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Based on the Comparison of Simulated and Real Robot Behaviour
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Abstract— This paper presents a novel approach to the run-
time detection of faults in autonomous mobile robots, based
on simulated predictions of real robot behaviour. We show that
although simulation can be used to predict real robot behaviour,
drift between simulation and reality occurs over time due to
the reality gap. This necessitates periodic reinitialisation of the
simulation to reduce false positives. Using a simple obstacle
avoidance controller afflicted with partial motor failure, we
show that selecting the length of this reinitialisation time
period is non-trivial, and that there exists a trade-off between
minimising drift and the ability to detect the presence of faults.

I. INTRODUCTION

It has long been assumed that swarm systems are robust, in
the sense that the failure of individual robots will have little
detrimental effect on a swarm’s overall collective behaviour.
However, Bjerknes and Winfield [1] have recently shown that
this is not always the case, particularly in the event of partial
failures (such as motor failure). The reliability modelling
in [1] shows that overall system reliability rapidly decreases
with increasing swarm size, therefore this is a problem that
cannot simply be solved by adding more robots to the swarm.
Instead, future large-scale swarm systems will need an active
approach to dealing with failed individuals if they are to
achieve a high level of fault tolerance.

Christensen et al. [2] proposed one such approach, inspired
by synchronised flashing behaviour seen in fireflies, that
allows failed robots to be detected and physically removed
by other operational members of the swarm. This ability
of robots to detect faults in each other is referred to as
exogenous fault detection [2]. The work of Christensen et al.
represents the state-of-the-art in exogenous fault detection for
robot swarms, but it only addresses the case of completely
failed robots, the effect of which on collective behaviour
has been shown to be relatively benign by Winfield and
Nembrini [3]. The occurrence of partial failures is of far
greater concern, as highlighted by Bjerknes and Winfield [1].

In [4] we proposed a novel method of exogenous fault
detection capable of detecting partial failures, based on
the comparison of expected and observed robot behaviour.
Rather than having robots learn the expected behaviour of
others over time, they would instead possess a copy of each
other’s controller code, which could be instantiated within
an internal simulator. The model of expected behaviour
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therefore comprises a copy of another robot’s controller,
and a simulator that is able to execute the controller code
in a simulated environment. Each robot would initialise
its internal simulation such that it reproduces the relative
positions and orientations of the other robots in reality. The
simulation can then be run for a short period of time, and
the resulting position and orientation of each robot may be
compared against the observed state of the robots in reality.
If there is a significant discrepancy between the predicted
and observed position of a particular robot, then this may
indicate that it has developed a fault that can be detected.

As an intermediate step towards the realisation of our goal,
we must first solve the problem of predicting the behaviour
of an isolated robot. Although this is a simpler task than
predicting the behaviour of a robot in a swarm, it is still non-
trivial. This paper reports our initial work towards solving
this problem.

A. Predicting Robot Behaviour

Model-based fault detection approaches typically attempt
to model the expected behaviour of a system using an
abstract mathematical model [5]. Our motivation for using
a simulation to predict robot behaviour, is that the controller
code provides an executable model of the robot’s expected
behaviour. If the real world scenario can be reproduced
in simulation, then assuming that the simulation is able to
mimic the real world controller’s sensory inputs and actuator
outputs, the simulated robot should behave like the real robot,
thus allowing us to predict its behaviour.

This approach also has advantages over some data-driven
fault detection methods. For example, if we simply monitor a
robot’s velocity over time, we may not be able to distinguish
between a fault that causes the robot to stop, and a situation
when the robot stops for a legitimate reason. Instead, if
we instantiate a model of the robot in simulation, the
robot controller encodes the additional context required to
differentiate these two scenarios.

The main problem with this method of predicting robot
behaviour is that there will always be some discrepancy
between simulation and reality, referred to as the reality
gap [6]. Existing robot simulators are typically only used
to develop controllers offline, or to evolve robot controllers



online [7]. Neither of these applications is specifically geared
towards accurately predicting the behaviour of a real robot,
so a crude model of robot behaviour is often sufficient.

There is a trade-off between the fidelity of the simulation
and the speed at which it can be executed. A high fidelity
simulation may model the robot’s behaviour very well, but
will run slowly. On the other hand, a low fidelity simulation
may run very quickly, but provide poor predictions of robot
behaviour. The simulation must run faster than real-time for
it to be useful for predicting robot behaviour. However, it
must also provide reasonably accurate predictions.

B. Fault Detection

Assuming that a simulation can provide sufficiently accurate
predictions of real robot behaviour, we propose that it can
be used for fault detection. The robot controller can be
instantiated within the simulation, embodied in a simulated
model of the real robot, and used to generate predictions
of non-faulty behaviour. A significant discrepancy between
these simulated predictions and the real robot’s observed
behaviour may indicate the presence of a fault.

Bjerknes and Winfield [1] demonstrated that motor failure
had the most detrimental affect on a swarm’s ability to
carry out its task. For this reason, we use motor failure
as case study in this paper. However, instead of testing
complete motor failure, which would be very easy to detect
due to rapid divergence of non-faulty and faulty behaviour,
we investigate partial motor failure. The particular fault we
consider here is a permanently slow left wheel. Over time,
this fault will cause the robot to veer gently to the left. This
is a minor fault, and therefore quite difficult to detect.

The focus of this paper is not upon finding optimal
solutions for the case study considered here. We are simply
interested in investigating the fundamental issues inherent in
this new fault detection approach, primarily as an indication
of whether similar issues might exist in other scenarios.

II. EXPERIMENTAL SETUP

This section describes the experimental setup that was used
to investigate the proposed method of fault detection.

A. Task Description

We chose the task of obstacle avoidance as our case study,
because it is well-understood, and relatively simple to model
in simulation. The robot performs obstacle avoidance in an
enclosed circular arena with a diameter of 800mm free of
obstructions, as shown in Figure 1.

B. The e-puck Robot & Linux Extension Board

We use a single open-hardware e-puck robot [8] augmented
with a Linux Extension Board (LEB) [9], which improves its
processing and memory resources, and enables Wi-Fi com-
munication. The e-puck uses two differential drive stepper
motors to move around. These afford it precise movement
with virtually no inertia, which makes its behaviour easier
to predict in simulation. The robot has eight active infra-red
(IR) proximity sensors distributed around its body, which we
use to provide input to the obstacle avoidance controller.

Fig. 1.
inside a circular 800mm diameter enclosed arena.

The e-puck robot with Linux Extension Board and tracking hat,

C. Robot Controller

The robot controller implements a simple obstacle avoidance
behaviour that sets the wheel speeds based on IR sensor read-
ings. The IR sensors are the only input to the robot controller,
and the readings obtained from them are directly translated
into left and right motor speeds using a vector of weights.
This tight coupling of the sensors and actuators effectively
results in a Braitenberg vehicle. IR sensor values below a
certain threshold are ignored, so the robot’s behaviour is
insensitive to IR interference. Unless any of the IR sensor
values are above this threshold, the robot will move in a
straight line at 2.6cm/s.

The controller is deliberately stateless. This is because
from the perspective of an outside observer, given only a
snapshot the of the system at a particular instant in time, it
would not possible to determine the internal state of the robot
controller. It may be possible to infer the internal state given
a history of the robot’s behaviour, however this is beyond
the scope of our initial work.

D. Simulator

We use a minimal 2D robot simulator developed by
O’Dowd [7], as shown in Figure 2. It was initially designed
for the embedded online evolution of robot controllers, and
is specific to the e-puck robot platform. This simulator was
chosen over more general purpose robot simulators due to
its minimal nature, and the eventual goal of embedding
behaviour prediction on the LEB. However, it was not
originally developed with the aim of accurately predicting
robot behaviour, so it was necessary to close the reality
gap further by modifying the simulation to more accurately
model the e-puck robot.

O’Dowd et al. [7] divided the reality gap into three
categories of correspondence between simulation and reality:

o Robot-robot correspondence

« Robot-environment correspondence

« Environment-environment correspondence
In order to accurately predict robot behaviour, all three
categories must be modelled with sufficient fidelity. We are



Fig. 2. Simulation of the e-puck in the circular arena shown in Figure 1.
The lines protruding from the robot’s body represent the range of each IR
sensor. The arrows represent a typical trajectory resulting from the obstacle
avoidance controller.

able to satisfy robot-robot correspondence quite easily. The
e-puck can be modelled simply as a circle of the same
circumference, and its wheel speeds are calculated from
measurements of the real robot. Its position is updated using
two-wheel differential drive kinematics. Each step of the
simulation represents 10ms of real-time, so the granularity
of movement is quite fine. Due to the absence of other
obstacles, environment-environment correspondence is also
easily satisifed by modelling the arena wall as a circle.

Robot-environment correspondence is harder to achieve, as
it relies upon the use of an accurate IR sensor model. It has
been shown that the response of active IR sensors depends
not only on the distance from an obstacle, but also the
angle, and the proportion of the beam that is reflected [10].
However, in this minimal simulator the IR sensor readings
depend only on the distance from the wall, and are emulated
using raw data obtained from the real robot’s sensors, with
the addition of uniform noise [7]. This deliberately simplistic
sensor model allows us to explore the effect of imprecise
simulation on the proposed fault detection method.

The simulated robot’s controller code is a direct translation
of the real robot’s controller code. Assuming the real robot is
non-faulty, this ensures that any deviation between expected
and observed behaviour is due solely to the reality gap and
observation inaccuracies.

The parameters of the simulation have been calibrated
manually, to produce a sufficiently faithful reproduction of
real robot behaviour. Our focus here is not upon obtaining
perfect predictions of the real robot’s future behaviour, we
merely seek predictions accurate enough that we can achieve
reliable fault detection.
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Fig. 3.  Real robot non-faulty and faulty class distributions, and the
predicted non-faulty class distribution over time. The robot begins at the
coordinates (200, -200) facing the wall at 45°, as shown in Figure 2.

E. Tracking System

In order to perform the comparison of expected and observed
behaviour, we require a method of observing the real robot’s
behaviour. An OptiTrack™ motion capture system is used
to monitor the position and orientation (or pose) of the
robot over time. The cameras detect the pattern of retro-
reflective markers placed on the ‘hat’ that the robot wears
(see Figure 1). The tracking data is used for post-experiment
analysis, and transmitted to the robot over Wi-Fi so that it
can be instructed to drive to a desired initial pose at the start
of each experimental run.

III. PROBLEM ANALYSIS

This section presents the results of initial experiments that
were carried out to investigate the issues inherent in using
simulated predictions of robot behaviour for fault detection.

A. Real Robot Behaviour

For any particular initial pose, the robot’s endpoint after a
certain time period may be recorded. However, even with
deterministic controller code, a real robot’s behaviour is
stochastic. This is because the sensory inputs to the controller
are often prone to noise, particulary in the case of active IR
sensors. There may also be a small discrepancy between the
wheel speeds output by the controller and the actual speed
of the robot, due to variations in the surface that the robot
is driving on. Therefore, for any particular initial pose, there
will in fact be a probability distribution of possible endpoints
that the robot may reach after a given time period.

To demonstrate this, we used the tracking system to
instruct the robot to drive to the coordinates (200, -200), and



TABLE I
ALL POSSIBLE CLASSIFICATIONS AND THEIR OUTCOMES

True class  Classification =~ Outcome

Faulty Faulty True Positive (TP)
Faulty Non-faulty False Negative (FN)
Non-faulty  Faulty False Positive (FP)
Non-faulty ~ Non-faulty True Negative (TN)

turn to an angle of 45°, such that it is facing the arena wall
as shown in Figure 2. Once in position, the robot executes
the obstacle avoidance controller for 20 seconds. Throughout
the duration of the run, the robot’s position is recorded using
the tracking system. The robot then drives back to the same
initial pose, and repeats the run. The experiment was first
carried out using a non-faulty robot, and then repeated with
a permanently ‘faulty’ robot that used a modified controller
which reduced the left wheel speed output. For each robot, 15
repeat runs were carried out. This allowed us to sample from
the underlying probability distribution of possible endpoints
for each class of behaviour.

Figure 3 shows the results from the experiment. Initially,
there is little variation in the robot’s behaviour. However,
over time the spread of the probability distribution increases.
This is because the robot’s trajectory after detecting the arena
wall varies due to differences in the IR sensor readings
between runs. It can be seen that the spread of the faulty
robot’s endpoint distribution similarly increases over time.

B. Simulated Prediction

In order to predict the behaviour of the non-faulty robot,
the simulation is initialised with the same initial pose. The
simulated robot’s behaviour is similarly stochastic, due to
noise added to the simulated IR sensor readings, and a small
amount of noise added to the motor speeds. The simulation
runs significantly faster than reality, so we repeat the same
run 100 times to sample from the distribution of endpoints.

It can be seen from Figure 3 that the simulated predictions
of the real robot’s non-faulty behaviour are not perfect, and
the difference between the classes increases over time. This
drift occurs due to the reality gap — specifically due to
imperfect robot-environment correspondence resulting from
the simplified model of the IR sensors.

C. Behaviour Classification

Distinguishing between non-faulty and faulty real robot
behaviour is essentially a classification problem. It would be
possible to simulate multiple different classes of fault, and
train a classifier to detect them. However, this would require
a priori knowledge of all possible failure modes. Instead, we
make the assumption that only non-faulty behaviour is known
from the robot controller, and that any significant deviation
from this should indicate the presence of a fault. If a fault is
so subtle that it is indistinguishable from the non-faulty class,
then it is assumed to be benign and not worth detecting. This
approach is an example of one-class anomaly detection [11].

We classify the real robot’s position based on a simple
uniform distance threshold from the mean of the predicted
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Fig. 4. TPR and FPR vs time from one particular initial pose. The robot
detects the arena wall 9 seconds after initialisation.

distribution. This implicitly defines a circular 2D spatial
decision boundary. Any test point within this region will be
classified as non-faulty, and any point outside it as faulty.
From Figure 3 we can see that the classes could be modelled
better using an ellipse, especially after a longer time period,
but a circular boundary is sufficient for this initial work.

Table I enumerates the four possible outcomes of the
classification. For any time period after initialisation, we can
classify each real robot endpoint shown in Figure 3 based on
its distance from the mean of the predicted distribution. The
classification outcomes are aggregated to produce the total
number of TPs, FNs, FPs, and TNs at a specific time. We
can then calculate the True Positive Rate and False Positive
Rate using the following equations.

TP
T Positi TPR) = —— 1
rue Positive Rate (TPR) TP + TN (1
False Positive Rate (FPR) — — = 2)
alse Positive Rate =P TN

Figure 4 shows how the TPR and FPR vary over time
when the robot starts in the same initial pose as in Figure 3.
Initially the robot behaves as if it is traversing unbounded
space, because the arena walls are beyond the range of its
IR sensors. Immediately after initialisation, faulty behaviour
is indistinguishable from non-faulty behaviour so the TPR is
0, but quickly increases to 1 after 7 seconds as the classes
separate and the faulty class moves outside the decision
boundary. If the robot were actually traversing unbounded
space, the TPR would remain at 1 because the classes would
simply separate further with time. The FPR would also
remain at O for a long time. This is because the simulator is
able to predict the straight line movement of the real robot
accurately, so drift is minimal and the non-faulty class would
remain contained within the decision boundary.

The non-faulty robot starts to detect the arena wall after
approximately 9 seconds, and it turns away. This causes



its trajectory to intersect that of the faulty robot, and the
once separable classes begin to overlap again. The result is
a temporary drop in the TPR due to an increase in the number
of FNs. This short drop in the TPR is relatively benign, as it
only briefly reduces the likelihood of detecting a fault when
the robot is near the arena wall. If the fault is persistent, then
it will be detected once the robot starts moving away from
the wall and the TPR recovers as the classes diverge again.

Of greater concern, is the effect of drift on the FPR over
time. Figure 4 shows that shortly after the robot detects the
wall, the FPR beings to increase. This is caused by increasing
drift between the simulation and reality, which results in
the non-faulty class moving outside the decision boundary
that encircles the predicted class, and a rise in FPs. We
would like to minimise FPs, as they may result in action
being taken against a non-faulty robot mistakenly suspected
of being faulty, which could be costly.

It is important to note that this increase in the FPR would
not occur in unbounded space, and is due to poor robot-
environment correspondence. The effect could be reduced by
improving the simulated model of robot behaviour, but there
will always be some amount of drift, because a simulation
cannot hope to model the complexity of the real world in its
entirety. Therefore, it is necessary to periodically reinitialise
the simulation after a certain time period, to keep drift at a
manageable level.

D. Reinitialisation Time Period

Selecting an appropriate reinitialisation time period is non-
trivial. A long time period allows the non-faulty and faulty
classes to separate, making them easier to differentiate, and
improves our ability to detect minor faults. Unfortunately,
a long time period increases the likelihood of the robot
encountering an obstacle before reinitialisation, and therefore
runs the risk of increased drift and potentially FPs.

A shorter time period is desirable because it minimises
drift, and reduces the latency of fault detection, but may
only allow us to detect major faults. Clearly, selection of the
reinitialisation time period must trade-off multiple objectives.
Furthermore, the optimal time period for the motor fault
considered in this paper may not be optimal for another class
of fault. Our focus here is not on finding the optimal time
period, but rather to illustrate that a trade-off exists.

We suggest that the time period should be chosen under
the assumption that the robot is always traversing unbounded
space. From Figure 4 we can see that after a time period of
8 seconds it should be possible to reliably detect the fault.
However, there is little benefit in using a time period much
longer than this, as the classes are already be separable.

IV. FAULT DETECTION AT RUNTIME

In the previous analysis, the TPR and FPR were calculated by
classifying endpoints generated from repeated non-faulty and
faulty real robot runs from the same initial position. When
performing fault detection at run-time, these distributions of
data are unavailable. Instead, the simulation is initialised
using tracking data and then predicts non-faulty behaviour
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Fig. 5. Raw and smoothed classifier output (distance between the real

robot endpoint and the predicted mean) over time. The reinitialisation time
period is 10 seconds. A fault is injected after 60 seconds.

over the specified time period. The real robot’s observed
position after the same time period (now a single test point,
rather than a distribution) is then classified according to its
distance from the predicted mean. Once the classification is
complete, the process repeats, and the simulation is initialised
with new tracking data. The correctness of the classification
is highly dependent on the robot’s initial pose. Figure 5
shows how the distance between the real robot’s endpoint and
the predicted mean varies with time, with a reinitialisation
time period of 10 seconds. Initially, the robot is non-faulty,
but a fault is injected after 60 seconds.

When the simulation is first initialised, the robot does not
encounter the arena wall within the 10 second time period,
so drift is minimal. As it approaches the wall, drift begins
to increase because the robot interacts with the wall before
the simulation is reinitialised. The level of drift peaks when
the simulation is initialised at the point where the robot first
detects the wall, as this maximises the amount of post-wall
drift that can occur within the time period. As soon as the
robot’s initial pose advances past the interaction with the
wall, drift immediately drops back to minimal levels, as the
robot is essentially moving through unbounded space again.

After the fault is injected, the robot’s baseline distance
from the predicted mean increases. This appears more stable
because the circular arena causes the faulty robot’s curved
trajectory to remain at more consistent distance from the
predicted mean. The brief drop after 80 seconds is caused
by an overlap in the classes when the robot reaches the wall.
If it were not for the spikes in the classifier output caused by
drift when the robot is non-faulty, the non-faulty and faulty
classes could be quite easily differentiated. For example, a
decision boundary at 40mm would maximise the TPR, but
the spikes in the output would result in many FPs.

Christensen et al. [12] demonstrated that by thresholding
a moving average of the output of a fault detector, the
number of FPs could be reduced by filtering out spikes
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in the data. We have applied the same technique to the
raw classifier output to produce the smoothed output shown
in Figure 5. This allows the fault detector to ignore brief
anomalies in the data, such that it only detects persistently
faulty behaviour. The smoothing not only helps to prevent
increases in the FPR, but also decreases in the TPR. This
is because short drops in the classifier output caused by
overlapping classes are smoothed out when the robot is
persistently faulty. With smoothing applied, the classes can
now be differentiated using the decision boundary shown
in Figure 5. However, note that this approach increases the
latency of fault detection, and may prevent some intermittent
faults from being detected.

A. ROC Analysis

Finally, Receiver Operating Characteristics (ROC) analysis
was carried out to assess the performance of the classifier.
This was achieved by calculating the TPR and FPR for
a range of decision boundary sizes. ROC curves for three
different time periods are shown in Figure 6. Each point on
a curve represents a particular TPR/FPR trade-off produced
by some decision boundary size. The diagonal line represents
the performance of a random classifier.

When a reinitialisation time period of 5 seconds is used,
the classifier’s performance is clearly much better than a
random classifier. However, the time period is too short as
it does not allow the non-faulty and faulty classes to fully
separate before reinitialisation. Using a time period of 10
seconds produces almost perfect results for this particular
case study, as shown by the larger area under the curve. The
decision boundary that gives the highest TPR with no FPs is

a threshold of 57mm from the mean, as shown in Figure 5.
A time period of 15 seconds causes the classifier to perform
much worse. This is because the longer time period results
in a large amount of drift, causing an increase in the FPR.

V. CONCLUSIONS & FUTURE WORK

To our knowledge, this paper represents the first application
of simulation to predicting robot behaviour for the detection
of faults in autonomous mobile robots. We have shown that
the main issue with such an approach is the selection of an
appropriate reinitialisation time period. This is a non-trivial
consideration, as a trade-off exists between minimising drift
caused by the reality gap, and detecting faulty behaviour.

The experimental results show that there exists an optimal
time period that provides the best trade-off characteristic
between the TPR and FPR for the partial motor failure used
as a case study. However, this may not be the optimal time
period for detecting other failure modes. Although this work
constitutes only a proof of principle, it is conjectured that
similar issues will exist in more complex scenarios.

In future work we intend to extend this approach to
implement exogenous fault detection in robot swarms as
proposed in [4], with the aim of furthering the development
of fault tolerant swarm systems.
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