig. 3. The design of a lever system with only geometric constraints along
with points along the contact edges (red) and the input contact (blue).

In addition to the geometric constraints, the lever design
induces dynamic constraints on the configurations of the
lever and the fulcrum (we assume the load is fixed). The
idea is that the distance from the robot contact point to the
fulcrum needs to be more than that of the load contact point
to obtain mechanical advantage. Moreover, the force on the
load needs to cause sufficient torque, whether it acts against
the mass of the object while overturning it or the friction
force due to the obstacle in the door opening task. Figure
4 relates the input force f;, the contact force from the lever
to the load, f., and the load’s gravitational force, f, in 2D.
Note that we ignore the lever mass (about 1 kg) and the
forces parallel to the axis of rotation of the lever.

3
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Fig. 4. The forces in interaction in the manipulation of a lever in 2D.

A design that can not be actuated by its user is not func-
tional; and thus, we need to also incorporate the kinematic
and dynamic constraints of the robot. First, the robot needs
to be positioned such that it can reach the desired contact
point. This involves solving for the forward kinematics of the
robot, taking into account its link lengths and joint angles to
find the hand position. Second, the robot needs to be able
to exert the required force using its wheel and waist joints.
Here, the simplified two-link planar robot model allow us
to use classic force-torque relationship, T =J7(g)f, to find
the joint torques T from the robot pose ¢ and input force f.
Lastly, the robot needs to be in a balanced pose before it
makes contact with the lever. For a wheeled balancing robot
like Krang, the center of mass should be over the wheel axis.

Lastly, any design needs to be collision-free in order to be
realized. In motion planning, collision avoidance is achieved
through sampling the configuration space and rejecting the
nodes that lead to collisions. In the approach section, we
discuss the heuristics we adopt to simplify the problem.

IV. APPROACH

The goal of the autonomous planner is to choose a subset
of the available objects in the environment to construct a
lever setup that can be actuated by the robot with kinody-
namic constraints. The proposed planner has three major
steps: (1) object choices, (2) face-edge matches, and (3)
feasibility test. Now, we describe each step in detail.

A. Object choices

To achieve completeness in the space of object choices, the
planner evaluates every pair of objects as candidates for the
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fulcrum and the lever roles. The idea is to provide the second
step these choices as inputs and backtrack in the case of
failure, attempting the next pair. For n objects, the exhaustive
search requires n(n— 1) /2 steps; however, some assignments
can be eliminated by placing constraints on the size of the
objects (i.e. a small cubic object can not be a lever).

B. Face-edge matches

Once the fulcrum and the lever roles are assigned, the
design constraints can be applied within an optimization
framework to determine the desired object configurations.
However, the expression of geometric constraints, such as
the lever in contact with the fulcrum, is greatly simplified
if the face of the lever and the edge of the fulcrum are
predetermined. In this respect, we claim that the partitioning
of the configuration space through discrete choices simplifies
the infusion of domain knowledge into the system. Moreover,
as the optimized functions become simpler, the manifold has
less discontinuous and thus, more efficient to trace.

A secondary advantage of incorporating discrete choices in
determining the configurations of the objects is the possibility
of using domain knowledge to prune the solution space. For
instance, once one can make explicit choices about which
face of a rectangular prism to choose to make contact, they
can also prune the symmetric faces from consideration, thus
leading to the elimination of redundant configurations even
before consideration. In fact, the detection and exploitation
of object symmetries is an active research area [13].

In this intermediary step, the planner essentially builds an
abstract design, dictating how the components involved, the
load, the lever, the fulcrum, and the robot, come together. In
total, five different choices need to be made:

1) lever face in contact with some fulcrum edge,

2) lever face in contact with the robot gripper,

3) lever face in contact with the load edge,

4) fulcrum face in contact with the ground (e.g. the base),
5) and fulcrum edge in contact with the lever.

Note that we assume a fixed load edge for the lever contact.
Figure 5 demonstrates four example outputs of our planner
(without the robot) with different choices for the fulcrum
base face, fulcrum edge in contact with the face, and lever
face in contact with the load. Given that a rectangular prism
lever has 6 faces and a triangle prism fulcrum has 5 faces
and 9 edges, there can be 9720 combinations of choices.

» \P%/

Fig. 5. Effect of different face-edge matches on lever designs.

In closer inspection, we observe most of the options are
either replicates (symmetries) or are infeasible because (1)
fulcrum edge is on the ground, (2) input or load faces are
not perpendicular to the fulcrum face (e.g. can not induce
torque), or (3) fulcrum edge is not parallel to the load edge
(necessary for the lever to make edge contacts with both
objects). These observations shrink the number of feasible
choices down to fifteen. However, for more complex objects,
heuristics are needed to prioritize favorable choices.

C. Feasibility Test with Constraint Optimization

Once the lever and the fulcrum objects are chosen, and the
face-edge assignments that describe the abstract relationship
between the objects are made, the feasibility of the overall
design can be tested. In this section, we describe our ap-
proach to incorporating geometric and dynamic constraints
due to the lever design, the robot kinodynamic constraints
and collision constraints in evaluating a candidate object
choice and coming up with configurations if possible. Next,
we expand on two ideas that are used to make the expression
of the constraints simpler and the optimization faster.

1) Latent variables: In addition to the configuration of
the objects and the robot, and the joint torques, we introduce
latent variables for: (a/b) arbitrary points on the contact edges
of the fulcrum and the load, ¢;r and ¢y, respectively, (c) the
robot contact point on the lever, ¢;, and (d) the magnitude
of the force applied along the primary direction, f,.

The idea behind introducing latent variables is analogous
to factoring a complex expression h(x) =z to f(g(x)) =z and
then introducing a secondary variable y that is not actually
of interest but simplifies the initial constraint by inducing
two simpler expressions: g(x) =y and f(y) = z. Through
experiments, we have seen the increase in the search space of
the optimization is worth the ease in expressing knowledge.

2) Reachability vs. explicit arm joints: There are two
methods to guarantee that the robot reaches the desired
contact point. First, one could explicitly solve for the arm
joint values, given base joint values, that achieve the desired
location for the end-effector. Second, using analytical inverse
kinematics [14], check if the given contact point and the
necessary end-effector orientation is within the reachable
space of the manipulator. In this work, we opt for the second
option, allowing us to preserve 7 variables in the solution
space for the manipulator arm configuration.

3) Nonlinear Constraint Optimization: A common ap-
proach in nonlinear constraint optimization is to use the
extent of violation of the constraints as the local cost
function that is minimized [15]. Subsequently, using random
restarts for the initial guess of the correct solution, iterative
algorithms such as Gauss-Newton and Levenberg-Marquardt
follow the gradient of the cost function to reach a value
that satisfies all the constraints. In this work, we use the
GTSAM library [16] that allows the expression of nonlinear
constraint functions and implements Levenberg-Marquardt
optimization.

4) Incremental Optimization: Figure 6 demonstrates the
factor graph comprised of the unknown variables and the
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constraints imposed on them. Each black box is a constraint
function imposed on the variables that it is linked to. For
instance, at the top left, the fulcrum (F), the lever (L) and
a point on their contact edge (Crr) are connected to impose
the first constraint that the lever should lie on the fulcrum.

Q Variable

W Constraint
= fstlevel
Fmmme 2nd level
[ ™ 3 3rd level

Fig. 6. Incremental optimization for constraints in three levels

Table I summarizes the purpose of the constraints that
express the design principles. There are a few interesting
ideas embedded in these factors that are worth pointing out.
First, the third and fourth constraints that order the contact
points define the type of lever design - that is, whether this is
a fulcrum-input-load or input-fulcrum-load system. Second,
the constraints 5, 6 and 9 express heuristic approaches to
avoid collisions where a minimum distance between objects
of interest is enforced. Third, the shortcoming of the an-
alytical inverse kinematic approach can be observed in the
reachability and balancing factors (8) where the contact point
information and orientation from the lever surface needs to
be incorporated even though the explicit representation of
arm joints would make these constraints simpler.

Number | Purpose

Places the lever L on the fulcrum F

Ensures that the lever L is in contact with the load
Fulcrum contact Cpr before load contact Cyy,,
Input point C; before the fulcrum contact Crr
Avoids lever L collisions with the ground

Avoids lever L collisions with the load side walls
Places contact C; s.t. load moves with force Fy,
Reachability and balancing with base joints Qp
Places contact C; in front of robot

Computes the joint torques to induce force Fy
Bounds the joint torques Qpr

TABLE I
THE DESCRIPTIONS OF THE CONSTRAINTS

— =0 00 1O LU A~ W

—_— O

We now discuss the proposed optimization strategy which
partitions the process into three steps. The motivation is that
when all the variables are optimized together, a large number
of guesses may be needed to start a successful optimization.
Instead, one can solve for a subset of the variables and use
the solution as an initial guess towards solving the entire set.

The proposed solution also intuitively makes sense where
the lever and the fulcrum configurations are optimized as the
examples in Figure 5, and then the robot contact point and

kinematics are solved, and lastly, once the kinematics are ini-
tialized, the joint torques and their limitations are taken into
account. Figure 6 displays the three level optimization with
the red (solid), green (dashed) and blue (dash-dot) regions.
Note that this incremental setup still leads to the nonlinear
optimization of all the variables where, for instance, the
limits on joint torques affect the fulcrum and the lever poses.

5) Formulation of the constraints: With the introduction
of latent variables such as points along contact edges, a
typical constraint “lever on fulcrum” becomes a set of
projection constraints such as: (1) contact point should lie on
fulcrum edge, (2) contact point should lie on lever fulcrum
face plane, and (3) fulcrum edge points should lie on lever
fulcrum face plane. Similarly, in computing the torque due
to the robot, the projection of the input point over the force
direction and its distance to the axis of rotation is taken.
Lastly, for kinodynamic constraints, forward and inverse
kinematics, and gripper jacobian J is computed to obtain a
measure of error for reachability, balancing and joint torques.

V. RESULTS

The experiments are based on human-robot collaboration
where the human provides the perception of available objects
in the environment and the realization of the design while
the robot conceives the design and is responsible of actuating
it. This setup is motivated particularly by search and rescue
scenarios where it is preferable that the robot interacts with
the heavy loads (i.e. 240 kg) while the human helps with
the placement of lighter objects such as the fulcrum and the
lever, following the design instructions. Figure 7 displays the
planner output as shown in our graphical user-interface and
the real-world replication used in the experiments.

Fig. 7. The ideal planner design and its realization by human collaborator

The main experimental result of our work is the two
designs shown in Figure 1 where the planner autonomously
chooses the correct levers and places the fulcrum on the
appropriate face such that the loads can be overturned with
the wheel and waist torques within 150 Nm torque limits.
For the 50 kg experiment, the desired input force is 220 N,
with 1:2.23 leverage and the desired torques are -67 Nm and
148 Nm. For the 100 kg experiment, the input force is 151
N, with 1:6.50 leverage and the desired torques are -76 Nm
and 111 Nm. Note that from these values, we can interpolate
that the shorter lever indeed can not be used for the 100 kg
experiment without exceeding the torque limits.

To evaluate the accuracy of the actuation of the design, we
have accumulated data from three sources: (1) force/torque
sensors at the robot gripper, (2) wheel torque sensors, (3)
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scales placed under the loads. In Figure 7, the two scales
can be seen under the load with the camera recording the
values. Figure 8 plots the data from the 50 kg overturning
experiment where the object finally topples over just before
the 90 second mark. Note that we have marked three points
of interest shown in Figure 9b with gray vertical lines: (1)
first application of more than 30 N, (2) the load standing on
its back edge and (3) the load falling down.

Force and Torque Readings During Overturning Task with 47 kg Load
T T T T T

Fig. 8. Force and torque readings throughout the 50 kg overturning task

First, note that the oscillations in z-axis forces and the
wheel torques after the fall are due to the robot trying to
regain balance while holding the lever. Second, the maximum
input force is 205.2 N and the wheel torque is -52 Nm. We
propose two reasons why these values are less than expected.
First, the planner ignores the forces perpendicular to the axis
of rotation of the lever, which can actually help overturn
the load. Second, we observe that the waist angle (black,
dash-dotted) changes as the input force increases although
we assumed the joint angles are fixed. We suspect the reason
is the mechanical compliance of the robot, in addition to the
flexing of the lever, that causes the upper body to move as
opposed to the load. The last observation is the motion of
the load center of mass is observed in the decrease in the
front scale readings and the corresponding increase in back.

We also conducted an obstacle pushing experiment where
a door is blocked by 15 cinder blocks (about 240 kg) on a
wheeled platform. Due to the friction with the ground, about
1500 N is needed to move the platform. Figure 9a shows
Krang using the 2.5 m lever to open the door using a planner
design. Note that we incorporate a new constraint for this
experiment to position the fulcrum in contact with the wall
to withstand the normal force from pushing the door. Also,
the robot was allowed to roll forward as the door opened
wider to keep the intended contact point.

Lastly, we analyze the efficiency of our optimization
approach as a feasibility test. As emphasized previously,
the main challenges are: (1) the commitment to the object
choices, (2) the number of face-edge matches and (3) the
random restarts. We have shown the number of face-edge
matches can be minimized with mesh analysis and we can
assume the number of unique available objects is small.
However, the random restart approach to avoid local minima
persists as the main cause of inefficency. Despite these
challenges, with the three level optimization approach, the

Fig. 9.

Key motion steps in pushing and overturning heavy objects

average timings for the overturning and pushing tasks over
20 random load trials are 81.32 and 55.08 seconds. Note that
as the required mechanical advantage increases, the feasible
subspace shrinks and finding good initializations gets harder.

VI. CONCLUSION

By embedding simple machine principles and the kinody-
namic robot constraints in a generic constraint optimization
framework, we propose an autonomous planner for object
manipulation towards overcoming physical challenges. The
planner reasons about object choices, partitions the configu-
ration space of the chosen objects by face-edge matches and
uses contraint optimization as a feasibility test. We showed
results in lever domains, overturning 50 kg and 100 kg
objects and pushing a 240 kg wheeled platform.

In future work, we will expand to autonomous perception
and motion planning, tackling different simple machines such
as inclined planes and pulleys, and focus on global nonlinear
optimization challenges such as efficient initialization rou-
tines and early-on detection of conflicting constraints.
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