
  

  

 
Abstract—The lack of haptic feedback during minimally 

invasive surgery can cause significant tissue damage and 

increase morbidity. Estimating the applied force from 

endoscopic images is a promising approach, especially using 

binocular images. However, many existing operation rooms are 

only equipped with monocular endoscopes, making force 

estimation more problematic. In this paper a new method for 

estimating the applied force from monocular endoscope images 

is proposed. The main contribution is the concept of virtual 

template that enables modeling of surface deformation without 

the knowledge of the undeformed shape. Results of the in vitro 

experiment with the lamb liver support the practicality and 

effectiveness of the proposed method. 

I. INTRODUCTION 

Minimally Invasive Surgery (MIS) reduces the patient 
recovery time and minimizes after-operation complications. 
But the global trend in adopting MIS shows that the risk of 
morbidity increases in MIS due to the lack of haptic 
feedback. The elevated morbidity is mainly related to the 
tissue damage resulting from the tool-tissue interaction in 
absence of haptic feedback  [1]. As an attempt to equip the 
surgical tools with haptic feedback, Robot-assisted MIS 
(RMIS) is exploited. In addition to the considerably higher 
cost of RMIS systems, sensing the forces that are applied to 
the tissue remains challenging for RMIS. As of now, no 
practically reliable and clinically approved tactile system 
exists  [2]. The alternative approach is to estimate the applied 
force. 

Estimating the interaction forces during MIS exploits the 
property that living organs behave as elastic materials. That 
is, they gradually restore their original shape after the 
deforming force is removed. In fact, if the applied force 
permanently deforms an organ, damage has occurred; the 
surgeon should have been alarmed about the force magnitude 
long before such deformation occurs. The relationship 
between the applied force and the deformation of the object is 
modeled by elastic modulus, which in case of linear elastic 
materials reduces to Hooke’s law. Conducting several 
experiments on seven different organs,  [3] proposes a 
quantitative model that relates the applied force to the 
deformation depth. 

The readily available source of information for extracting 
organ’s deformation structure during MIS is endoscopic 
video. Recently equipped operation rooms take advantage of 
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the stereoscopic vision. There exist standard algorithms in 
computer vision that reconstruct the 3D surface of an object 
from its stereo-images. The performance of these methods 
relies on the precision of the point correspondence between 
the stereo-images. Therefore image noise (due to the smoke) 
and occlusions, which are inherent to MIS images, degrade 
the performance of 3D reconstruction of the organ’s surface 
drastically. Interesting strategies have been proposed for 
enhancing the precision of the surface reconstruction, see e.g. 
 [4]. While stereo vision introduces an acceptable solution for 
surface reconstruction, for many operation rooms that are 
using monocular images, the cost of upgrading to 
stereoscopic vision is problematic.  

In this paper we propose a method that estimates the 
applied force based on the reconstructed deformation 
structure. There exist many works on deformation estimation 
from a monocular image as discussed below. These methods 
rely on knowing the undeformed shape of the object. In 
contrast, we limit ourselves to MIS-specific setting and 
propose the concept of a virtual template that allows us to 
estimate the deformation without any a-priori shape 
information. To experimentally evaluate our method, a 
PUMA robot was programmed to poke a lamb liver, while 
the interaction forces were recorded by a force sensor. The 
force signals are compared with the estimated force 
(generated by our algorithm) to evaluate the performance of 
the proposed algorithm. 

II. RELATED WORK 

There exist many approaches to model the deformation of 
an object. One classic approach, exemplified for e.g. by  [5], 
is to consider the physical laws that govern the object 
deformation and to minimize the energy constraints. This 
approach requires prior knowledge of the object's physical 
parameters, which are not available for living organs inside 
the human body. Another trend in modeling the surface 
deformation is to exploit learning algorithms to capture the 
deformation structure for different conditions (see e.g.  [6]). 
These methods require a rich set of training data, which is 
difficult to obtain in MIS applications. 

Interpolation-based methods are a totally different 
approach that takes advantage of the regularity of the organs' 
surface. Given the appropriate set of control points on the 
object's surface, one can reconstruct the surface, using 
interpolation techniques (see e.g.  [7]). High accuracy is 
achievable by proper selection of both control points and 
curve-fitting functions (e.g. polynomials, splines, radial basis 
functions). To employ this method in MIS, a sufficient 
number of traceable markers should be attached to the 

Using Monocular Images to Estimate Interaction Forces During 

Minimally Invasive Surgery 

Ehsan Noohi, Sina Parastegari, Miloš Žefran 

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

U.S. Government work not protected by
U.S. copyright

4297



  

surface of an organ during the surgery so the approach is not 
applicable. 

Another interesting approach is template-based 
deformation modeling (see e.g.  [8]). Assume that the initial 
3D surface shape (template) is known and its 2D image 
(reference image) is available. If a 2D image of the deformed 
object is available and the matching between the feature 
points in this image and the reference image is also available, 
then the deformed surface can be reconstructed from the 
template. Unfortunately, the governing system of equations is 
very ill-conditioned and generates many similar deformed 
surfaces (solutions). Several different approaches have been 
introduced to disambiguate the solution (see e.g.  [9] and 
 [10]). Nevertheless, this approach is impractical for MIS 
because the template of the organ is not available.  

The main difficulty of applying the above approaches to 
MIS is that they require prior knowledge that is not readily 
available. To tackle this issue, a new trend has emerged in 
recent years. Recovering a rigid body shape from video 
images by exploiting Structure-From-Motion (SFM) 
algorithms is a well explored approach  [11]. As a natural 
extension to the SFM, Non-Rigid Structure-From-Motion 
(NRSFM) is proposed in  [12]. The basic assumption in 
NRSFM is that the deformed surface is a linear combination 
of the basis shapes that needs to be determined by the 
algorithm. The idea is to find the best basis shapes that can 
minimize the projection error, while keeping temporal 
consistency between the frames. Theoretically, NRSFM 
works even without the knowledge of camera internal 
parameters or the camera motion model. However, each 
unknown aspect adds to the ambiguity of the solution, 
making NRSFM sensitive to the image noise and 
initialization  [13]. In particular, image noise due to the smoke 
during the MIS and tool occlusions are very hard to deal with 
in this approach. Also, in a complex deformation, the linear 
subspaces introduced in NRSFM are not sufficient anymore 
and higher-order (quadratic) models are required  [14].  

III. VIRTUAL TEMPLATE 

To avoid limitations of NRSFM, we propose a virtual-
template-based method that takes advantage of robustness 
and simplicity of template-based methods. However, to avoid 
relying on prior knowledge (actual organ template), we 
introduce the concept of virtual template. The key idea is to 
assume that that the organ surface is a smooth function and 
that the deformation is local. For instance, large portions of 
the surface of a liver can be approximated by a plane. 

Figure 1 schematically depicts the application of a virtual 
template to a spherical object (Figure 1.a). The deformation 
is such that part of the sphere is pushed back and transformed 
to a plane (Figure 1.c). We took a plane as the virtual 
template for the sphere (Figure 1.b). It is natural to infer that 
when the sphere is transformed to a plane, a plane will 
transform to a spherical shape. Simulation results also show 
that the deformed part of the sphere pops out of the virtual 
template, like a half sphere (Figure 1.d). Therefore, even 
without knowing the actual template for the object, we can 
determine the deformation patch and its transformed 
structure. The reconstructed deformed surface will be a good 
approximation of the actual deformation, if the virtual 

template is a local approximation of the actual template (e.g. 
a plane). Therefore, measuring the tool penetration inside the 
organ is equivalent to calculating the depth of the deformed 
patch. Virtual template will provide this depth with some 
scale ambiguity. We will discuss how to disambiguate this 
scale in section  V.C.  

 

 

 

 

a b  c d 

Figure 1: Simulation results of the virtual template concept. The 
deformation patch is determined from the virtual template: a) original 
object, b) virtual template of the original object, c) deformed object, d) 
deformed virtual template. 

IV. BACKGROUND 

A. Camera Inverse Model 

Considering the pinhole camera model and the 
homogenous transformation notation, the mapping between 
the points in the world coordinates and the corresponding 
points in the camera coordinates is as follows: 

 ��� � 1�� = 	�
 | 
���   �   �   1��
 (1) 

where 	 represents the internal camera parameters, 
 and 
 
are the extrinsic camera parameters, ��, �, �� is the position of 
a point in 3D world coordinates, ��, �� stands for its 
corresponding pixel in the 2D image coordinates and � is the � component of the projected point in the camera frame. 
Since the camera’s pose is available in MIS (e.g. through 
magnetic trackers), without loss of generality we can choose 
the world reference frame to be the same as camera’s 
reference frame. Therefore, 
 = ��×� and 
 = 0�×� and the 
projection mapping can be rewritten as: 

       ��� � 1�� = 	�� � ��� (2) 

where 	 = ��� ��� −��0 �� −��0 0 1 �, �� and �� are scaling factors in 

x and y directions, ��� is the skew between x and y axes, and �� and �� are x and y components of the origin of the 2D 
image frame in the reference frame. We can rewrite (2) as: 

 � �⁄� �⁄1 " = 	#� $��1% =  ℎ���, ��ℎ���, ��1 ". (3) 

If the object’s surface is described by '��, �, �� = 0, then 
(3) can be solved on this surface and the camera inverse 
model will be obtained for this object. That is, each pixel ��, �� in the image can be uniquely projected back to the 
corresponding point on the object’s surface ��, �, �� as: 

$���% = �ℎ(��, ��ℎ���, ��ℎ(��, ��ℎ���, ��ℎ(��, �� �, (4) 

Here, � = ℎ(��, �� is the solution of the surface function, ')� ℎ���, ��, � ℎ���, ��, �* = 0, assuming that it is solvable in 
terms of �. This will be generically true since the image is a 
projection of the object’s surface. 
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B. Acceptable Parametric Surface Model 

Let the implicit surface '��, �, �� = 0 describes the 
object’s surface. Also, assume that a 3D free-form parametric 
model +�,, -� = Γ�,, -, /� describes different shapes of the 
same surface, where + = ��, �, �� is any point on the surface, , and - are the surface parameterization variables, and / = �0�, 01, … , 03� is the set of 4 shape variables. The 
parametric model is assumed to be able to capture the 
deformation structure. For a model to be acceptable in our 
method, it should be invertible in the following three ways: 

1. For a set of 5 independent points, +6∗, and their 
corresponding parameterization variables, ,6∗ and -6∗, 
the set of 35 equations +6∗ − Γ�,6∗, -6∗, /� = 0 is 
solvable (35 ≥ 4) for the shape variables. These 
variables are obtained as / = Γ:�;+6∗, ,6∗, -6∗<�, where Γ:�. � is the solution function. 

2. For a given point, +∗, and a known set of shape 
variables, /∗, three equation +∗ − Γ�,, -, /∗� = 0 are 
solvable for the parameterization variables. These 
variables are then described as �,, -� = Γ>?�+∗, /∗�, 
where Γ>?�. � is the solution function. 

3. Let’s define @ = �� �⁄ , � �⁄ , 1� as the transformed 
version of the point + = ��, �, ��. For a set of A points +6, their corresponding transformed points, @6∗ (which 
are assumed to be independent), and their 
corresponding parameterization variables, ,6∗ and -6∗, 
are assumed to be known. The set of 3A equations @6∗ − � Γ�,6∗, -6∗, /� = 0 should be solvable (2A ≥ 4) for 
the shape variables. These variables are described as / = ΓC�;@6∗, ,6∗, -6∗<�, in which ΓC�. � is the solution. 

V. METHOD 

A. Notations and Assumptions 

To construct the deformation structure, the algorithm 
takes two images to work on. First one is the image of the 
original 3D object, before the deformation. The second one is 
the image of the deformed object. It is obvious that the 
method is well-suited for the video stream in MIS operations. 
Let’s refer to the pixels in the reference image by ��D , �D � 
and to the pixels in the target image (obtained from the 
deformed object) by )�E , �E *.  

Let’s assume that the virtual template is available as '��, �, �� = 0 and an acceptable surface model exists that 
describes the virtual template as +�,, -� = Γ�,, -, /�. 
Superscript F stands for the virtual template that is associated 
with the reference image and superscript � for the target 
image. Therefore, +D = ��D , �D , �D � = Γ�,D , -D , /D� and +E = )�E , �E , �E * = Γ�,E , -E , /E� describe the reference 
template and the target template, respectively. 

Since the target template is a deformed version of the 
reference template, there exists a correspondence relationship 
between the points on both templates. For a certain point on 
the reference template, +D, let’s assume +E to be the exact 
same point on the deformed template. An intuitive 
assumption for a surface model is that these two points have  
 
 

 
the same representation in the surface parameterization space. 
In other words, ,D = ,E and -D = -E. We will refer to this 
assumption as the “deformation assumption” hereafter and 
will assume that the acceptable surface model would not 
violate this assumption.  

B. Deformation Reconstruction Algorithm 

The deformation reconstruction algorithm requires four 
inputs: the reference image, �D, the target image, �E, the 
virtual template, 'D�+� = 0 , and the parametric surface 
model, Γ�. �. The algorithm calculates the shape variables of 
the deformed surface, /E, by executing following five stages: 

1. Fit the desired model Γ to the reference template 'D. 
In other word, calculate /D = Γ:�;+GD , ,GD, -GD<� for a set 
of points on the surface, i.e. 'D�+GD� = 0. The 
selection of the points, +GD, their corresponding 
variables ,GD and -GD, and the minimum number of 
required points are design options. However, 
constraint 1 of the model acceptability should be 
satisfied, see section  IV.B. 

2. Find a set of feature points, H6, on the reference 
image, H6D = ��6D , �6D�, and their corresponding points 
on the target image, H6E = )�6E , �6E*. The minimum 
number of required feature points is related to the 
number of shape variables, 4, see section  IV.B. 

3. Using camera inverse model, project the reference 
feature points, ��6D , �6D�, back to the 3D points on the 
reference virtual template, I6D. In other words, plug 
the virtual reference template 'D�+� = 0 and ��6D , �6D� 
in (4) to compute I6D. Note that 'D�I6D� = 0. 

4. Find the parameterization variables for the feature 
points on the virtual template. In other words, first 
compute �,6D , -6D� = Γ>?�I6D , /D� for all feature points 
and then, according to the deformation assumption, 
obtain ,6E = ,6D and -6E = -6D. ,  

5. Extract the shape variables for the deformed 
template, /E, using the feature points in the target 
image, )�6E, �6E*, and the associated parameterization 
variables, ),6E , -6E*. Considering (3), we can rewrite @6E = )�6E �6E⁄ , �6E �6E⁄ , 1* as follows: 

 @6E = ��6E �6EJ�6E �6EJ1 � = �ℎ�)�6E, �6E*ℎ�)�6E , �6E*1 �. (5) 

Therefore, extracting the shape variables means to 
compute /E = ΓC)K@6E , ,6E, -6EL*, or equivalently to 
compute /E = ΓMN)K�6E , �6E , ,6E, -6EL*.  

The deformed surface function 'E�+� = 0 is then 
available from the extracted model as: +�,, -� = Γ�,, -, /E�. 
Figure 2 depicts a schematic, illustrating the interconnections 
of the steps and inputs/outputs of each step in the algorithm; 
along with the graphical representations of the notation. In 
the next section, we will discuss common practical issues that 
may appear in our method and will provide proper solutions. 
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a b 

Figure 2: Illustration of the algorithm. a) The schematic of the deformation reconstruction algorithm. The circles with yellowish color are the inputs and the 
reddish colored circle is the output of the algorithm. Blue blocks represent different stages of the algorithm. b) The graphical representation of the notations 
used in the algorithm. A blue dot is the camera focal point, a cross marker indicates a pixel on an image, i.e. H6D = ��6D, �6D� on �D or H6E = )�6E , �6E* on �E, and a 
star is its corresponding point on the surface, e.g. point I6D�,6D, -6D� = Γ�,6D, -6D , /D� on surface 'D�+� = 0. 

 

C. Discussion 

As it was stated in section  III, the deformed template that 
our algorithm constructs is a transformed version of the 
actual object’s deformed surface. However, since the actual 
template is unknown, the transformation function is also 
unavailable. Therefore, the tool penetration depth that our 
algorithm calculates has an unknown relation to the actual 
penetration depth. To overcome this issue, we take advantage 
of the smoothness of the organs’ surfaces in human body. If 
the virtual template is also a smooth surface, let’s say a plane, 
our proposed algorithm actually finds a local approximation 
for the organ’s surface in the vicinity of the deformation area. 
The approximate location of the center of the deformation 
patch is obtained by tracking the tool-tip. The experimental 
results show that this approximation works very well for a 
lamb liver (see section  VI). 

There exist some practical issues as well. As it is apparent 
from (3), for any pixel ��, �� in the image there are infinite 
points mapping to the same pixel; well-known as “scale 
ambiguity” in the monocular vision. This issue may affect the 
proposed algorithm in its fifth stage. That is, there may exist 
infinite number of different solutions for /E = ΓMN)K�6E , �6E , ,6E , -6EL* and therefore infinite number of 
deformed surfaces. For instance, in a triangulated mesh 
model, if /E is a solution (vertices), A ∙ /E is also a solution 
for any scalar value of A > 0. 

An easy approach to resolve this issue is to constraint the 
deformed surface to pass through a certain point. However, 
since none of the points on the surface of the deformed object 
is available, this approach is not applicable in general. In 
contrast, introducing the virtual template enables our 
proposed method to provide such a point. Consider a feature 
point that resides in the undeformed area of the target image. 
The 3D coordinate of such a point on the reference template 
and on the deformed template is the same, i.e. +E = +D . 
Since +D  is known, this point can be used to constrain the 
deformed surface.  

A similar issue exists in case of the reference template; 
and as a result, the calculated penetration depth can be a 
scaled version of the actual tool penetration depth. Following 
the same approach as before, the reference template should 
pass through a certain point on the object’s surface. Let’s take 
the reference image to be the one in which the tool-tip is in 
touch with the object. Therefore, if the tool-tip coordinate is 
known, say +Q , the coordinate of the point of touch is also 

available, i.e. +D = +Q  and the ambiguity is resolved. The 
coordinate of the tool tip is available in MIS in two ways; 
either from the forward kinematic of the robot (in RMIS) or 
from the image (considering cylindrical shape of the tools). 

D. Force Estimation 

It is worth expressing the relationship between the tool-tip 
displacement and its penetration depth. When a tool interacts 
with an organ, three different transformations can happen: 
rotation, translation and deformation. While the penetration 
depth is only related to the deformation transformation, the 
tool-tip displacement is a combination of all three.  

A quantitative study on biomechanical characteristics of 
seven abdominal organs was reported in  [3]. Several 
phenomenological models were fitted to the collected 
experimental data and it was shown that the function that best 
described the relationship between the applied stress, R, and 
the strain, S, was: R = T)UVWX − 1* + �S. (6) 

where Z, T and � are the model parameters. If the applied 
force I interacts with the object over area [ and causes a 
penetration as deep as ∆, we have R = I [⁄  and S = ∆ ]⁄ , 
where ] is the thickness of the object in the direction of the 
applied force. Therefore, the relationship between the applied 
force and the penetration depth would be available.  

 
 

a b 
Figure 3: The experimental setup. a) Force/torque sensor, b) PUMA robot, 
equipped with a laparoscopic surgical tool. 

VI. EXPERIMENTAL RESULTS 

To validate the applicability of the proposed approach, we 
setup an experiment. We used a PUMA robot to poke a lamb 
liver. An ATI Gamma force sensor was installed at the tip of 
the robot’s hand and a laparoscopic tool was attached to the 
force sensor. The camera was installed on the experiment 
table (it was fixed to prevent camera motion ambiguity). The 
tool started in a position (almost 3 cm) above the organ and 
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moved on a straight line towards the liver
velocity. It stopped after traveling 45 mm on the line
straight line was aligned with the z-axis of the force cell. 
Figure 3 demonstrates our experimental setup and 
shows three snapshots from the tool-organ interaction video.

  
a b 

Figure 4: Three snapshots from the tool-organ interaction video, 
beginning of the deformation, when tool is in touch with the organ, 
time when tool is half-way through, c) at the end of the motion

Figure 5 shows the graph of a typical measured 
signal. The signal indicates the force that 
liver by the tool. At time t=2s, the robot started to move, 
introducing some noises to the signal. Around time t=7s
tool was in touch with the organ and the force interaction 
started. Finally around time t=9s, the robot stopped movin
the motion noise vanished and the force signals started to 
settle. Note that, although the motion was in z
the force had components in x and y directions. This 
to the displacement of the liver (rolling) from its original 
pose. As it is appear in Figure 5, after the end of the 
motion some force interaction existed that can be due to the 
organ damage (a mark remained on the organ surface after 
the tool removed). Since this behavior introduce
measurements, we only considered data collected before this 
behavior, e.g. the period of time between 
Figure 5. 

Figure 5: The force interaction between the tool and 

To implement our method, we chose 
rational basis spline (NURBS) as our acceptable surface 
model  [15]. To model a surface in NURBS, a grid of 
control points, 6̀a , is required. Each control point is 
associated with a rational base function, 
model is then described as: 

+�,, -� = b b 
6a�,, -� 6̀a
3

ac�
d

6c�  

The next step in implementing the proposed method 
feature detection and matching. As a well-known issue with 
the MIS cameras, the light source is placed next to the 
camera lens. Additionally, the objects (organs) are very close 
to the camera (around 3 inches away). This produces 
saturated areas in the image, where we only see the white 

ht line towards the liver, with a constant 
mm on the line. The 

axis of the force cell. 
demonstrates our experimental setup and Figure 4 

organ interaction video. 

 
c 

organ interaction video, a) at the 
hen tool is in touch with the organ, b) at 

c) at the end of the motion. 

a typical measured force 
force that is exerted to the 

, the robot started to move, 
to the signal. Around time t=7s, the 

tool was in touch with the organ and the force interaction 
, the robot stopped moving, 

the motion noise vanished and the force signals started to 
s in z-axis direction, 

components in x and y directions. This was due 
to the displacement of the liver (rolling) from its original 

after the end of the robot’s 
that can be due to the 

organ damage (a mark remained on the organ surface after 
ntroduces error to our 

measurements, we only considered data collected before this 
behavior, e.g. the period of time between t=7s and t=9s in 

 
tween the tool and the organ. 

To implement our method, we chose Non-uniform 
as our acceptable surface 

. To model a surface in NURBS, a grid of 5 × 4 
d. Each control point is 

associated with a rational base function, 
6a. The surface 

(7) 

the proposed method was 
known issue with 

cameras, the light source is placed next to the 
camera lens. Additionally, the objects (organs) are very close 
to the camera (around 3 inches away). This produces many 

n the image, where we only see the white 

patch of light reflections. Adding the wet nature of the 
environment inside the body to the situation, it is hardly 
possible for any standard feature matching algorithms to 
perform. As a result, we selected and matc
points manually for our experiment. 

As discussed in  IV.B, the number of required feature 
points is at least half of the parameters that we need to 
calculate. Due to the limited number of matched feature 
points in these images, we needed 
shape variables. Here we used a grid of 
in which the central point contribute
configuration, its surrounding eight points encode
concavity of the deformed surface and t
points encoded the deformation ope
example of the position of the control points and the resulting 
surface. To reduce the number of parameters
added some constraints to the control points, e.g. the outer 16 
control points resided on the reference template
deformed surface should pass through these points

Figure 6: An example of a deformed surface, modeled in NURBS. The 
whole deformation structure is captured with only 25 points 

To address the scale ambiguity in the reference template
we obtained the exact coordinate of the tool
robot’s forward kinematics. For scale ambiguity of the 
deformed template, we located an undeformed patch on the 
target image, among other methods, by calculating “optical 
flow” between the two images. 

Figure 7 illustrates the results of running the algorithm for 
selected three frames of the video (
reconstructed surface is shown below each image. 
the depth, orientation and position of the deformed patch 
changes, as in the images. The penetration depth would be 
the distance between the deformation apex and the center of 
the deformation opening.  

 

  

a B 
Figure 7: Three images and their reconstructed deformed surfaces, a) 
reference image and the virtual template, b) image of the deformed liver (
the time when the tool is half-way through) and its deformed template from 
a top-side and a bottom-side views, 3) image of maximum deformation (at 
the end of the motion) and its template from a top

 

patch of light reflections. Adding the wet nature of the 
environment inside the body to the situation, it is hardly 
possible for any standard feature matching algorithms to 
perform. As a result, we selected and matched the feature 

 

, the number of required feature 
parameters that we need to 

calculate. Due to the limited number of matched feature 
 to reduce the number of 

a grid of 5 × 5 control points, 
in which the central point contributed to the apex 
configuration, its surrounding eight points encoded the 

surface and the remaining 16 
deformation opening. Figure 6 depicts an 

example of the position of the control points and the resulting 
To reduce the number of parameters even more, we 

raints to the control points, e.g. the outer 16 
control points resided on the reference template and the 
deformed surface should pass through these points. 

 
n example of a deformed surface, modeled in NURBS. The 

deformation structure is captured with only 25 points (red dots). 

scale ambiguity in the reference template, 
we obtained the exact coordinate of the tool-tip from the 

For scale ambiguity of the 
we located an undeformed patch on the 

target image, among other methods, by calculating “optical 

of running the algorithm for 
(shown in Figure 4). The 

reconstructed surface is shown below each image. Note that, 
the depth, orientation and position of the deformed patch 

The penetration depth would be 
e distance between the deformation apex and the center of 

  

  
 

 
 

c 
images and their reconstructed deformed surfaces, a) the 

image of the deformed liver (at 
) and its deformed template from 

3) image of maximum deformation (at 
the end of the motion) and its template from a top/bottom-side views. 
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The calculated penetration depths for 10 selected frames 
from the video are shown in Figure 8, along with the 
estimated and measured force signals. As depicted in Figure 
8.a, the estimated penetration depths closely follow a line. 
This is in agreement with the constant velocity motion of the 
robot on a straight line. In this particular experiment, the tool 
reaches the maximum penetration depth, estimated 13 mm, 
within 1.2 seconds. 

  
a b 

Figure 8: The experimental results, a) calculated penetration depth during the 
experiment (diamond) along with the linear regression (dashed line), b) 
estimated force signals (dashed line w/ circle) and measured one (solid).  

The force estimation was carried out based on (6). To 
obtain values of Z, T and � for a lamb liver, we followed the 
same steps as reported in  [3] (that study is based on porcine 
organs). The average values of the parameters for a lamb 
liver are Z = 2.03, T = 4.99 f`g and � = 0.35 f`g. The 
tool-tip area was [ = 3 mm2 and the liver thickness was ] = 5 cm, approximately. The estimated force is shown in 
Figure 8.b, together with the magnitude of the measured 
force. As illustrated in this figure, the estimation error is 
considerably small. The maximum absolute error was less 
than hFFiFjk� = 0.12 l and the root mean square error 
(RMSE) was hFFiFmjn = 0.07 l.  

VII. CONCLUSION 

The problem of lack of haptic information in minimally 
invasive surgical operations is considered in this paper. The 
proposed method estimates the tool-organ force interaction 
from monocular camera images with a high accuracy. The 
method consists of a deformation reconstruction algorithm 
and a force estimation step. The performance of the method 
was proved for an ex corpus test of a lamb liver, where the 
RMS of the force estimation error (RMSE) was 0.07 l. 

In contrast to the template-based deformation 
reconstruction method, our virtual-template-based approach 
does not require the exact template of the organ; only 
smoothness assumption is sufficient. Moreover, unlike 
NRSFM methods, the proposed algorithm does not require 
the whole sequence of images in a video; a reference image 
and a target image are sufficient. Like many other machine-
vision methods, our proposed method relies on the 
correctness of the feature matching process. However, as it 
was presented in previous section, by meaningfully 
constraining the surface model, our algorithm efficiently 
works with very few feature points. 

Although we included force estimation as a part of our 
method, measuring the required parameters of human living 
organs (in vivo tests) are both impractical and patient 
dependent. We employed the force estimation mainly to 

evaluate the performance of the proposed method, in absence 
of a ground truth measure for deformation reconstruction 
algorithm. In fact, in our ongoing research, the next step is to 
study on a direct relation between the deformation structure 
and its associated damage. Numerous skillful surgeons 
successfully operate MIS every day without perceiving any 
force information, which proves the efficiency and 
effectiveness of such a mapping. Our proposed algorithm 
integrated with this mapping will provide a cost effective 
solution for operation rooms with monocular vision.  
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