
Guaranteed Road Network Search with Small Unmanned Aircraft

Michael Dille,1,2 Ben Grocholsky,2 and Sanjiv Singh2
1SGT Inc., NASA Ames Research Center

2Robotics Institute, Carnegie Mellon University

Abstract— The use of teams of small unmanned aircraft in
real-world rapid-response missions is fast becoming a reality.
One such application is search and detection of an evader
in urban areas. This paper draws on results in graph-based
pursuit-evasion, developing mappings from these abstractions
to primitive motions that may be performed by aircraft, to
produce search strategies providing guaranteed capture of road-
bound targets. The first such strategy is applicable to evaders
of arbitrary speed and agility, offering a conservative solution
that is insensitive to motion constraints pursuers may possess.
This is built upon to generate two strategies for capture of
targets having a known speed bound that require searcher
teams of much smaller size. The efficacy of these algorithms
is demonstrated by evaluation in extensive simulation using
realistic vehicle models across a spectrum of environment
classes.

I. INTRODUCTION

Small unmanned air vehicles (UAVs) are increasingly pop-
ular in surveillance, mapping, and rescue applications owing
to their portability and minimal infrastructure requirements
while retaining advantages over ground-based vehicles such
as higher speed and lower vulnerability to obstacles. One
particular benefit of their relatively low cost and ease of
deployment is the enabling of cooperative missions requiring
moderately large teams.

One such mission is to search for a potentially fleeing
evader, particularly in an urban environment in which half
the world’s population lived by 2007, a proportion expected
to reach 70% by 2050. [1] Beyond simple ubiquitousness,
urban areas provide convenient simplifications for pursuit of
targets assumed to lie within their road networks. Crucially,
an evader’s state space imposed by a typical road network
possesses greatly increased sparsity (proportion of the con-
tinuous bounding region that is of relevance) and much-
decreased connectivity (number of states connected to any
other given state) relative to an equivalently-sized open area.
This is due to a road network’s fundamental structure as a
collection of one-dimensional paths with discrete points of
connectivity and effectively reduces the search space while
increasing predictiveness of target motion.

In general, targets of such a search may be assumed to
be uncooperative, with behaviors that may range from mere
ignorance of the ongoing search to adversarial evasion in
which every effort is made to avoid capture. As it is highly
difficult in practice to effectively model targets and the risk
of target loss may be very undesirable, conservative strategies
making minimal assumptions are preferable. Additionally,

Pittsburgh, Pennsylvania, USA, 15213 (Email:mdille3@ri.cmu.edu)

performance guarantees (e.g. that a strategy is mini-max opti-
mal in a game-theoretic sense) provide necessary confidence
that searcher resources are being used effectively.

This paper builds upon graph-based pursuit-evasion ab-
stractions which, when combined with appropriate mappings
to UAV capabilities, provide performance-guaranteed search
behaviors and represents some of the first efforts to apply
such formalisms to physical UAV teams. First, a basic
time-invariant strategy is presented that offers guaranteed
capture of arbitrarily agile evaders using searchers having
even severe motion constraints, while further minimizing
mission duration as a secondary objective. This is extended
in two variations of a less-conservative approach for capture
of targets having a known maximum speed whose team size
requirements scale smoothly with searcher motion abilities.
Extensive simulation trials using physically-based models are
shown to validate the viability of these strategies.

In this work, the scale of the UAVs used is assumed to
be that of several to approximately ten small, field-launched
reconnaissance aircraft, however the ideas presented are
equally applicable to other types. Time (and hence speed)
insensitivity is intrinsic to the basic strategy, and its exten-
sions presented primarily require larger team sizes for slower
searchers. This coincides well with the probable availability
of larger teams of smaller agents such as micro air vehicles
and smaller teams of larger, faster aircraft. The task also
maintains relevance across the vehicle scale spectrum in that
for smaller aircraft, direct control of the vehicle’s location
is required to place a small sensor footprint, while larger
aircraft with wide-area sensing still must typically direct the
search attention of a foveal view via gimbal pointing or sub-
window selection.

II. RELATED WORK

Area search for mapping or target search has been an
early and ongoing application of UAVs. A taxonomy of
search tasks may be made based upon target type. For
stationary targets (e.g. landmarks), the objective is simply to
observe all relevant locations in the environment, typically
in minimal time. For uniform coverage priority, classical
geometric strategies include straight-line sweeps forming
lawnmower, Zamboni, or box-spiral patterns [2] as well as
outwardly spiraling orbits. [3] In the road network domain,
aerial coverage has taken the form of implementations of
classical graph coverage algorithms such as the Chinese
Postman [4] or Traveling Salesman [5] problems carefully
tailored to aircraft motions and constraints.

For moving targets or areas containing differing coverage
priority, the search task is instead one of generating coverage

paths that minimize expected time to detection that may
include repeated observation of regions recontaminated by
possible target re-entry. Typical approaches entail maintain-
ing a cellular or particle representation of search progress
and the use of a motion planner to maximize detection
objectives. Seminal examples include greedy search of prob-
ability grids, [6] a general multi-step planning framework
for heterogeneous terrain, [7] and cooperative horizon search
using predicted updates to Bayesian estimators. [8] To the
limited extent it has been considered, the specific case of
road networks has been typically approached by assigning
probability to areas corresponding to road segments and little
to areas outside the network. [8], [9]

Finally, evasive or adversarial targets possessing the spe-
cific goal of avoiding capture represent the most challenging
case and must be approached in a game-theoretic manner to
either provide (or refute) a capture guarantee or maximize
detection probability in a mini-max sense assuming that
the target will act most inconveniently for the searchers at
every opportunity. Adversarial search with UAV teams has
received fairly little attention, partly owing to the difficulty of
operating in open environments with motion constraints that
may greatly exceed the target’s. Applicable strategies previ-
ously proposed include shrinking circular flight patterns [10]
or coordinated sweeps [11] that constrain a bounded-speed
target to increasingly smaller areas at the cost of requiring
many or fast searchers. A rare instance of aerial operation
within road networks uses fixed unmanned ground sensors
to produce optimal visitation patterns to provide bounded
(guaranteed) capture time. [12]

General pursuit-evasion has a long history, recently re-
viewed in the context of mobile robotics by Chung et al, [13]
most classical formulations of which pertain to adversaries
in continuous or polygonal planar spaces. Two applications
to aerial search involve the use of discrete probabilistic
search for a randomly moving evader by an air-ground team
providing guaranteed finite capture time [14] and continuous
differential game theory to provide multi-UAV interception
of a target whose current position but not future motions
are known. [15] This paper builds on the sub-field of
graph search, representing adversaries in discrete space, well
summarized in a survey by Fomin and Thilikos. [16] Two
existing robotics implementations model evaders as moving
between nodes for indoor search and rescue [17] or as areas
to be cleared with edges weighted by the number of searchers
required to guard them. [18] Strategies presented here instead
use a variation modeling evaders as lying on edges, building
upon a previously proposed abstract clearing algorithm. [19]

Additional aspects intrinsic to aerial search but beyond
the scope of this work include target detection, tracking, and
geolocation (localization), a summary of existing strategies
for each of which may be found in a previous paper. [20]
Location estimation of previously-detected targets within
road networks has received substantial attention within the
radar tracking community, classically using multi-hypothesis
Kalman filters [21] given the discretely partitioned state
space.

III. PROBLEM STATEMENT

In this problem, a target is assumed to lie wholly within
the edges (road segments) of the graph underlying a physical
road network, and intersections (graph nodes) are treated as
infinitesimal. Targets are assumed to be adversarial in that
they will make every effort to avoid capture or to maximize
time to capture. The additional property of omniscience,
or awareness of pursuer strategy and state, often allowed
in pursuit-evasion, is further permitted here, though this is
surely stronger than necessary for practical missions.

Two forms of target motion are considered, both con-
servative formulations requiring minimal target knowledge
and modeling. The first is that targets may move infinitely
fast in any direction within the graph, corresponding to
targets about which no model is available or the case of
using extremely slow aircraft. The other is that targets may
move in any direction but with a maximum speed bound,
which is applicable to targets about which some information
is available (e.g. pedestrian vs. automobile). This permits
greatly reduced conservatism in resulting strategies without
requiring additional information about target intent that may
influence its choice of paths.

Initially, the road graph may start with any arbitrary subset
marked as contaminated (potentially containing a target).
When using the infinite speed target motion model, contami-
nation spreads throughout the entire graph immediately (with
the consequence that such graphs must be finite, existing in
a bounded region).

Aerial searchers are not constrained to the graph them-
selves and may move freely within the environment subject
to any applicable kinodynamic constraints. Vehicles are not
required to be of any type (e.g. rotorcraft vs. fixed-wing),
however for simplicity and generality, a fixed-wing motion
model is assumed, as it represents a minimal capability
emulatable by others. For simulation purposes, a simple but
widely-adopted constant-altitude planar Dubins vehicle [22]
is used, capturing requirements for a minimum forward
speed and minimum turning radius. For greater realism, a
coordinated-turn constraint is also added, dictating that the
vehicle must bank (roll) to turn as a function of steering
angle and turn radius.

No specific requirements for searcher sensing modality
are needed beyond possessing a presumed field of view and
that target (non-)presence must be detected. Given payload
limitations of small aircraft, the minimal sensor assumed is a
camera accompanied by an unspecified detection algorithm.
The location of its footprint (intersection of the viewable
frustrum with the ground) depends on mounting, which
is most commonly either forward-pointing, side-pointing,
or gimbaled. For maximum applicability and relevance to
widely-fielded aircraft, a fixed side-pointing camera is used
here. The size of the footprint need only be sufficient to
view the entire width of a road segment and has width
approximately equal to the minimum orbit radius for physical
camera parameters selected for simulations here. The only
critical sensing assumption is that if a UAV’s field of view

passes over the location of a target, then it is detected
with certainty (false positives are considered irrelevant).
In practice, a stochastic model requiring minimum dwell
time or repeated overflight may be necessary to approach
this. Finally, accurate sensor pointing is necessary to avoid
incorrectly marking areas as cleared. Substantial robustness
to vehicle state error that would preclude this is incorporated
by marking only a small area near the intended center of the
field of view as clear, which may be safely assumed to lie
within the larger true footprint.

Overall, the ultimate goal of any search is to guarantee
eventual detection of any targets that may be present, while
minimizing the number of searcher agents required as a
presumed scarce resource. Subject to this, a strong secondary
objective is to minimize overall mission time.

IV. SEARCH FOR INFINITE-SPEED TARGETS

A. Basic Strategy

For adversarial targets without a speed bound, the underly-
ing algorithm used is an abstract graph search for undirected
graphs and edge-occupying evaders previously presented by
Barrière et al. [19] for the special case of trees. Intuitively,
this is fundamentally a depth-first traversal in which edges
are swept during descents and any node having more than
one child is guarded during child searches lest contamination
from unsearched subtrees return to previously swept subtrees
via that node. This is summarized formally in Algorithm 1,
which returns the search number (number of agents required)
and a search schedule (ordering of actions) comprising a
sequence of two primitive actions: guarding of a node and
sweeping of an edge.

search schedule = []
Function clear tree(root, parent=∅, preguarded = [])
begin

search num = 0
if parent 6= ∅ then

search schedule.append(SWEEP[parent,root])
search num = 1

if |root.children| > 1 AND ¬preguarded[root] then
search schedule.append(BEGIN GUARD[root])

foreach child ∈ root.children do
search num =
MAX(search num,clear tree(child,
root,guarded))

if |root.children| > 1 AND ¬preguarded[root] then
search schedule.append(STOP GUARD[root])
search num = search num+1

return search num
end
Algorithm 1: Tree search for infinite-speed targets

Of course, physical environments rarely form convenient
trees and instead contain cycles. Unfortunately, even comput-
ing the search number of general graphs is intractable. [23]
Instead, an intermediate solution similar to that proposed by
Hollinger [17] is proposed. Specifically, a search schedule is
generated in an anytime fashion by iterating over randomized
(edge-)spanning trees of the entire graph, computing the
search number for each as the that of the tree plus the

number of additional guards required to break all cycles by
placing a guard at one end of each edge discarded by that
spanning tree. This is summarized in Algorithm 2. Given
this algorithm, subsequent strategies are defined in terms of
tree graphs and may be assumed to be wrapped by this.
Required team size growth with increasing numbers of cycles
is evaluated in Section VI.

guard nodes = []
search schedule = []
Function search number = clear graph(graph, rooti)
begin

best search schedule = []
best searchnum = ∞
while time remains do

// e.g. random Kruskal’s
tree = get random spanning tree(graph)

curr guard nodes = []
foreach edge ∈ graph do

if edge /∈ tree then
i = rand({0,1})
nexus = tree.nodes[edge.endpoint[i]]
parent = tree.nodes[edge.endpoint[1-i]]
new leaf = duplicate node(nexus)
tree.insert node(new leaf)
tree.insert edge(parent, new leaf)
curr guard nodes.insert(nexus)

// Algorithm 1
searchnum = clear tree(tree.node[rooti], ∅,
curr guard nodes)

if searchnum+curr guard nodes.size <
best searchnum+guard nodes.size then

best search schedule = search schedule
best searchnum = searchnum
guard nodes = curr guard nodes

search schedule = best search schedule
return best searchnum

end
Algorithm 2: Anytime search for general graphs

B. Application to UAVs

Implementation of the aforementioned abstract search with
UAV teams requires several extensions. First, the primitive
actions guard and sweep must be mapped to executable
behaviors. To perform a guard action, a UAV (or an as-
semblage of several) must be able to loiter over an area at
least as large as an intersection within the environment and
provide consistent viewing of it. This is directly applicable
to hovering rotorcraft or fixed-wing aircraft with either
gimbaled or fixed side-pointing cameras via a persistent orbit.
Fixed-wing aircraft with downward or fixed-angled cameras
pointing along the forward axis (e.g. downward or ahead) are
more challenging and must be able to either loiter (e.g. fly in
a tight figure-eight pattern) while maintaining a sufficiently
large viewing area or join others in doing so such that the
union of their sensor footprints covers the guard point at all

times. Likewise, to perform a sweep action, a UAV must
be able to move its field of view to follow the entire path
of an edge. While clearly straightforward for simple line
segments, edges whose path contains complex curvatures
cannot in general be followed by vehicles with turning-radius
constraints and may be treated as containing intermediate
nodes so that the curvature of any single edge does not
exceed these constraints. These may then be followed by
either orbiting around these intermediate points (for side-
facing and gimbaled sensors) or by pairing with an additional
agent to guard these points during repositioning.

Next, search schedule effort must be distributed within a
team. For the ground-based case, effort assignment is a non-
issue as at each step all free searchers may be conceptually
thought of as executing the next action in tandem, leaving
any available agent behind as a guard where required. In
contrast, aerial searchers are not themselves constrained to
the graph and may move between locations arbitrarily (sub-
ject to motion constraints), permitting substantial mission
time optimization while complicating task assignment. In
this case, it is beneficial to perceive the underlying tree
being traversed as a dependency graph dictating a topological
hierarchy capturing which nodes must be visited before
others, within which searchers are in fact free to choose the
sequence in which graph elements are actually visited. For
guard actions, a minimal-length trajectory between initial and
terminal locations need simply be chosen. However, sweep
actions admit greater freedom in that subtree ordering and
(where possible, for edges leading to leaf nodes) edge sweep
direction may be chosen to minimize intermediate maneuver-
ing. Globally, given a homogenous team, assignments and
transitions between guard and sweep roles may be chosen
to minimize flight distance given instantaneous poses at the
time of transition.

These freedoms may be formalized by defining two ex-
plicit extensions to abstract search schedule generation. First
is sweeper pre-positioning. Conceptually, a sweeper depen-
dent on a guard must wait for the guard to begin its loiter
before the sweep can begin. Rather than naively waiting and
producing a lengthy idle period between the activation of a
sweeper and the start of the actual sweep as it maneuvers into
position, respective maneuvering times for an en-route guard
and its dependent sweeper may be estimated, and the sweeper
may prematurely begin its maneuver in parallel towards the
target edge in anticipation of the guard’s arrival before it.

The other extension is to apply action optimization ac-
knowledging that subject to the topology of the dependency
tree, edges may be swept by any available agent, in any order,
and (when permissible) in either direction. This produces an
assignment, sequencing, and direction-choice optimization
problem that may be solved to minimize total mission time.
Unfortunately, this represents a large constrained combina-
torial optimization and is intractable to solve exactly for
any substantially-sized environment, and an approximate
approach is applied. The simplifying assumption is made
that optimal assignment and action sequencing within any
subtree is optimal globally, permitting independent single-

step optimization within each subtree. Specifically, subtrees
of a given node are searched recursively, independently, in
increasing order of search number, and action optimization
is only applied to leaf subtrees (comprised of only a path).
Given a guard at a parent node, all leaf subtrees immediately
below it may be treated as a basket of paths to search, whose
assignment, sequence, and search direction are free variables.
This is solved optimally using trivial computation effort at
each encounter using a Traveling Salesman based coverage
algorithm developed in a prior publication. [5]

The overall algorithm is summarized formally in Algo-
rithm 3 and is chosen as a reasonable balance of complexity
and approximation in that it is readily implemented while
capturing key extensions. Two steps during its execution on
a small demonstration environment are shown in Figure 1.
In this example, two UAVs (whose fields of view from left-
facing cameras are shown as trapezoids) clear an initially
fully contaminated (marked as red) environment. Shown are
the first two steps in which a guard is emplaced (A), after
which the other agent sweeps leaf two subtrees (B and C)
optimally. No longer needed, the guard transitions to a sweep
of the larger subtree (D), during which the other agent begins
a preemptive inward sweep of the next leaf subtree (E),
reaching its parent (F) strictly after it too will be guarded.

1. 2.

Fig. 1: Two steps in search of small demonstration environ-
ment for an infinite-speed evader

V. SEARCH FOR BOUNDED-SPEED TARGETS

In practice, infinite-speed search can be highly conser-
vative and resource-intensive, requiring many agents (espe-
cially in highly cyclic environments) and long search times.
Searching a large area contaminated by an evader presumed
to diffuse instantaneously is unnecessary with additional
information, such as a rough location and some speed
bound, in which case the search may be simplified. Example
scenarios include a sighting reported at a remote location or
the need to search a small portion of an unbounded area with
connectivity to effectively arbitrarily distant locations. These
may be treated as initial contamination of some small map
subset that diffuses at a worst-case target speed.

Intuitively, infinite-speed search as proposed may be built
upon to produce effective search strategies for bounded-
speed targets. If, for instance, an infinite-speed search of
an area can be performed before the initial diffusion can
exceed the extent of that area, then capture is guaranteed.
Alternatively, if diffusion can be stemmed by guarding
appropriate boundary points, then a search may be completed
at leisure of the now-bounded area. These two examples
inspire the following two respective strategies. The first is
best suited to smaller teams of fast agents, while the second

Function [search schedule,search number] =
clear tree optimized(root, parent=∅)
begin

schedule = []
search num = 0
if parent 6= ∅ then

schedule.append(SWEEP[parent,root])
search num = 1

if |root.children| > 1 then
schedule.append(BEGIN GUARD[root])

foreach child ∈ root.children do
[child schedule[i],child search num[i]] =
clear tree optimized(child, root))

search num =
MAX(child search num[. . .],search num)

child order = sort([1. . .|root.children|] by
child search num)

leaf subtrees = find(children[child order] == 1)
nonleaf subtrees = find(children[child order] > 1)

// Coverage optimization from [5]
schedule =
[OPTIMIZE COVERAGE(children[leaf subtrees])]

foreach child index ∈ nonleaf subtrees except last
do

schedule =
[schedule,child schedule[child index]]

if |root.children| > 1 then
schedule.append(STOP GUARD[root])
search num = search num+1

if nonleaf subtrees.size > 0 then
schedule =
[schedule,child schedule[nonleaf subtrees.last]]

return [schedule,search num]
end

Algorithm 3: Leaf-optimizing tree search

is tolerant of slower agents as long as more are available.
Both more realistically assume an available team size, which
need never be larger than an area’s search number.

A. Live Search

Seeded by an initial partial contamination and guided by
a bound on its growth rate, the graph subset of interest may
be seen as a time-varying graph G′(t) ⊆ G, where G is the
entire surrounding map. If at any time this predicted graph
subset can be searched by any guaranteed means (such as
the proposed infinite-speed search) within this time t, then
subject to the validity of the speed bound, guaranteed capture
is assured. This notion is phrased formally as Algorithm 4,
which alternates between predicting map growth and esti-
mating its search time.

Starting at t0 = 0, the search time t1 of the graph G0 =
G(t0 = 0) is estimated. If t1 ≤ t0 = 0 (unlikely), then
success is declared. Otherwise, map growth is predicted up
to t1 as G1 = G(t1), the search time t2 of G1 is estimated,
success declared if t2 ≤ t1, and iteration continued if not.
Failure is declared if at any iteration the search number of

Gi exceeds the available team size. Note that large jumps
in the growth of G are typical, resulting in few iterations
before termination.

search schedule = []
Function [search number,duration] =
bounded recaptureA(tree, max target speed,
contaminated edges[], agent poses[])
begin

new search time = 0
repeat

search time = new search time
tree subset = diffuse contamination(tree,
contaminated edges, max target speed,
search time)

// Algorithm 1
search num = clear tree(tree subset)
if search num > |agent poses| then

return FAILURE

new search time =
estimate search duration(tree subset,
agent poses)

until new search time ≤ search time ;
return [search num, new search time]

end
Algorithm 4: “Live search” for bounded-speed targets

A critical element is the estimation of a graph subset’s
search time, admissibility of which requires merely a con-
servative estimate. This may be done by any means available,
such as internal forward simulation of vehicle behavior. As
this may be time-consuming, a simpler conservative estimate
using easily-computed worst-case maneuvering times is com-
pared in Section VI.

A trivial execution example on the same small demon-
stration environment is provided in Figure 2. Here, a remote
target sighting is reported at a location away from a loitering
search team. It is quickly computed that a single searcher is
sufficient to clear the resulting graph subset if the search is
begun at sufficient back-off from the initial sighting (A), and
one agent is dispatched to perform this sweep (B).

1. 2.

Fig. 2: Two steps in “live search” of small demonstration
environment for a bounded-speed evader

B. Bound and Search

Alternatively, one might attempt to block the growth in
map contamination, at which point a fixed bounded graph
is contained within and may be searched by any guaranteed
search strategy, regardless of search duration. In practice, this
corresponds to guarding of strategic boundary nodes before
contamination reaches them. Similar in logic to the preceding

method, given a predicted graph subset G(t) corresponding
to the contaminated set at time t and provided all bounding
nodes can be reached within time t, then capture is assured if
sufficient agents are available to simultaneously guard these
nodes and perform the interior search.

Phrased formally as Algorithm 5, the contaminated sub-
graph G0 = G(t0 = 0) at time t0 is computed, along with
all boundary nodes linking nodes in G0 to nodes in the
original surrounding graph. If sufficient agents are available
and these can all be reached and guarding begun by time t0
(unlikely), then the search number of the internal subgraph
is also computed. If the total number of boundary guards
plus internal searchers required is at most the total number
of available agents, then success is declared. Otherwise,
the algorithm iterates to an incremental t1 corresponding
to a minimal discrete growth in the contaminated graph
and the same tests performed. Eventually, the number of
agents required to perform the internal search will exceed
that available (failure), or the overall graph extent will be
reached (if bounded), falling back to the equivalent of search
of the original graph.

search schedule = []
Function [search number,guard assignment] =
bounded recaptureB(tree, max target speed,
contaminated edges[], agent poses[])
begin

growth time = 0
tree subset = []
repeat

[tree subset,distance ext] =
diffuse one edge(tree, tree subset)
growth time = growth time + distance ext /
max target speed

boundary nodes = get boundary nodes(tree,
tree subset)
if |boundary nodes| ≥ |agent poses| then

continue

[guard time,guard assignment] =
get node reach time(boundary nodes,
agent poses)
if guard time ≥ growth time then

continue

// Algorithm 1
search num = clear tree(tree subset, ∅,
boundary nodes)
if search num > |agent poses| then

return FAILURE
until search num + |boundary nodes| ≤
|agent poses| ;
return search num

end
Algorithm 5: “Bound-and-search” for bounded-speed
targets

A simple optimization applied is to make use of boundary
guards for the interior search. While maintaining guards at a
location only as long as necessary and re-introducing them to

the search team thereafter produces complicated interactions
requiring computationally-intensive optimization, two simple
steps may be taken. First, guards may at least be treated
as permanently guarding a given node, avoiding temporary
guards if it has multiple subtrees. Further, boundary guards
lying on leaf nodes in the contaminated subgraph can sweep
up the path on which they lie until a node is reached
having more than one child. This time-invariant step may
substantially shrink the size of the interior search graph,
reducing its search number.

A small example of executing this approach is shown
in Figure 3. In this example, a delayed remote sighting
report near an intersection allows substantial growth in
contamination before searchers can respond (A). Three are
dispatched to stem growth in contamination along incident
edges, which after an inward sweep of each (B, C, and D)
leaves an empty interior graph requiring no further searchers.

1. 2.

Fig. 3: Two steps in “bound and search” of small demon-
stration environment for a bounded-speed evader

VI. EXPERIMENTAL RESULTS

For evaluation and comparison, repeated realistic sim-
ulations on varying maps with varying-sized teams was
performed. UAV teams were assumed to be comprised of
fixed-wing aircraft approximated by a Dubins vehicle us-
ing coordinated turns with fixed, side-angled cameras with
parameters similar to that of widely-fielded small recon-
naissance UAVs. In these simulations, a full implementation
including injected control noise, state error, feedback control,
and camera projection for field of view estimation is utilized
to capture important real-world effects.

Test environments were selected from a spectrum of
randomly-generated maps formed from perturbed Manhattan
grid subsets intended to realistically mimic physical road
networks, parametrized by overall size, fraction of the entire
grid present, and block size (edge length). Roughly, a com-
plete grid of specified block size from 100m (dense urban)
to 1km (sparse rural) is generated, junction locations are
perturbed to increase required maneuvering, and a specified
fraction (from 20% to 70%) of edges are removed, the
remaining fraction being labeled the block density. Clearly,
true evaluation is best performed on samples of real-world
areas, but this method permits rapid high-volume testing
on a wide diversity of environments. In each simulation
trial, a team of searchers is launched as a group from a
randomly selected point within the environment. Each data
point presented is the average of several hundred trials using
differing random seeds for environment generation and start
location.

For thorough evaluation, simulation across both a spectrum
of varying environment size and density was performed.
Only selected representative results are provided here. For
additional results, the interested reader is referred to an
extended technical report on this work. [24]

Typical results for infinite-speed guaranteed search are
shown in Figure 4. In this comparison, several algorithms are
tested on varying-density (block length) maps of the same
size: a road-constrained ground-based team executing Algo-
rithm 1, a UAV team performing the same search schedule
(an unoptimized search), a UAV team using leaf-optimizing
tree search (Algorithm 3), and a team of idealized rotorcraft
(lacking any kinodynamic constraints and hence requiring no
orientation-dependent path optimization) following the same
optimized strategy. As this plot shows, the proposed leaf-
optimizing strategy eliminates at least 1/4 of the mission
duration difference between the baseline UAV strategy and
that of an ideal ground vehicle, which is itself outperformed
by an ideal rotorcraft. It is worth further noting that robotic
ground vehicles often move much more slowly than aircraft
rather than at the same speed as assumed here, and so in
practice the colored traces may lie much lower.

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

M
a
p

 c
le

a
ra

n
c
e
 t

im
e
 [

s
]

Average edge length (average grid block size) [m]

Road−constrained ground vehicle

Unoptimized Dubins UAV

Leaf−optimized Dubins UAV

Leaf−optimized ideal rotorcraft

Fig. 4: Mission duration comparison for infinite-speed search
Next, the impact of graph cycles on required team size

is considered. Algorithm 2 was applied to environments of
varying edge density and block length, with typical examples
across the density spectrum shown in Figure 5 with an
edge density of 80%, considered somewhat more dense
than would be expected in real-world environments and
hence representing largely worst-case instances. A plot of
required team size for this 80% edge density on samples
of suburban (450m block length) areas of varying size is
given in Figure 6. Comparison is provided against two simple
guaranteed search alternatives: an open area search in which
agents sufficient to fill the width of the environment sweep
in parallel across its longer dimension and a Manhattan
grid sweep in which one agent per block sweeps across the
longer dimension in parallel, pausing at intersections while
an additional agent sweeps up and down along the orthogonal
axis. As this plot shows, cycle-breaking guards dominate
team makeup (the search subset growing only very slowly),
yet graph search is superior to these alternatives for up to
moderately-sized (over 3km2) areas, at which point required

team size still remains realistic.

Fig. 5: Examples of test environments having 80% edge
density. From left to right, these have block length 200m
(urban), 450m (suburban), and 700m (rural).

1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

re
q

u
ir

e
d

 a
g

e
n

ts

Width of environment (height = 2/3 this) [m]

Total required for graph search

 Cycle−breaking guards subset

Open−area sweep

Manhattan grid sweep

Fig. 6: Required team size for suburban (450m block length)
and 80% edge density environments of increasing size

Finally, the proposed bounded-speed search strategies are
similarly evaluated. Figure 7 depicts the effect of pursuer-to-
target speed ratio on required searcher team size. In this case,
a 3km × 2km environment of 450m (suburban) edge length
and 40% edge density (so as to generate trees) is considered.
For low speed ratios, the required team size approaches that
needed for an infinite-speed target as expected. At higher
speed ratios, this decreases, with bound-and-search requiring
fewer at first and then live search requiring fewest at still
higher ratios. This confirms the intuition that live search
is more appropriate for smaller, faster teams. Two traces
for live search are provided, corresponding to two methods
for predicting search duration: sub-realtime forward simula-
tion and a rapidly-computed conservative estimate assuming
worst-case maneuvering times for every motion. The small
difference in performance suggests the reasonableness of
such an approximation. Likewise, average search duration for
the same trials is shown in Figure 8, which carries similar
overall trends except that the cross-over between methods
occurs earlier and that the performance difference between
the search prediction methods is greater. This implies that
appropriate choices of methods may differ depending on
whether minimizing required team size or mission duration
is of greater importance.

VII. CONCLUSION

By building on existing ideas in abstract pursuit-evasion,
a guaranteed target search strategy for adversarial evaders of
arbitrary agility was developed for aerial searchers by map-
ping abstract search primitives to motions executable by real
aircraft. Extensive simulation verified both the practicality

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

re
q

u
ir

e
d

 a
g

e
n

ts

Speed ratio (pursuers vs. target)

Live sweep (conservative time estimate)

Live sweep (actual sim estimate)

Bound and search

 search subset

Whole−environment search

Fig. 7: Required team size vs. searcher-to-target speed ratio
for bounded-speed target search in a suburban environment

0 1 2 3 4 5 6 7 8 9 10
300

400

500

600

700

800

900

1000

1100

1200

1300

M
a

p
 c

le
a

ra
n

c
e

 t
im

e
 [

s
]

Speed ratio (pursuers vs. target)

Live search (conservative time estimate)

Live search (actual sim estimate)

Bound and search

Whole−environment search

Fig. 8: Mission duration vs. searcher-to-target speed ratio for
bounded-speed target search in a suburban environment

of this strategy in terms of required team size and mission
duration as well as in comparison to alternative guaranteed
search methods. This was extended by two variations to
search for targets having known speed bound requiring much
smaller team sizes and permitting operation in unbounded
environments.

Many avenues for further exploration exist, including com-
parison to still other guaranteed search algorithms proposed
for open areas and further improvement to the proposed
leaf-subtree optimization by increasing this to a horizon
optimization or introducing subtree search parallelism. As
the full capabilities of UAVs—such as the ability to see po-
tentially large areas including many environment elements at
once—are not fully utilized and substantial conservatism in
search behavior remains, alternative pursuit-evasion abstrac-
tions and UAV motion representations should be explored.
Two examples include discrete formulations such as so-called
cops-and-robbers and node-based graph search that might
be implemented on a configuration lattice imposed on the
environment.

VIII. ACKNOWLEDGEMENTS

The authors wish to thank Drs. Thanasis Kehagias, Maxim
Likhachev, and Paul Scerri for thoughtful conversation and

many constructive criticisms.
REFERENCES

[1] The United Nations Population Fund, “UN state
of the world population,” 2007. [Online]. Available:
http://web.unfpa.org/swp/2007/english/chapter 1/urbanization.html

[2] V. Ablavsky and M. Snorrason, “Optimal search for a moving target:
A geometric approach,” in AIAA Conference on Guidance, Navigation,
and Control, 2000.

[3] M. Quigley, B. Barber, S. Griffiths, and M. A. Goodrich, “Towards
real-world searching with fixed-wing mini-uavs,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2005.

[4] H. Oh, S. Kim, A. Tsourdos, and B. White, “Cooperative road-network
search planning of multiple UAVs using Dubins paths,” in AIAA
Conference on Guidance, Navigation, and Control, 2011.

[5] M. Dille and S. Singh, “Efficient aerial coverage search in road
networks,” in AIAA Conference on Guidance, Navigation, and Control,
August 2013.

[6] F. Bourgault, T. Furukawa, and H. Durrant-Whyte, “Coordinated
decentralized search for a lost target in a Bayesian world,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2003.

[7] M. M. Polycarpou, Y. Yang, and K. M. Passino, “A cooperative search
framework for distributed agents,” in IEEE International Symposium
on Intelligent Control (ISIC), 2001.

[8] J. Tisdale, Z. Kim, and J. K. Hedrick, “An autonomous system for
cooperative search and localization using unmanned vehicles,” in AIAA
Conference on Guidance, Navigation, and Control, 2008.

[9] C. Geyer, “Active target search from UAVs in urban environments,” in
IEEE International Conference on Robotics and Automation (ICRA),
2008.

[10] T. G. McGee and J. K. Hedrick, “Guaranteed strategies to search for
mobile evaders in the plane,” in American Control Conference, 2006.

[11] P. Vincent and I. Rubin, “A framework and analysis for cooperative
search using UAV swarms,” in ACM Symposium on Applied Comput-
ing, 2004.

[12] H. Chen, K. Krishnamoorthy, W. Zhang, and D. Casbeer, “Continuous-
time intruder isolation using unattended ground sensors on a general
graph,” in American Control Conference, 2014.

[13] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316,
2011.

[14] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Prob-
abilistic pursuit-evasion games: Theory, implementation and experi-
mental evaluation,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 662–669, 2002.

[15] J. M. Reimann, “Using multiplayer differential game theory to de-
rive efficient pursuit-evasion strategies for unmanned aerial vehicles,”
Ph.D. dissertation, Georgia Institute of Technology, 2007.

[16] F. V. Fomin and D. M. Thilikos, “An annotated bibliography on
guaranteed graph searching,” Theoretical Computer Science, vol. 399,
no. 3, pp. 236–245, June 2008.

[17] G. A. Hollinger, “Search in the physical world,” Ph.D. dissertation,
Carnegie Mellon University, 2010.

[18] A. Kolling and S. Carpin, “Pursuit-evasion on trees by robot teams,”
IEEE Transactions on Robotics, vol. 26, no. 1, pp. 32–47, 2010.

[19] L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos, “Search-
ing is not jumping,” in Workshop on Graph Theoretic Concepts in
Computer Science, 2003, pp. 34–45.

[20] M. Dille, B. Grocholsky, and S. Singh, “Persistent visual tracking and
accurate geo-location of moving ground targets by small air vehicles,”
in AIAA Infotech@Aerospace Conference, March 2011.

[21] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipati, and I. Kadar, “Ground
target tracking with variable structure IMM estimator,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 26–46,
January 2000.

[22] L. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, pp. 497–
516, 1957.

[23] A. S. LaPaugh, “Recontamination does not help to search a graph,”
Journal of the Association for Computing Machinery, vol. 40, no. 2,
pp. 224–245, 1993.

[24] M. Dille, “Search and pursuit with unmanned aerial vehicles in road
networks,” Ph.D. dissertation, Carnegie Mellon University, 2013.

