Abstract:
Bipedal locomotion can be divided into primitive tasks, namely repulsive leg behavior (bouncing against gravity), leg swing (protraction and retraction) and body alignmen...Show MoreMetadata
Abstract:
Bipedal locomotion can be divided into primitive tasks, namely repulsive leg behavior (bouncing against gravity), leg swing (protraction and retraction) and body alignment (balancing against gravity). In the bipedal spring-mass model for walking and running, the repulsive leg function is described by a linear prismatic spring. This paper adopts two strategies for swinging and bouncing control from conceptual models for the human-inspired musculoskeletal BioBiped robot. The control approach consists of two layers, velocity based leg adjustment (VBLA) and virtual model control to represent a virtual springy leg between toe and hip. Additionally, the rest length and stiffness of the virtual springy leg are tuned based on events to compensate energy losses due to damping. In order to mimic human locomotion, the trunk is held upright by physical constraints. The controller is implemented on the validated detailed simulation model of BioBiped. In-place as well as forward hopping and switching between these two gaits are easily achieved by tuning the parameters for the leg adjustment, virtual leg stiffness and injected energy. Furthermore, it is shown that the achieved motion performance of in-place hopping agrees well with that of human subjects.
Date of Conference: 14-18 September 2014
Date Added to IEEE Xplore: 06 November 2014
ISBN Information: