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Abstract— In robotic machining applications, the precision of
the robot is of great importance. In heavy machining process,
the lower stiffness of industrial robots results in greater position
errors than that of the CNC machine executing the same
process. In this contribution, a new stiffness model with 36
degrees of freedom and nonlinear descriptions are presented
together with a new identification method. Experimental results
outline the potential of the model in machining application.

I. INTRODUCTION

Industrial manipulators are traditionally used for the ex-
ecution of repetitive tasks such as welding, handling and
painting, while CNC machines are used in machining tasks
where the external force applied to the end-effector is
not negligible any more. However, due to the adaptability,
flexibility, higher manoeuvrability, a bigger workspace and
relatively low cost of the industrial robots, they could be
a better option in industrial machining. Despite this useful
features, inherent robots accuracy issues limits industrial
robots usage in high precision machining applications, and
consequently few successful implementation are achieved
within the manufacture industry. According to Schneider [1]
sources of errors in robot machining can be classified in
three categories: 1) Environment dependent errors, 2) Robot
dependent errors (geometrical and non-geometrical errors),
and 3) Process dependent errors.

A load applied on a body changes the geometry of the
body which is known as deformation or compliant displace-
ment. Consequently, the stiffness of a body can be defined
as the amount of force that can be applied per unit of
compliant displacement of the body [2], or the ratio of a
steady force acting on a deformable elastic medium to the
resulting displacement [3].

The main reason preventing the adoption of industrial ma-
nipulators in heavy milling applications, in favour of standard
CNC machines, is the fact that joints compliance affects
negatively the overall manipulator stiffness measured at the
Tool Center Point (TCP). As a result, the externally exerted
force to the robot end-effector due to the interaction between
the tooltip and the workpiece can deform the manipulator
which in turn, results in positioning errors. The values of the
machining forces depend on the process parameters: spindle
speed, axial depth-of-cut, radial depth-of-cut and chip load.
In heavy machining the deformation and the positioning
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error rise with the external forces. Therefore the deformation
must be accurately compensated in order to achieve higher
accuracy in positioning.

Previous approaches to increasing the position accuracy
are primarily based on kinematic calibration [4]-[6] and
stiffness modelling of the manipulator [7]-[10]. Kinematic
calibration approaches determine kinematic parameters ac-
curately. However, applying solely these approaches is not
enough for increasing the accuracy in milling processes as
the body deformation is not considered in such methods. In
stiffness compensation methods, the robot stiffness matrix
is identified offline based on experimental data and then, a
proper online position controller is applied considering that
the deformation due to the process forces is provided using
a stiffness model.

In the Literature, the methods adopted to compensate
for the robot deformation can be classified as model- and
sensor- based methods. While the former methods use an
already identified model to predict the robot deformation and
subsequently modify the robot position reference [7]-[10],
the sensor based methods either measure the deformation
inducing the position error [11] or/and the tooltip position
is retrieved from high precision 3D or 6D position mea-
surement sensors, the measured error is used in the control
loop to adjust the reference position accordingly [12]. Sensor
based compensation methods require higher implementation
efforts and hardware costs, mainly due to the costs of sensors,
than model-based methods; but, on the other hand, they
offer higher position accuracy. The main limitations of these
methods are the disturbance rejection bandwidth at the robot
end-effector, communication delays for sensor data and the
noise in the measurements.

In model based approaches, the deformation of the body
corresponding to the externally exerted force is measured
provided that the stiffness matrix has been identified offline.
Several experimental configurations can be devised in order
to apply and measure the wrench, i.e. force and torque, on
robot TCP. In paper [8], Authors use a force/torque sensor
mounted on a tool. The external load is generated using a
wire suspended between the robot tool and an air cylinder
that can be adjusted to vary the force magnitude. Zhang [13]
uses a more simple method where only the gravity from an
external known load is used.

To compute the compliant displacement, different methods
have been proposed which are based on spring equation.
In [14], joint stiffness matrix is formulated. In [15], the
formulation was developed and the conservative congruence
transformation (CCT) was proposed.



This contribution is organized as follows: An introduction
to robot modeling and robot machining is given in Section I.
Section II describes the developed stiffness modeling. The
identification of the developed stiffness model is presented in
Section III. Section IV demonstrates the quality of the model
and the potential for robotic machining using a model-based
compensation approach. Section V validates the developed
methods in machining application followed by conclusions
in Section VI.

II. ROBOT DEFORMATION MODELLING

Generally speaking, a multybody system acted upon by
external loads deforms because of its compliance. Partic-
ularly within a robot, components like gearboxes, motors,
links and other transmission elements are the major sources
of compliance which contribute to the deformation.

In general, the purpose of the stiffness analysis is to define
the stiffness of the overall system through the derivation of
a stiffness matrix that relates the compliant displacement
∆X = [∆x ∆y ∆z ∆ϕ ∆ψ ∆θ]T of the end-effector frame
due to the external wrench W = [Fx Fy Fz Tx Ty Tz]T

acting on it, where ∆x, ∆y, and ∆z are the deviations in
robot end-effector position and ∆ϕ, ∆ψ, and ∆θ are the
deviations in Euler angles due to the external wrench W;
F and T also represent the Forces and Torques along the
x-, y-, and z-axis. The relationship between the vector of
the compliant displacements ∆X and external wrench W
in reference frame o− xyz can be written as:

W = K ∆X (1)

where K6×6 is called the Cartesian stiffness matrix. It is
worth noting that K depends on the choice of the reference
frame in which ∆X and W are defined. As a result, if one
defines the new reference frame o′−x′y′z′, Eq. 1 will change
to W′ = K′ ∆X′ where in general K 6= K′. However, W′

and ∆X′ can be related to W and ∆X using the following
equations: {

W′ = A W
∆X′ = a ∆X

(2)

where: 
A =

[
o′Ro 03×3

o′Po × o′Ro
o′Ro

]
a =

[
o′Ro 03×3
03×3

o′Ro

] (3)

where o′Ro and o′Po are the rotation and position matrices
representing the orientation of the frame o − xyz w.r.t the
frame o′ − x′y′z′, respectively.

Using Eq. 2, it is also possible to find out the external
wrench applied to each link of a general industrial manipu-
lator. In other words, expanding Eq. 2, one can easily show
that for each component of the robot the following equation
holds:

{
jFj = jRi

iFi
jTj = jRi (iFi × iPj + iTi)

(4)

where iPj and jRi are the position of the origin of coordi-
nate frame j w.r.t frame i and rotation of coordinate frame
i w.r.t frame j, respectively.

Consequently, by using equations 1 and 4, it is then possi-
ble to measure the compliant displacement of the origins of
the coordinate systems attached to each component. Having
found the deviation of the origins of all 6 coordinate frames
due to the external wrench, it is possible to calculate the new
homogeneous transformation matrices corresponding to each
component, considering the change in joint variables due to
the external wrench.

To measure the total compliant displacement, it is possible
to use the forward kinematics:

0T′6 = 0T′1 × 1T′2 × 2T′3 × 3T′4 × 4T′5 × 5T′6 (5)

where i−1T′i, i = 1, ..., 6 are the transformation matrices
corresponding to the new joint variables. As a result, the
total compliant displacement of the robot end-effector can
be calculated by comparing the 0T6 and 0T′6, where 0T6

is the transformation matrix before the external forces are
exerted. This means that ∆P and ∆R represent the total
compliant displacement of the robot end-effector where:{

∆P = 0P6 − 0P′6
∆R = 0R−16

0R′6
(6)

It is worth noting that, if desired, the deflection of the
origin of each joint can be calculated by comparing the initial
unloaded transformation matrix with the loaded transforma-
tion matrix for the corresponding serial kinematic chain. In
other words, the generalized form of Eq. 6 can be used
to calculate the deflection of each joint due to the external
wrench: {

∆P = 0Pi − 0P′i
∆R = 0R−1i

0R′i
(7)

where i stands for the desired joint. Equation 7 can also be
used to find out how accurate the deflection of each joint is
calculated by comparing it with the measured frames under
load (compare Section III).

III. STIFFNESS IDENTIFICATION

A. Mathematical Formulation

The evaluation of stiffness matrix K in Eq. 1 can be
carried out using a least square approach, provided that
the full wrench vector and the full pose displacement, i.e.
displacement in position and orientation, can be measured in
the same coordinate frame.

Considering the frame o − xyz, the external wrench and
the corresponding deformation in this frame can be expressed
as: {

W = [Fx Fy Fz Tx Ty Tz]T

∆X = [∆x ∆y ∆z ∆ϕ ∆ψ ∆θ]T
(8)



Fig. 1: Experimental setup

The fitting error is expressed as:

e =

N∑
i=1

eT
i ei =

N∑
i=1

Wi WT
i − (

N∑
i=1

∆Xi WT
i )T K (9)

Equation 1 can be re-written in the following form:

WT = ∆XT KT (10)

The objective is to minimize:

S(K) = ‖WT −∆XT KT ‖2 (11)

Equation 11 is equivalent to:

(12)
S(K) = (WT −∆XT KT )T (WT −∆XT KT )

= WWT −W∆XTKT

−K∆XWT + K∆X∆XTKT

Differentiating the resulting equation with respect to K
and equating to zero gives:

(13)−2∆XWT + 2∆X∆XTKT = 0

which gives:

⇒ KT = (∆X∆XT )−1∆XWT (14)

Considering a set of N measurements, the least square
solution of the Cartesian stiffness matrix K̂ is:

(15)K̂T = (

N∑
i=1

∆Xi ∆XT
i )−1 (

N∑
i=1

∆Xi WT
i )

Based on this formulation stiffness is identified from
experimental data in Section III-C.

B. Experimental Setup

Figure 1 shows an experimental setup for identifying
the stiffness of a KUKA KR 125 industrial manipulator
and robotic machining.The KR 125 together with a K600
optical measurement system from Nikon Metrology [16] and
a Chopper 3300 spindle from Alfred Jäger are combined
on a 14 t machine bed. The sensing of a series of LEDs
with three cameras in an appropriate workspace allowes to
measure several frames with an accuracy of ±90µm in a
cycle time up to 1 kHz. The possibility to attach redundant
LEDs is essential for reduction of measurement noise and
for the provision of a constant measurement signal while
shadowing LEDs by robot movements.

The measurement of the external wrench is performed
using a ATI Theta force/torque sensor theta 2500/400 [17];
this sensor is mounted on the robot flange. To measure the
deformation, the K600 optical measurement system is used.
The external wrench in different magnitude is exerted to the
robot end-effector in different directions.

It should be pointed out that stiffness matrix could be
identified at a single robot configuration by changing the
wrench magnitude and direction. Anyway, performing the
identification experiment in different configurations not only
allow the verification of the deformation model, but also the
reduction of the identification error through averaging.

To have a better understanding of the deformation, the
external load attached to the robot end-effector varies from
−max to max payload at each configuration, where −max
implies the max payload in the negative direction of the x-,
y-, or z-axis of the end-effector frame. Based on the set of
four LEDs (with each of them providing 3D information) a
complete 6D frame can be computed. It should also be noted
that prior to the wrench measurement at each load condition,
a few seconds are imposed in order for the deformation to
be stabilized. Each load scenario is captured with a set of
10 measurements in order to minimize measurement errors.
Afterwards, the pose of the end-effector and the wrench
are recorded. The deformation of the robot components,
including the end-effector, under the exerted external load
is simply obtained by comparing the frames in initially
unloaded and in loaded condition.

C. Stiffness Identification Result

The stiffness identification is carried out in four dif-
ferent robot configurations and the 6 DoF deformations
are measured for each joint. Figure 2a shows the 6 DoF
displacements of the origin of joint 4, i.e. displacements
and rotation along and around x-, y-, and z-axis which is



(a)

(b)

Fig. 2: 6D stiffness model of joint four including three
rotations and three translations and b) rotational stiffness
around z-axis of all six joints

the result of the linear least square fitting of the Eq. 1
for all four configurations (configurations are indicated by
different colors). Due to the 6 DoF deformation all joints
have impact on deformation of the position and orientation
of the robot TCPs. This means that the stiffness matrix in the
proposed method is not diagonal. External forces which are
purely exerted on either x-, y-, or z-axis direction can cause
deformation in all directions and orientations. It can also be
seen that the linear least square fitting may not result to a
very good model due to the disparity of the collected data
in some joints. As a result, in order to increase the accuracy
of the stiffness model, a non-linear least square fitting was
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Fig. 3: Real-Time deformation compensation block diagram;
sF , δqr and qr represent the external force, deformation in
reference, and reference joint angles, respectively.

used whenever required. It has to be noted that the main
compliances of robotic joints are of rotational character, as
there is a clear trend in rotational degrees of freedom x, y and
z. Yet the displacements in translational directions only show
amplitudes in the range of the measurement noises without
any clear trend.

Figure 2b shows the dominant compliances of all six joints
in the rotation around the z-axes. Note that the compliance
function is a combination of compliance effects and backlash.

IV. DEFORMATION COMPENSATION

Figure 3 shows the block diagram of the real-time de-
formation compensation implemented in TwinCAT [18] for
a KR 125 industrial manipulator of series 2000. The mea-
surement noise has to be filtered out from force sensor data.
Besides, the coordinate frame assigned to the force sensor is
different from that of the robot base. As a result, the force
sensor data is transformed to the robot base frame. On the
other hand, in order to only deal with the external forces
which are exerted to the end-effector due to the machining
process, the weight of the force sensor, the fixture and the
work piece are compensated. The deformation caused by
machining forces is calculated in real-time using the model
developed in Section II, and the joint references trajectory is
recalculated by the robot controller. Consequently, the end-
effector pose is modified. It should also be noted that the
robot controller cycle time is 1 ms and hence, the deforma-
tion is calculated and fed to the controller every millisecond.

In order to verify the performance of the proposed de-
formation modeling and compensation, the performance is
evaluated both in static and dynamic scenarios.

A. Static Performance

Using the same setup for stiffness identification, different
loads are applied to the robot end-effector and the corre-
sponding deformations in position and orientation are mea-
sured. The quality of the compliance model is demonstrated
by two degrees of freedom in Figure 4a and Figure 4b
showing the displacement along x-axis and around z-axis.
Comparing the measured deformation and the calculated one,
it can be seen that the the modeling errors along x-axis and
around z- axis cause on the TCP an average of 0.1219 mm
and 0.0161◦ over a range of around ±1.5 mm and ±0.25◦,
respectively. The Cartesian deviation of the TCP shows an
average of 0.4056 mm, for all captured measurements the
Cartesian error can be specified to <36 %. It should also be
noted that the calculated deformations in Fig. 4 are calculated
with regard to the 6D deformation of each joint.

B. Dynamic Performance

To verify the dynamic performance of the proposed stiff-
ness compensation different scenarios can be thought of
such as applying an impulse load to the robot end-effector.
The contact time, i.e. when the moment that the workpiece
reaches the machining tool, can also be considered as an
impulsive wrench and be used in evaluation of the dynamic
performance of the stiffness compensation. Figure 5 shows
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Fig. 4: Wrench-Deformation curve a) deformation along x-
axis (∆x) and b) deformation around z-axis (δθ) w.r.t the
robot base frame

Fig. 5: Dynamic deformation response during the contact
time: displacement in y-axis

the deformation response under such an impulsive wrench.
As it can be seen, there is no compensation delay. On the
other hand, it can be understood that even though the trend of
the displacement along any of the axes has a direct relation
with the applied force in that direction, it is also related to
the forces applied in other directions. This is due to the off-
diagonal elements in the stiffness matrix which also explains
the coupling of the robot joints motion.

V. EXPERIMENTAL VALIDATION

In order to asses the effectiveness of the proposed defor-
mation compensation method, milling tests on a steel block
have been conducted. To this end, a Chopper 3300 spindle
from Alfred Jaeger is used together with an 8 mm endmill

Fig. 6: Setup for machining with spindle and mounted
force/torque sensor

Fig. 7: Circle machined in steel with compensation of
deformation

tool with four teeth from Hoffman Group. The full setup
is displayed in Figure 6. The purpose is to mill a circle of
radius 35 mm (compare Figure 7).

Figure 8a shows the result of the machining measured
with a Werth CMM of model Videocheck HA400 [19] while
Fig. 8b shows the point-to-point error between the machined
circle and the nominal circle. Although the normal contact
force sF pushes the robot end-effector away from the metal
block, the deformation compensation forces the robot to
modify the end-effector and follow the desired path. Since
the cutting force is significant in this setup, the overall effect
is that there are still some point-to-point errors between the
machined circle and the nominal one. The absolute average
point-to-point error between the inner circles is 0.2 mm
over 31.2 mm, the radius of the inner circle. Furthermore,
it is clear that in some points there are larger errors and
noticeable displacement in the machined circle from the
nominal one. This is actually because of the left metal
filings that has not been removed from the surface after
the machining, in order to keep the experimental results
as realistic as possible. A proper polishing could eliminate
this problem which is out of the scope of this experiment.
Having polished the surface, the point-to-point error and
thus, the average error is reduced significantly.
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(b)

Fig. 8: Experimental results a) machined circle and b) point-
to-point error

VI. CONCLUSIONS

In this paper the modeling, identification and robot
deformation compensation caused by external process forces
from the machining application are covered in detail. The
experimental results show that the proposed method, which
is indeed a feed forward model based compensation, can
significantly reduce the error caused by robot deformation.
Although robot deformation compensation is theoretically
feasible, there are still a lot to do in order to see successful
stories of robot machining applications in industry. The
main challenges on this road are 1) how to simplify
the stiffness identification process while its accuracy is
preserved, 2) how to deal with the possible time delay
between measuring the external force, calculating the
corresponding deformation and modifying the robot end-
effector position which is a question of optimisation of
the speed of the robotic machining and the accuracy,
and 3) how to deal with the entry and exit points where
the robot is under some impulsive wrenches which is a
matter of how dynamic the stiffness compensation should be.

The future work of this research would be dealing
with the entry and exit points together with modifying the
robot controller in order to reduce the point-to-point error
further.
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