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Abstract— We present a number of powerful local mech-
anisms for maintaining a dynamic swarm of robots with
limited capabilities and information, in the presence of external
forces and permanent node failures. We propose a set of local
continuous algorithms that together produce a generalization
of a Euclidean Steiner tree. At any stage, the resulting overall
shape achieves a good compromise between local thickness,
global connectivity, and flexibility to further continuous motion
of the terminals. The resulting swarm behavior scales well, is
robust against node failures, and performs close to the best
known approximation bound for a corresponding centralized
static optimization problem.

I. INTRODUCTION

Consider a swarm of robots that needs to remain con-
nected. There is no central control and no knowledge of the
overall environment. This environment is hostile: The swarm
is being pulled apart by external forces, stretching it into a
number of different directions, so it is in danger of breaking
up. Individual robots are weak, with limited sensing, limited
communication, and limited connectivity; even worse, each
robot’s expected lifetime is limited by random, permanent
failures, which may destroy connectedness and functioning
of the swarm as a whole. How can we achieve coordinated
dynamic swarm behavior without centralized coordination?
How can we employ each robot as much as possible, without
depending on it if it fails? How can we balance overall flex-
ibility and robustness to deal with the hostile environment?

In this paper, we study swarm mechanisms that achieve
these conflicting goals. Just like in the paper by Lee and
McLurkin [1], we aim for algorithms that (1) maintain
connectivity, (2) are fully distributed, and (3) achieve co-
hesiveness, i.e., a well-coordinated behavior and state for all
robots. While [1] present a set of rules (based on crucial ele-
ments such as boundary recognition and boundary forces [2])
that achieve a “fat”, well-rounded swarm shape even in the
presence of obstacles, this is no longer desirable in the
presence of multiple outside forces that pull the swarm apart,
as illustrated in Figure 1. As a consequence, we formulate
a new and additional goal: (4) achieve robust and adaptive
overall swarm behavior, even in the presence of external
forces and node failures.

We present a combination of distributed boundary forces,
density control and thickness regulation that go beyond [1]
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Fig. 1: A robust robot swarm emulating a Steiner tree
between five diverging attachment points.

by providing results for property (4). We achieve a signifi-
cant stability improvement over this and other previous ap-
proaches to flocking behavior, allowing us to face scenarios
for which even the corresponding centralized, static prob-
lems are NP-hard. In a setting in which multiple dynamic
terminals have to remain connected by a generalized Steiner
network with limited communication range, we achieve a
performance that is comparable to the best worst-case guar-
antee of a theoretical, centralized approximation algorithm.

A. Related Work.

One of the earliest works on flocking is Reynold’s pio-
neering work [3]. In recent years, a considerable number
of aspects and objectives have extended this perspective. We
highlight only some of the ensuing papers, showing how they
differ from our perspective.

A basic component of flocking is volumetric control, as
presented by Spears [4]: robots use local potential field con-
trollers (with attractive and repulsive forces) for constructing
a regular lattice with a corresponding base density [5], [6].
This does not necessarily preserve connectivity [7], [8], [4].
While the latter can be side-stepped by simply assuming that
robots are always connected [9], we aim for connectivity as
a requirement, which is vital in a fully distributed setting in
which deterministic recovery from disconnectedness may be
impossible.

Some of the ideas of Olfati-Saber [5] form the basis of
our work and are discussed in more detail further down.
In [5] and other work, however, robots do utilize gobal
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information, e.g., the position of a guide robot in a shared
coordinate frame [5], [10], [11], [12] or environmental po-
tential [13]. Instead of the potentials, Cortes et. al. [14]
and Magnus et. al. [15] used Voronoi tessellation. This is
based on a density function, requiring global information for
covering a region. Overall, this differs from our objective
of developing methods that are fully distributed, aiming for
collective mechanisms for complex group behavior that go
beyond relatively simple objectives [16], but also for systems
that are robust against partial hardware failures [17].

The final property is “cohesiveness” of the overall swarm:
all robots should maintain a unified state, such as desired
distance or orientation; see [5] for a formal definition. As de-
scribed in [2], detecting and maintaining a swarm boundary
is of particular importance for maintaining swarm cohesive-
ness and connectedness. This is based on and related to work
in the field of wireless sensor networks (WSNs), which has
considered many geometric settings in which a large swarm
of stationary nodes is faced with the task of achieving a large-
scale overall goal, while the individual components can only
operate locally, based on limited individual capabilities and
information ([18], [19]). In addition to the work on swarm
robotics described above, there is a large body of theoretical
work on geometric swarm behavior; for lack of space, we
only mention Chazelle [20] for flocking behavior, and Fekete
et al. [18], [19] for geometric algorithms for static sensor
networks, including distributed boundary detection.

Beyond the involved properties and paradigm, the overall
goal for the swarm can also be described as a distributed
optimization problem: Maintain a generalized Steiner tree
with limited edge lengths that connects a moving set of
terminals. To the best of our knowledge, only Hamann and
Wörn [21] have explicitly considered the construction of
Steiner trees by a robot swarm. For static terminals, they
start with an exploratory network; as soon as all terminals
are connected, only best paths are kept and locally optimized.

Even in a centralized and static setting with full infor-
mation, we have to deal with a generalization of the well-
known NP-hard problem of finding a good Steiner tree [22].
More specifically, we are faced with the relay placement
problem: the input is a set of sensors and a number r ≥ 1,
the communication range of a relay. The objective is to place
a minimum number of relays so that between every pair of
sensors is connected by a path through sensors and/or relays.
The best known theoretical performance bound for this NP-
hard problem was given by Efrat et al. [23], who presented
a 3.11-approximation algorithm; they also showed a worst-
case lower bound of 3 for a large class of approximation
algorithms. For a fixed number of available relays, this turns
into our problem of maximizing the achievable networks
size, with matching approximation factor.

More specific references are given in Section III-A, where
they are used as building blocks.

B. Our contribution

We propose a set of local, self-stabilizing algorithms that
maintain a dynamic and robust network between leader

robots. The algorithms ensure that the swarm adopts the
directions of multiple leaders, while preserving a uniform
thickness along the edges of the Steiner tree. We demonstrate
the usefulness of this approach by simulations with a swarm
of 400 robots, five leaders and various failure rates, by
showing that the resulting performance is comparable to the
theoretical worst-case ratio.

II. PRELIMINARIES

We consider a finite set of robots R. A subset L (
R, |L| � |R| of them is forced to pursue externally
controlled trajectories. For simplicity, we call these leader
robots; note that they have no control over their trajectories,
so they have no chance to keep the swarm coherent. Instead,
we want the remaining robots R \ L to maintain a dynamic
and robust network that keeps the swarm connected, even in
the presence of random robot failures and arbitrary leader
movements. Thus, the overall shape of the swarm should
form a “thick” Steiner tree among the leaders with the
robots R \ L evenly distributed along the edges, as shown
in Figure 1.

Robots have the shape of circles; two of them are con-
nected when within a maximum distance and with an unob-
structed line of sight. Robots know the relative positions and
orientations of their neighbors and can communicate asyn-
chronously. Each robot has a unique ID; leader IDs are easily
made known to all others. Robot’s translations and rotations
are limited in velocity and acceleration. Communication is
possible by broadcasting to immediate neighbors.

The perception of all robots is local; however, due to
the known position and orientation difference, each robot
can transform vectors of its neighbors to its own coordinate
system. We avoid multi-hop transformations to keep errors
small; however, aggregate information is forwarded.

III. ALGORITHM

The proposed approach consists of a set of local self-
stabilizing mechanisms that either detect a condition or
induce a force. The weighted sum of the induced forces
determines the robot motion; input for the local mechanisms
of the local state and environment of the robot, output
is a value for current robot motion. In principle, these
mechanisms are continuous. (Our simulator described later
updates at 60 Hz.)

We first discuss the base behavior of the robots in Sec-
tion III-A; because it has trouble with generating a non-
convex swarm shape, it limits the flexibility of the swarm
in the presence of external forces. This is subsequently im-
proved by leader forces, stability improvement and thickness
contraction.

A. Base Behavior

Our base behavior consists of three components:
(i) The flocking algorithm of Olfati-Saber [5] considers

regular distribution and movement consensus. The al-
gorithm is a stateless equation based on potential fields



and is proven to converge. It uses three rules: Attrac-
tion to neighbors, repulsion from too close neighbors,
and adaption to the velocity of neighbors. We slightly
modified the algorithm for better response to additional
forces.

(ii) An extended version of the boundary detection algo-
rithm of McLurkin and Demaine [2], which determines
if a robot lies on the boundary and also identifies
small holes by using the average angle. In principle,
the method allows the robots to distinguish exterior and
interior boundaries and determine their size, but the
limited precision and the convergence time limit this
usage, so we only use it to detect and ignore small holes.
Doing the latter is crucial for thickness and density
computation, see Section III-C.

(iii) The boundary tension of Lee and McLurkin [1], which
straightens and minimizes the boundary of the swarm.
This is done by simply pushing boundary robots to the
middle of its two boundary neighbors.

The base swarm is similar to a water droplet and con-
verges towards a circle after some time. The robots are well
connected to the swarm and there are no attachments, as
can be seen in Figure 2. However, for diverging leaders the

(a) Before (b) After

Fig. 2: The base swarm forms the swarm similar to a water
drop

base behavior (movement consensus by flocking) without
any other forces rapidly loses connectivity when the target
density no longer suffices to cover the convex hull of leader
robots. Figure 3 depicts a situation in which the swarm
is about to lose convexity. For stronger control and more
variable shapes, leader forces are introduced.

B. Leader Forces

A single leader constitutes the simplest form of swarm
control. In this case the swarm motion is determined by
the leader’s velocity. With multiple (possibly antagonistic)
leaders, the swarm is not just steered, but may be stretched
to the limit until connectivity is lost. Therefore, each robot
needs to find an appropriate balance between the influence
of different leaders. For ` ∈ L, let c` : R → R2 be the force
on a specific robot and let d` : R → N be its distance to `.
The leader forces on robot r are combined as follows:∑

`∈L

c`(r)
d`(r)

−1∑
`′∈L d`′(r)

−1 .

Fig. 3: The base behavior without leader forces has trouble
with staying connected after losing convexity.

See Figure 4 for an illustration.

Fig. 4: A one-dimensional scenario with two leaders (red)
moving in opposite directions.

There are two ways of following a leader: either by
matching its velocity or by moving towards it. Velocity
matching preserves the overall shape of the swarm, but
fails with multiple leaders. However, because the velocity
information needs to be passed between robots with noisy
sensors, there are accumulated losses in accuracy with each
hop. On the other hand, moving towards the leader causes
a deformation of the swarm and can be used to control its
shape when multiple leaders are used, but regions close to the
leaders suffer from “compression”, which can be harmful.
A combination of both methods with a smooth transition
between velocity matching close to the leaders and leader
pursuit when further away (see Figure 5) has a positive
influence in the context of multiple leaders, both on accuracy
and the overall swarm shape.

Fig. 5: With increasing distance to the leader, the effect shifts
from velocity matching to leader pursuit.

In order to achieve the combination of movement with
the leader and towards the leader, three public variables are
used for each leader. The leader distance is the minimum
hop count to the leader. Let pred(r) be the predecessor in
a minimum-hop tree to the leader, which can be the leader
itself. The leader velocity is the one of pred(r) for a non-
leader, and the robot’s own velocity for the leader. The
leader direction is a normalized direction vector calculated
incrementally from the direction to pred(r) as follows: Each
robot takes the leader direction of its pred(r) and merges
it with the normalized direction to pred(r). If pred(r) is
the leader, only the normalized direction to it is used. For



0/2/2 0/2/20/2/20/2/2 0/2/2 0/2/2 0/2/2 0/2/2

0/2/2 0/2/2 0/2/2 0/2/2 0/2/2 0/2/2 0/2/2

1/2/1 1/2/1 1/2/1 1/2/1 1/2/1 1/2/1 1/2/1

1/2/1 1/2/1 1/2/1 1/2/1
1/2/1 1/2/1 1/2/1 1/2/1

2/2/0
2/2/0

2/2/0 2/2/0 2/2/0 2/2/0 2/2/0 2/2/0

0/2/2

1/2/1

Fig. 8: Thickness determination (b(r)/t(r)/h(r)) for a limb
part. The red edges fulfill the Gabriel graph condition. A
largest hop circle is marked in blue.

computing the leader force, the leader direction is scaled to
the length of the leader velocity and then combined with a
leader distance-sensitive weighting.

Additionally we provide leaders with too few neighbors
with an attraction force, so they do not lose connection to
the swarm. This attraction spreads over some distance, but
decreases exponentially.

C. Stability Improvement

Near Steiner points, connections along concave swarm
boundaries may be stretched by boundary forces. When the
involved edges approach the upper bound for communica-
tion, connections may be disrupted, to the point where the
swarm loses connectivity. By adding a thickness-dependent
compression force, we reduce neighbor distances without
influencing the Steiner-tree shape of the swarm; in effect, this
works similar to compression stockings. In the following, we
give a heuristic for thickness computation and compression.
In order to let the flocking algorithm handle this compression
without destroying the regular distribution, we sketch a den-
sity distribution heuristic later in this Section. A comparison
of a swarm with and without the stability improvement can
be seen in Figure 6; Figure 7 shows a comparison for the
same scenario with failure rate 0.008 per second and robot.

a) Thickness Contraction: We define the local thick-
ness at a robot as the radius of the largest hop circle
containing it. A hop circle of radius h with robot c as circle
center is the set of all robots with a hop count ≤ h to c; only
robots with distance equal to h may be on the boundary. An
example is highlighted in blue in Figure 8.

The relationship between geometric thickness and bound-
ary hop distance may be distorted by long connections that
skip over robots. This can be avoided by only considering
edges that fulfill the edge condition of the Gabriel graph,
meaning that no robot is allowed to be closer to the midpoint
of an edge than the robots connected by it. In principle, the
resulting communication graph equals the Gabriel Unit Disk
Graph; this is the case when degenerate cases with line-of-
sight obstructions are ignored. We denote the corresponding
reduced neighborhood of a robot r as N ′r.

The following method is a simplified implementation of
the thickness metric above, which performed well enough in
simulation. It gets by with only three public variables; all
circles with its center within a larger circle are ignored.

For this heuristic evaluation of the thickness t(r) of a
robot r, we need the hop distance b(r) from the boundary and
the circle center distance h(r). Computing the hop distance
to the boundary for each robot can easily be achieved by
setting b(r) to 0 for all robots on the boundary, while all
others take the minimum of their neighbors plus one, as
follows

b(r) =

{
0 r on boundary
min{b(n) + 1 | n ∈ N ′r} else

Small holes, that occur frequently but also vanish quickly,
are excluded from the boundary, otherwise the value can
become too instable. The thickness t(r) is determined as the
maximum b(r) within some range h(r), as follows.

t(r) := max{{b(r)} ∪ {t(n) | n ∈ N ′r ∧ t(n) + λ ≥ h(n)}},

where λ ∈ N is a small constant (e.g. λ = 2) that tackles the
problem of irregular boundaries. If r is a circle center (t(r) =
b(r)), then the circle center distance h(r) is 0. Otherwise,

h(r) := min{h(n) + 1 | n ∈ N ′r ∧ t(n) = t(r)}

An example is shown in Figure 8.
Based on this thickness t(r), the described compression

force grows linearly with this t(r). It acts only on robots of
large boundaries, so that small holes are not prevented from
closing.

b) Density: The local density of a robot refers to the
number of neighbors in relation to its observable area as
shown in Figure 9. By introducing an attraction to low
and repulsion from high local density neighbors, the overall
swarm density is maintained at a specific homogeneous level.

Fig. 9: The observable area of a robot. The impact of hidden
robots intersecting this area is ignored.

It is determined by dividing the number of neighbors
by the roughly calculated observable area, cf. Figure 9. In
order to avoid lumps, robots in collision range are weighted
higher. Dealing with the exterior area requires particular



BASE LEADER ALL

Fig. 6: A comparison of strategies for the same example, for a swarm with n = 400 and failure rate 0. As indicated, columns
correspond to strategies BASE, LEADER, and ALL. Rows show the swarms at times T = 200, T = 2000, T = 3000,
T = 5000, T = 7600, T = 12, 000, with 60 steps per simulated second. When a swarm is no longer shown, it has become
disconnected right after the previous time step.



T = 4200 T = 4400 T = 5400 T = 5600

Fig. 7: A comparison of strategies for the example from Figure 6, for a swarm with n = 400, with 60 steps per simulated
second and failure rate 0.008 per second. The upper line shows the swarm with strategy LEADER, the lower shows strategy
ALL. As shown, the swarm loses connectivity at T = 4400 (LEADER), or T = 5600 (ALL).

care, because its inclusion or exclusion from the calculation
skews the results. If the exterior area is included, boundary
robots automatically get a lower density; if it is excluded, the
density becomes too high. We account for this by considering
the exterior area of a robot as the area between the two
adjacent boundary neighbors. For overall balance, we assume
its space to be the average space between two clockwise
sequential neighbors that do not form an exterior area. A
robot can lie on multiple boundaries or multiple times on
the same; however, this is a sign of a sparse distribution, so
we only disregard the largest one. All further exterior areas
are fully included and thus lower the density.

The calculated observable area is sometimes not quite
accurate, as the local knowledge is very limited. Small
heterogeneities can let the values vary strongly. In order to
improve the value, each robot first calculates its own value,
but afterwards average this origin value with the origin values
of the neighbors. This averaged value is used to determine
the attraction and repulsion forces.

Let ρ(r′) be the averaged local density of robot r′, % the
optimal density, and Nr the neighbors of r. Then the density

distribution force for a robot r is given by∑
n∈Nr

pr(n) ∗ φ(ρ(n)− %),

where φ(x) = x3/|x|, and pr : R → R2 is the direction
from robot r to a neighbor with the length of the distance
for ρ(n) ≤ %; otherwise, it is of range minus distance. We
do not apply this force to robots on the boundary.

IV. AN ANALYTIC RESULT

Before describing the performance of our approach simu-
lation results, we discuss a related result from theoretical
computer science, showing the analytic difficulty of our
underlying scenario, even for a centralized, static offline
scenario without node failures. In this setting, Efrat et
al. [23] considered the relay placement problem, in which
a given, static set of transmitters (called terminals) with
limited communication range must be connected by a set
of more powerful relays; the objective is to minimize the
number of these relays for achieving connectivity. Clearly,
this corresponds directly to the achievable scaling factor for
which a connected arrangment is possible: The size of the
arrangement is basically linear in the number of relays.



Fig. 10: Relative performance of the different strategy combinations, measured by achievable Steiner tree size before
disconnection occurs, compared to a hypothetical static offline optimum for the remaining live robots. Shown are median
(bold) along with first and third quartiles. The failure rate is the probability of each robot to die within the next simulated
second, consisting of 60 time steps. Clearly, the strategies are robust and adaptive; the full set of strategies does particularly
well in adjusting to leader motion and robot failures.

As a generalization of the geometric Steiner tree problem,
minimum relay placement is NP-hard. To this date, the
best known approximation factor for relay placement is the
following.

Theorem IV.1 (Efrat et al. [23]) There is a 3.11-approxi-
mation algorithm for minimum relay placement.

Note that this is a result for a guaranteed worst-case perfor-
mance of an algorithm, so we can hope to do better in specific
settings. However, we are also faced with a large number of
additional difficulties that make things much more difficult:
distributed setting, central control, dynamic movement of
terminals the necessity to make changes dynamically without
losing connectivity, as well as node failures.

V. SIMULATION RESULTS

We validated our approach by conducting experiments
with a set of five leaders stretching out a swarm of 400
robots until it disconnects. The performance is measured
against the length of the minimal Steiner tree on discon-
nection (calculated by the Geosteiner software [24]), divided
by the theoretically maximal possible length estimated by
|R′| ∗ range, where R′ are the robots that did not fail
yet. This would correspond to an optimal but extremely
fragile Steiner tree in which any node failure disconnects
the swarm. Thus, the best possible value of 1 is completely

elusive, in addition to being the result of an NP-hard offline
optimization problem.

For comparison we tested three configurations: BASE—
only the base behavior as discussed in Section III-A; LEAD—
the basic behavior enriched by leader forces as discussed
in Section III-B; ALL—the final configuration that also
incorporates Density and Thickness Contraction as presented
in Section III-C.

Our benchmark tests were carried out with 60 iterations
per simulated second. We used parameters that correspond to
those of the r-one robots of Rice University [25]: robot diam-
eter is 10 cm, communication range is 1.2m. The maximal
robot velocity is 1m s−1. To account for the different source
of leader motion, they were limited to at most 0.25m s−1,
giving the swarm robots the opportunity to react.

For each configuration we conducted 100 random trials
on a range of different failure rates; note that a failure rate
of 0.006 per second corresponds to an expected lifetime
of about 167 seconds, meaning that out of 400 robots, on
average about every 0.4 seconds one of them breaks down
for good. Figure 10 depicts the resulting performance for
all three strategies; in each case, we show the median per-
formance, with corridors around the bold curves indicating
first and third quartiles. The top part of Figure 10 gives
the performance relative to a hypothetical offline optimum
without robot failures, which is extremely fragile: as this



solution is only a tree, any robot failure or uneven distri-
bution will immediately disconnect it. The ratio of 0.3215
(corresponding to the performance of a 3.11-approximation
algorithm for relay placement) is also indicated for better
reference. The bottom part of Figure 10 gives the relative
performance, compared to a hypothetical optimum that can
only use the remaining live robots. It is clear to see that
the strategies appear to be relatively robust against sudden
disconnection due to fatal robot failure events, indicating
excellent ability to adapt.

Comparing the individual strategy components, the results
show that leader forces already produce decent swarm be-
havior, with survivability four times higher than for the base
forces. Without robot losses, it reaches about 30% of the
length of the hypothetical optimum, which is quite close to
the theoretical approximation ratio. With robot failures, the
performance gets weaker with increasing failure probability.
The variant with additional stability improvement is slightly
better without failures, but is clearly more robust against
robot losses.

VI. CONCLUSION

We have demonstrated how local methods for maintaining
cohesiveness and connectivity of a robot swarm can achieve
remarkable results, even in the presence of exterior forces
and frequent, permanent robot failures.

There are numerous possible and interesting extensions.
One of them is to extend our methods to heterogeneous
swarms with different kinds of robots. In that setting, an
even more structured, hierarchical approach may be able to
combine the strengths of centralized methods (which are
better suited to keep track of unbalanced situations) with
the benefits of decentralized mechanisms (which are more
robust against failure of key components). Clearly, this looks
promising in scenarios in inhomogeneous environments,
in which larger-scale, catastrophic events may cause rapid
resource redistribution. Other challenges include mastering
more complex tasks, such as dealing with obstacles, or per-
forming collective transportation of objects by a swarm [26].
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