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Abstract— Passivity-based bilateral teleoperation control sys-
tems can offer robust stability against arbitrarily large com-
munication delays at the expense of poor transparency. In fact,
most passive control frameworks are designed for a particular
task and do not adjust transparency when transitioning be-
tween different environments. This paper presents a bilateral
control strategy that passively compensates transparency when
transitioning between free motion and hard contact motion
scenarios. The proposed control framework exploits the effect
that the wave impedance (a design parameter of the passivity-
based scattering transformation) has on transparency without
compromising closed-loop stability regardless of time-varying
communication delays. To adjust transparency, the control
scheme smoothly switches the wave impedance between a low
value, ideal for free motion, and a sufficiently large value, suited
for hard contact scenarios. We show, by rigorous mathematical
treatment and simulations, that the proposed control strategy
can effectively adjust the transparency of the system without
compromising stability.

I. INTRODUCTION

The two foremost goals of any bilateral teleoperation con-
trol architecture are to guarantee transparency and stability
of the closed-loop system. According to [1], transparency
is achieved when the transmitted impedance to the operator
equals the environmental impedance. An alternate definition
is given in [2], where a teleoperator is said to be trans-
parent if the positions and forces at the master and slave
sides are equal. Unfortunately, it is well known that perfect
transparency in a bilateral teleoperation system cannot be
achieved without compromising stability due to the presence
of inherent time delays in the communication channel [1].

Motivated by the need of transparent yet stable time-
delayed teleoperators, several control frameworks have been
proposed in the literature (refer to [3], [4] for a review of
control schemes and a comparison among different methods).
A major breakthrough in the field came in the late 1980s
when passivity-based control and scattering theory where
combined to guarantee the stability of force feedback teleop-
erators independently of arbitrarily large constant delays [5].
Ever since, the scattering and passivity formulation, refined
later with the notion of wave variables [6], has arguably
become one of the most predominant control approaches for
stabilizing bilateral teleoperators.

Despite the popularity of passivity-based control schemes,
most of them (including wave-based approaches) tend to
suffer from poor transparency [1], [7]. Two of the main
reasons for the lack of transparency compensation are 1)
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the conservatism incurred by passivity-based control tech-
niques and 2) the tuning of the control gains based on
the expected environmental dynamics which, more than
often, are uncertain. For instance, in wave-based architec-
tures, transparency highly depends on a control parameter
namely the wave impedance. For free motion, the ideal wave
impedance should be infinitesimal such that the increase
of inertia induced by the delay is barely perceived by the
operator. In contrast, for stiff or hard contact environments,
the desired wave impedance should be infinitely large such
that a stiff environment is felt by the operator [7]. Tailoring or
averaging the wave impedance to best satisfy both scenarios
leads to a teleoperation system that feels sluggish in free
motion with substantial position errors when interacting with
stiff environments. A similar effect is experienced when
tuning traditional proportional-derivative (PD) architectures
where control gains are limited by stability constrains and,
consequently, position errors arise while in contact motion
[8].

Online compensation of position errors during contact
tasks, aimed to improve static transparency, has been pre-
viously addressed in [9] and [10] via a wave-based scheme
that introduces the notion of a variable rest length. The role
of the variable rest length is to modify or shift the master’s
and slave’s desired targets such that their position difference
converges to zero. In both methods, the communication
delays must be known and constant in order to perform the
position compensation.

Recently, in [11], a wave-based control framework was
proposed where the wave impedance passively switches
between an arbitrary small value, ideal for free motion, and
an arbitrary large value, suited for stiff environments. The
idea of modifying the wave impedance according to the re-
mote environment was previously explored in [12]. However,
the switching strategy of [12] requires the mechanical and
control systems to dissipate a minimum amount of energy
to perform stable transitions. Other recent methods designed
for transparency compensation include [13] and [14]. In [13],
a two-layer approach is proposed where the first layer is
designed to improve the transparency of the system based
on the knowledge of the task and environment, while the
second layer oversees the preservation of passivity. In [14],
a switching two-channel control architecture is developed for
linear systems with constant delays.

Herein, we extend the time-varying wave impedance con-
trol architecture of [11] to bilateral teleoperators with time-
varying communication delays. We present a stable update
strategy that smoothly adjusts the wave impedance value
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according to the current environmental dynamics without
compromising the stability of the closed-loop system. In
addition, we remove the need of transmitting remote con-
tact information to the master robot by updating the wave
impedance at the slave side rather than at the master side.
Simulation results validate the proposed control architecture.

II. MODELING THE TELEOPERATION SYSTEM

We address the task of remotely controlling an n-degree-
of-freedom (DOF) slave robot coupled bilaterally to an n-
DOF master robot through a time delayed communication
channel. The master and slave teleoperator have nonlinear
Euler-Lagrangian dynamics given by!

M;(q:)8 + Ci(ai, &) + gi(a:) =f; + 70 (1)
where q; = q;(t) € R™ are the generalized coordinates,
M;(q;) € R™*™ are the bounded, positive definite inertia
matrices, C;(q;,q;) € £™*™ are the centrifugal and Coriolis
matrices, g;(q;) € R™ are the gravitational forces, f; =
f;(t) € R™ are the human and environmental forces, and
7; = T4(t) € R™ are the control inputs for the master
(¢ = m) and slave (¢ = s) robots. Due to its Euler-Lagrangian
dynamic structure, we assume that (1) satisfies the well
known passivity property M;(q;) = C;(q;, 4;)+CF (qs, &)
In addition, we consider robotic systems where M;(q;)
is upper and lower bounded, which in turns implies that
IC: (@i &)|| < e, [ld]] for some re, > 0.

In the following analysis we make the assumption that
delays on the transmission lines from master to slave, T, (t),
and from slave to master, Ts(t), are finite (i.e., 37 > 0 such
that T, (t) — Ts(t) < T) but not necessarily equal.

III. BILATERAL CONTROL FRAMEWORK

Our control goal is to design the inputs 7; such that
stability and transparency of the close-loop system (1) are
achieved. Explicitly, we would like 7; to enforce position
coordination for finite time-varying delays, i.e.,

qdm (t) — Qs (t) — 0 (2)
and static force reflection, i.e.,
fm(t> — _fs(t) (3)

as q; — 0; regardless of the structure of the remote
environment. Furthermore, we would like the operator to
perceive low and high impedance values when interacting
with free and stiff environments, respectively. Accordingly,
we propose the design of the control inputs as

T =7i— Mi(q;)Ad;— Ci(ai, i) Aqi+ gi(ai) — Kidi (4)
where A € R"*™ and K; € R"™*" are, without loss of
generality, diagonal positive-definite constant matrices and

7; = T;(t) € R™ are the coordination control inputs to be
designed. Then, the dynamics of the system (1) reduces to

M;(q)t; + Ci(qs, q)ri = £ — K;q, + 75 6]

For simplicity, we will omit time dependence of signals except when
considered necessary.

where r;(t) = q;(t) + Aq,(¢). It can be shown that (4) is a
passivity-based control method, which means that the master
and slave robots are passive with respect to input f; +7; and
output r;. For completeness, we now define passivity.

Definition 3.1: [15] A system with input x and output y
is said to be passive if

fot xTydf > —k2 + 12 fg xTxdf + p? fot yTydd  (6)

for some k,v, p € R. Moreover, it is said to be lossless if
equality persists and v = p = 0, input strictly passive if
v # 0, and output strictly passive if p # 0.

A fundamental property of passive systems is that the two-
port connection of two passive systems is also passive. This
implies that we only need to enforce the passivity of the
communication channel in order to guarantee the passivity
of the entire system.

A. Passivity of Communication Channel

To passivize the communication channel, we propose the
use of the scattering transformation along with the wave
variables u; and v; [5], [6]. For the slave side, the outputs
of the scattering transformation are computed as

vo(t) =(2B,() 72 (Bs(t)rsalt) — 7s(t) (D)
rea(t) =(2B; (1) 2uy(t) — B (8)7s(t) ®)

S

where B(t) € £"*", namely the wave impedance, is a
bounded, diagonal, time-varying, positive definite matrix that
will be designed under transparency concerns; and u,(t) =
Ys(t)am (t — Tpn(¢)) is the incoming wave variable from the
master’s scattering transformation. The scale factor ~,(¢) is
a positive semi-definite scalar function that will be designed
under passivity constraints and rs4(¢) € R™ is a new variable.
Then, the coordination control input can be computed as

T5(t) =Bs(t)(rsa(t) —rs(t)). )

Likewise, for the master side, the outputs of the scattering
transformation are computed as

1

W (t) =(2Bm (1) ™% (B (8)tma(t) — Tim())  (10)
Tma(t) =28, (£)) 2V (t) — By, (t) T (t) (11)

where r,,,4(t) is a new variable, B,,(t) = Bs(t—Ts(t)), and
Vi (t) = Ym (t)vs(t — Ts(t)) for some positive semi-definite
function ~,,(t). Similar to the slave case,

T (t) =Bm () (tma(t) — tm(t)).

The reader can verify that using the scattering transformation
and the control inputs (9) and (12), (8) and (11) reduce to

rma(t) = % (Ym (D)rs(t — T5(t)) + rim (1))
rsa(t) = 5 (Vs (T ()rm (t — T (1)) + r(t))

where D(t) = By (t — Tin (t) — Ts(t — 2

(12)

(13)
(14)
()} Bo()~ 3.

Now, manipulating (7) to (12), we obtain that the power

equation for the communication channel is given by

— (T%I‘md + TSTrSd) :% (ufn v +vi- ui) (15)
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Fig. 1. Flow of Information between Master and Slave Robots.

where the negative sign at the left side of the equation is
owed to the power inflow. Integrating (15) with respect to
time yields the total energy in the communication channel

— [ (L (O)ra(0) + 7T (0)r,4(0))do
= Efo (u?, () = 7s(0)u, (0 — T (0))) db
+ 3 Jy (VE(0) = 1m (0)VE(0 — To(0))) db.
Note that the energy is independent of B;.
depends on the delay and the choice of ~;.

From (16) we see that a sufficient condition to guarantee
the passivity of the communication channel is

JuuZ,(0)d6 > [ 42(0)u (6 — T, (6))dd
Jyv2(0)do > [ 42,(0)v2(0 — T.(8))db.

Therefore, we will design s and ~,, such that (17) and
(18) are satisfied. To this end, we propose to transmit the
total energy of the incoming wave variables along with the
wave variables (see Fig. 1 for a pictorial representation). The
equations governing s and 7, are given by

(16)

It, however,

a7)
(18)

1, if B, > B,
Vi =1 267E} ; (19)
W, otherwise
where 3; > 0 are constant design parameters and
B = [ v2(0)d0 — [ v2,(0)d0 (20)
= [T (” 6)do — [ uZ(0)do. (1)

are the energy stored (also called energy reservoirs) in the
communication channels. Note that the energy is never neg-
ative, since I/; — 0 implies that 7; — 0 and, consequently,
the outgoing wave variables also converge to zero. Therefore,
(17) and (18) are satisfied for all t.

Next, we will adapt the wave impedance according to the
remote environmental dynamics to improve the transparency
of the teleoperation system.

B. Tuning of the Wave Impedance

Transparency in wave-based control frameworks, as pre-
viously discussed in Section I, highly depends on the wave
impedance, B;(t). Ideally, B;(t) should alternate between
a small value, B,,;,, when the slave is free to move, and a
large value, B4, When the slave makes contact with a stiff
environment [7]. Therefore, we propose the update law for
the diagonal jj" entry of B, to be given as

Bﬂwz{ﬂ%» i ||£2(0)]] > 0

—ﬁj (t), otherwise (22)

where f7 is the j'* component of f, and Bj and gj are

nonnegative, bounded scalar functions that drive BJ7 to
Y . - .

B and BJ). | respectively. The motivation behind (22)

is to smoothly drive the wave impedance to its ideal value.

IV. STABILITY ANALYSIS

We evaluate now the stability and transparency (in the
sense of (2) and (3)) of the bilateral control system under
different scenarios. First, we prove passivity and, therefore,
closed-loop stability when the environment and the human
operator are assumed to be passive. Then, we relax the
assumption on the human operator by considering the in-
teraction of the slave robot with a stiff environment.

Proposition 4.1: Consider the teleoperation system in (1)
with control law governed by (4), (9), (12), (19), and (22).
Suppose that T}, (t) and T,(t) are time-varying and finite.
Furthermore, assume that the human and remote environment
are passive with respect to r;, i.e., 3 k; € R such that

- fo £lr;d0 > —k? for i = {m, s}. (23)

Then, the closed-loop teleoperator is stable, the coordination
error is bounded, and the velocities converge to zero.
Proof: Let x = [ql,qf, vl vT £1 £T]T and define
x; = x(t+0) € C,0 € [-T,, — Ts,0], where C =
C([-r,0],R®") denotes the space of continuous functions
taking the interval [—r, 0] into 6" for r» > 0 [16]. Consider

the following positive definite function
V(t,x;) =Hu + Hs + 82, + 62— [ (e, + £7r,)do
— Jo (T Erma + T r4)do (24)

where H; = 3r7 M;(q;)r;+39] AK;q; > 0 fori € {m,s}.
Note that r,,4, T/, r'sq, and 7, are all functions of r,,, and
rs. Taking the time derivative of (24) we obtain

V(t7 X¢) = for + Tr v — QL K@ + £, + 71,
- qus(.ls - fgrm - fsTrs -

= — (trmd — Tm) B (Tma — ')

— (rog — 1) " By(rsq — 15) —

Since V (t,x;) < 0 Vx;, we can conclude that the closed-loop
teleoperation system is stable and that V (¢, x;) < V(0,x¢) <
00, which implies that r,,,, rs, qs, Q. and therefore, q,, —qs
are bounded. The latter also implies that q,, and q, are
bounded. Moreover, from the fact that fo (9,x4)d¢ < o0,
we conclude that q,,,, qs € Ls. The last result, along with the
boundedness of B;, implies that 7; € L., (where we applied
the fact that M;, C;, and g; are all bounded). Consequently,
we obtain that q; € L. Then, using Barbalat’s Lemma [17]
we can finally conclude that q;(t) — 0 as t — oo. [ |

The above proposition shows boundedness of the coor-
dination error and asymptotic convergence to zero by the
velocities. The next statement will provide a bound to the
coordination error along with sufficient conditions for its
asymptotic convergence to zero. ,

Proposition 4.2: Assume that 37 (t), B (t) < ¢, T (t) +
Ts(t) <T,and |TZ\ < d for some ¢, T, d > 0. Then, the coor-
dination error converges to a ball of radius (¢T'/ Bin) ||Qm |-

Tﬁl‘md — Tzrsd
- Q%Krn(.}m
a: Ked, <0. (25)
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Moreover, if 3¢, such that 7, (t) = vs(t) = 1 Vt > t,, then,
the system achieves position coordination and static force
reflection in the sense of (2) and (3).

Proof Consider (24) and its time-derivative (25).
Since fo (p,x4)dep < oo, we have that 2(r,q(t) —
En(£)) = Yo (01 (=T () =1 (1) and 2(r,a(t) —14(1) =
Ys (O (@) rm(t — T () — rs(t) belong to Ly, where we
used (13) and (14). From Proposition 4.1, we also have that
qi» q; and q; are bounded, which together with |TZ| < d,
implies that +;, r;4, and r; are all bounded. Using then
Barbalat’s Lemma, we can conclude that r,, — r,,q and
rs — g converge to zero. Since, q; — 0, the latter result
also implies that v, (t)qs(t — Ts(t)) — qm(t) — O and
Ys ()T (t)gm (t — T (t)) — qs(t) — 0. Since T; are finite,
we have that v,,qs — q., and vsI'q,, — qs.

Now, let us assume that the energy filters (20) and (21)
are initialized at a nonzero value. This assumption does not
violate the passivity of the communication channel according
to Definition 3.1. Then, we have that ; € (0,1]. Similarly,
note that 0 < T'(¢t) < 1+ ¢T'/Bynin for all ¢, since both
B, and T, are bounded. Using the latter two statements
yields that either q,,(t) — qs(t) — 0, which implies (2), or
that 7, (t)vs(t)I'(¢) — 1, which implies that q,,(¢) — qs(t)
converges to a ball of radius (¢T'/Bpmin) ||am||- Hence, the
proof for the first statement is complete. To prove the second
statement, let us assume that v,,(t) = ~4(t) = 1 for all
t > t,. Then, from the previous conclusion we obtain that
as(t) = Ym(t)as(t) = am(t) as t — oo, which implies
position coordination in the sense of (2). Similarly, since
steady-state conditions imply that q;(¢),q;(t) — 0 and
B, (t) — Bs(t), we can show that (5) reduces to

2f,, = =B A (qs — —BsA(qm — qs)

which yields that f,,, = —f; and the proof is complete. H

Remark 4.1: We showed the stability of the teleoperator
when the human and environment are modeled as passive
systems. We also showed that the coordination error con-
verges to zero if 3¢, such that v;(¢) = 1 V¢ > t,. The latter
implies that F;(t) > §; V¢ > t,. Therefore, let us examine
the behavior of the energy reservoirs in (20) and (21). We
have that the delayed wave variables are compressed during
periods of decreasing delay and stretched during periods for
which the delay increases. Therefore, since 0 > ~; > 1,
the energy reservoirs (20) and (21) will increase/decrease
when the delay decreases/increases. However, as soon as
an energy reservoir decreases below its threshold value [3;,
the scale factor ~; goes below unity attenuating the energy
extracted from the energy reservoir. This means that the
proposed energy control strategy tends to favor the build up
of stored energy in the communication channel. In practice,
this strategy leads to E; > (; after some time.

We now relax the previous assumption of passivity on the
human operator by considering the interaction of the slave
robot with a stiff environment. In the following, we will
model the human operator’s and environmental forces as

£(2) fs(t) = — Pirs (t) (26)

qm) ’ 2f8 =

=N (t) = praTm (1),

where p; are positive constants and 7,,, is a bounded force,
i.e., 31 € (0, 00) such that ||n,,(¢)|| <n V¢ > 0. The human
operator’s model simulates a non-passive system where the
human exerts a bounded force on the master robot but his/her
action is resisted by his/her own passive dynamic component
fpfnrm (see [18]). The environment is modeled as a strictly
passive system (e.g., a hard surface) with p = p,.

Proposition 4.3: Consider the teleoperation system in (1)
with control law governed by (4), (9), (12), (19), and (22).
Let the human operator and environment be modeled as in
(26). Assume that T,,(¢t) and Ts(t) are time-varying and
finite. Then, the system is input-to-state stable [17] and the
positions and velocities are uniformly ultimately bounded.
Proof: Let x = [qL,ql, vl vI1T and y =
[l . ql, vl rT]T. Both vectors are related through a linear
diffeomorphism, i.e., x = Ty, where 7 € RAnXAn g g
nonsingular, bounded matrix [19]. Therefore, x = 0 <—
y=0and x € L, <y € L. Note also that r,,4, T,
rsq, and 7, are all functions of r,, and r,.

Now, define x; = x(t +6) € C,0 € [T, 0] and consider
Vt,xs) = Hm+Hs — fg (L ra+71Tr,4)d0 as Lyapunov
candidate function. Taking its time derivative yields

’ T 2 ..T 2..T
V(t7 Xt) =MNmTm = PpTmTm — PsTs s

- q\s Ker - (rmd - rm)TBm(rmd - rm)
- quQO - (rsd - rs)TBs(rsd - I‘S)
2 . 12
<nllenll =3 (0 il + 2 (55) el
ie{m,s}

where o(-) denotes the smallest eigenvalue of a square
matrix. Next, define ¢ = min{p?,, p2,o(K,,),0(K,)} and
let €9 € (0,€) be an arbitrarily small positive constant. We
can then upper bound V (¢, x;) as

V(t, %) <n x| = (e = eo) [xell* = eo [xe* @7)

and obtain that V(t,x:) < —eo[xi® V [Ixe] > L.
Therefore, we can conclude that the system, w1th state
variable x, is input-to-state stable with ultimate bound given
by n/(€ — €o). Since boundedness of x implies boundedness
of y, we also conclude that the positions and velocities are
uniformly ultimately bounded. |

Next, we will evaluate the case where the human operator
exerts a bounded force (26) without a passive component.

Proposition 4.4: Consider the teleoperation system in (1)
with control law governed by (4), (9), (12), (19), and (22).
Let the human operator and environment be modeled as in
(26) for p,, = 0. Assume that T,,(¢) and Ts(t) are time-
varying and finite and that T, < 1. Then, the system is input-
to-state stable and the positions and velocities are uniformly
ultimately bounded.

Proof: Suppose that 3§ < § < 1 such that § <

Ts(t) < 6 ¥t > 0 and consider the following positive
definite, radially unbounded function

V(t,xt) =Hm + Hs + p3 «[;fthS(t) rlr,do

— fg (TP ra + 71rsy)do. (28)
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where p§ = p2/(1 — ) — pf > 0 for some small enough
p1 > 0 (note that such py and p; exist as long as T < 1).
The time-derivative of (28) can be computed as

V(t,x)) =tLr,, +7Lr, — 4L Kopém + e + 77,
P(2)(1 - Ts)(rsTrs - rsT(t —To)rs(t —Ts))
— 4L Ky — T} Tmg — TETaa
which after some manipulation can be bounded as
V(tx) <n vl = oK) 4l = o} e
— 3|l =) - ek

2B o eyeate

where p2 = p2(1 —8) < p2(1 — T) is a positive constant.
Now, using (13) and combining terms we obtain that

V(t, %) <nl|vmll — a(Km) lém]* = o3 [l

2
—T) =t |

o2 2
= o(Ko) |asl” = (F2(Bm) = 1) [l
where u = lo(B,) (p%—l—ig(Bm))_l/Z. If we define

e = min{pf, ;0(By) — p?,0(Kn),o(Ks)} > 0 and let
g0 € (0,), we obtain (27) and conclude that V (t,x;) <
—eo ||xe))®, Y |Ixel| > ——--. The latter implies that the
system is input-to-state stable with ultimate bound given by
n/(e — &0). Since boundedness of x implies boundedness
of y, we also conclude that the positions and velocities are

uniformly ultimately bounded. |

V. NUMERICAL EXAMPLE

We simulate the response of two identical 1-DOF linear
robots with asymmetric, time-varying communication delays.
The dynamics for the master and slave robots are given
according to (1) for M; = 1[kg], C; = 0[kg/s|, and
g; = 0[N]. The communication delays are taken as 1), (t) =
0.5 4 0.2cos(5t) [s] and Ts(t) = 0.5 + 0.2sin(5t) [s] for a
maximum round-trip delay of 7'= 1+ ‘? [s]. The environ-
ment is modeled as a stiff wall located at q,, = 6 [m] with a
spring-damper reaction force given by f, = 10*(q,, — qs) —
10?45 [N] if qs > qu and O[N] otherwise. Likewise, the
human operator is modeled as a saturated PD-type controller
with £, (t) = sat_1515{20(qq(t) — Q. (t)) — Qm }, where qq
is the desired trajectory (traced in Fig. 2) and sat, z{-} is the
saturation function with x and Z as lower and upper bounds.

The gains for the controller are chosen as K; = 0.2 [N/m)]
and A = 0.5[1/s], while the update laws for B are

- 3

B(t) = 0.05(Bmaz — Bs(t)) + 0.1(Bpmaz — Bs(t))2
B(t) = 0.05(By(t) — Bpin) + 0.1(Bs(t) — Bpin)?

where By = 2[N-s/m] and Bpa: = 50[N-s/m] are
assumed to be the ideal values.

Fig. 2 to 5 contrast the motion and force response of the
teleoperator under a time-constant and a time-varying wave
impedance value. For the constant wave impedance case we
chose a trade-off (average) between the two ideal values, i.e.,
B;(t) = Bave = (Bmin + Bmaz)/2. Observe that for both

. (29)

30 \ \ T T <

_ 20} - N _
=) -, \\ s
i 10' // \\ - - qd |
o i .

0 /\/ Hard Contact \'_

0 20 40 60 80 100 120 140 160 180

Time [s]
Fig. 2. Position of Master and Slave Robots when By, s = Bave.
20f supol—fo(0)} =343 N]  —f,, |
= | — —f ]
= E‘*—
‘ ‘ ‘ Hard Contacf R

0 20 40 60 80 100 120 140 160 180

Time [s]
Fig. 3. Human and Environmental Forces when By, s = Bave.
30 . . " . =
e ~
L I ~ < — qm
— 20 L7 ~ _ ]
=) - S ~ s
- | e S -~ dq4 |
c‘j 10 ——— ~
0 Hard Contact \_

0 20 40 60 80 100 120 140 160 180
Time [s]

Fig. 4. Position of Master and Slave Robots when B; (t) are Time-Varying.

201 sup;>of—fs(t)} = 76.7 [N —¢,,
z
oy
-10 Hard Contact
0 20 40 60 80 100 120 140 160 180
Time [s]
Fig. 5. Human and Environmental Forces when B;(t) are Time-Varying.

cases, the master and slave robots track the desired trajectory
qq with relatively small error during the free motion segment
of the simulation, that is, for ¢t € [0,54] [s] and ¢ > 148 [s].
However, note from the force plots (see Fig. 3 and 5) that
the operator has to apply a larger force during free motion
when using the constant wave impedance value. This is an
adverse effect on transparency due to the use of a trade-off
value that is larger than the ideal wave impedance B, ;.

The hard contact scenario takes place at ¢ € [54,148] [s]
and is highlighted in the plots by the gray-shadowed rectan-
gular area. Observe that static force reflection is achieved
more rapidly (refer to Fig. 5) when a constant wave
impedance is used. Note, however, that both controllers
eventually achieve a satisfactory force tracking behavior. In
terms of the master-slave coordination error (see Fig. 2 and
4), the time-varying wave impedance case yields a smaller
error.

For comparison purposes, Fig. 6 plots the master-slave

4379



4 T T T T
/Pea.k Error = 23.4 [m] == Bmin

llam () — as(&)] [m]

Hard Contact

0 20 40 60 80 100 120 140 160 180

Time [s]

Fig. 6. Master-Slave Coordination Error for Constant Wave Impedance
Values Bpin = 2, Bmaz = 50, and Bave = (Bmin + Bmaz)/2, and
Time-Varying Wave Impedance Bty € [Bpmin, Bmaz].
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Fig. 7. Impedance and Static Stiffness Perceived by the Human Operator
During Free Motion and Hard Contact, respectively.

coordination error using different impedance values. Note
that the proposed time-varying wave impedance approach
satisfactorily assimilates the ideal behavior of using a con-
stant lower impedance while the slave is in free motion and
the behavior of using a larger impedance once the slave
robot makes contact with the wall. Likewise, the average
transmitted impedance and static stiffness to the human
operator while in free and hard contact motion scenarios,
respectively, are plotted in Fig. 7 for different values of B;.
The average impedance Z,,. and static stiffness K, where
computed as

1 b f, 1 e f,,dt
che :7/ ~7mdt7 m
b —ta Ji, Am ta —te J, ldm — asl|

where [tq,t5] = [11,29][s] and [t.,tq] = [55,145][s] are
intervals of time for which ¢,, € R and q,,, — qs € R do
not cross zero. In general, lower values of impedance and
larger values of stiffness are desirable. Observe from Fig. 7
that the best overall results are obtained when a time-varying
wave impedance is employed.

che =

VI. CONCLUSION

In this paper, we presented a novel wave-based bilateral
control architecture that passively improves the transparency
of the teleoperation system regardless of the presence of
time-varying communication delays. The control framework
is built using concepts of passivity and exploits the effect
that the wave impedance has on transparency. The main
contribution lies on the provision of an update policy that

smoothly adjusts the wave impedance value according to the
current environmental dynamics without compromising the
stability of the closed-loop system. We showed that the pro-
posed control framework guarantees asymptotic convergence
of the velocities and boundedness of the coordination error if
the human operator and environment are passive. Then, we
relaxed the passivity assumption on the human operator and
showed that the master-slave position error and velocities are
ultimately bounded. Furthermore, we illustrated via simula-
tions the effectiveness of the control strategy and compared
its performance against the use of different constant wave
impedance values. The simulation results demonstrated that
the proposed controller can effectively adjust the transmitted
impedance to the operator according to the remote dynamics.
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