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Abstract— We present a descriptor estimator for surface-
based 3D input data for coarse localization of mobile robots.
From the input pointclouds surfaces are reconstructed and
simplified to detect stable keypoints which are used to evaluate
rotation and translation invariant features. The invariance is
achieved by transforming the triangulated input data into the
frequency domain by Fourier transformation and spherical
harmonics. The pipeline was evaluated against state of the art
algorithms and tested to localize a mobile robot. The source
code is publicly available.

I. INTRODUCTION

In many applications mobile robotic platforms can im-

prove the workflow, like transportation of work pieces,

automatic cleaning or working at hardly accessibly places.

In other cases mobility is a necessity for interaction with

humans in domestic living for entertainment or health care.

Beside of the manoeuvrability of the platform the software

has to localize the mobile robot in the environment and refine

the position continually to be able to navigate collision free.

Furthermore localization is needed for following trajectories

or recognizing places like workplaces, danger areas, lifts,

kitchens and more. As the odometry drifts apart from the

real world position over time perception systems like laser

scanners are used to update the pose of the robot.

Despite the high quality standards demanded by the users,

the localization solution should be cost effective. Therefore

many robots like PR2, rob@work, MobiNa1 (Fig. 1) or

Care-O-bot 3 [1] use consumer hardware like the Kinect

to implement the perception of the environment. In the

following we will concentrate on coarse localization of a

robot based on the pointclouds output from 3D cameras. This

enables a robot to position itself in relation to its environment

without human interaction. While the mobile platform is

moving, the pose from the odometry or other sensors can

also be validated and refined by the extensive pointcloud

data which is aligned with a given map from CAD models

or with mapped data from previously visits.

To recognize an already seen place like a part of a room

the input data has to be matched with a database which

contains a similar view of the scene. The input data will

differ by the view point, the noise, the lighting conditions

and dynamic changes to the environment as the camera will

probably not be at the same spot again. For large buildings

like universities, many places have to be stored, recognized
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Fig. 1: MobiNa (Mobile Emergency Assistance) used for

experiments with an Asus Xtion Live Pro and an iRobot

Create platform

and distinguished. Therefore a description of the input data

is needed which satisfies following requirements:

• Scale invariance is achieved by the used 3D camera as

the depth correlates with the scale

• Rotation and translation invariance increase robustness

against changes of the camera pose

• Insensitivity to density of the sampled pointcloud is

necessary as the sampling of the pointclouds heavily

depends on the viewing angle and distance to the

surfaces

• Robustness against noise and lighting conditions

• The descriptor should be compact and searchable

The approach described within this paper is designed to

match all these requirements. Additional main contributions



in this paper are:

• Fast keypoint selection for surface-based data

• Novel approach to compute spherical harmonics on

discontinuous functions (surfaces)

• Processing of pointclouds and CAD models as input

data

• Evaluation against the state of the art methods for

keypoint selection and feature estimation on the RGB-D

SLAM dataset from the university of Freiburg [2]

• First experiments with a robot in indoor environments

to recognize scenes with a bag-of-words approach as

input for RatSLAM [3] for loop closure.

• The implementation and evaluation is publicly avail-

able 2 and provides a ROS package which uses the Point

Cloud Library [4] (PCL)

The paper is structured as follows: Section 2 gives an

overview of the current state of the art of related work. In

Section 3 the theoretical foundation and the pipeline of the

descriptor is described which is evaluated in Section 4 against

five keypoint selection methods and four feature estimators

on real world data. In an example application the descriptor

is used to localize a robot. Finally, we conclude and give

insight on future work in Section 5.

II. PREVIOUS WORK

In literature descriptors for distinguishing 3D input data

are in general divided into signatures and histograms. Sig-

natures define a local reference frame, also referred to as

normalization, to achieve transformation invariance. One ex-

ample for local reference frames is Signature of Histograms

of Orientations [5] (SHOT) which computes unique signa-

tures for a local surface description from a pointcloud. The

reference frame is determined by Eigen Value Decomposition

by the local distribution of the surface points. The normals

of the relevant points are classified in bins of a sphere which

leads to signatures of histograms.

In contrast histograms without reference frame define

distinct bins for a transformation invariant, relational norm,

like distances between points. Representative algorithms are

Ensemble of Shape Functions [6] (ESF), Point Featue His-

togram [7], its extension Fast Point Feature Histogram [8]

(FPFH) and Viewpoint Feature Histogram [9] (VFH).

To achieve invariance against rotation and translation PFH

uses a relative measure around an interest point, also called

keypoint, on a pointcloud with normals. PFH computes three

angles and the distance between each point pair within a

user-defined radius at the query point. FFPH is a variation

of PFH with the goal to speed up the computation by only

visiting point pairs containing the query point and weighting

the histogram in dependence of the distance of the second

point from the query point.

A further extension of FPFH is VFH which is invariant

to scale but not to the pose of the camera which allows

retrieving the camera pose. In short, the interest point is

2https://github.com/ipa-josh/cob environment perception

replaced by the cameras origin and the normal of the relative

point by the central viewpoint direction.

ESF also uses histograms with 10 × 64 bins and can be

computed on pointclouds as well as CAD models. It selects

random points from the input pointcloud and classifies them

to be on or off the surface and the relation of the points.

Different measures for the relation of points are used like

distances (D2), angles (A3) or areas (D3). Compared to

FPFH no pre-processing like normal estimation is necessary.

Another approach to recognize known 3D data are spher-

ical harmonics shape descriptors [10], [11] which are meant

to retrieve or categorize CAD models from a database. The

method focuses on a rotational invariant representation by

describing the model by a spherical function in terms of the

amount of energy it contains at different frequencies. At first

the model is transformed into a blurred voxel grid to provide

a continuous function in R
3. Different variations of the

algorithm use local feature estimators for the transformation

from the input data to the voxel grid. The voxel grid is

sampled spherically at different radii. By using a Fourier

transformation the weighted samples can be converted to

the frequency space. The energy of the resulting vector is

invariant to rotation.

To improve the matching results for local feature esti-

mators and reducing the number of features, stable key-

points are selected beforehand to increase stability and re-

peatability. Two widely used approaches are Scale-Invariant

Keypoints [12] (SIFT) and Harris 3D [13]. The Harris 3D

keypoint selection for 3D data is an extension of the original

Harris detector. The detector is based on the local autocorre-

lation function by measuring local changes of nearby points.

For the calculation of the response different approaches

(e. g. HARRIS, LOWE, TOMASI) are implemented in PCL.

Points are selected as keypoints if the response is above a

defined threshold.

SIFT selects keypoints at minima and maxima of the result

of difference of Gaussian function applied in scale space to

smoothed input data. SIFT was originally designed for 2D

images and adapted for the 3D case later.

III. KEYPOINT SELECTION AND FEATURE

ESTIMATION

The pipeline of the single processing steps for data acqui-

sition and preprocessing, keypoint selection and descriptor

computation is shown in Figure 2. In the first step the

pointcloud is converted to a shape representation (1) which

is simplified in the next step (2). On the surfaces keypoints

are detected (3). Around the keypoints a local, triangulated

submap (4,5) is generated. The submap is formulated as

continuous function in the frequency domain (6) which is

further processed by spherical harmonics (7). The result is a

rotation and translation invariant descriptor at each keypoint.

A. Data acquisition

For our application we use a RGB-D camera namely

Asus Xtion Pro Live which captures an ordered pointcloud

representing visible surfaces of indoor environments. We



Fig. 2: Pipeline of the execution steps: First image shows the

input pointcloud. Second image the reconstructed surfaces.

In the third image the keypoints (green) are highlighted. In

the last image a submap at a keypoint is shown.

do not use the color information. In most indoor scenarios

surfaces can be found to be locally planar as our evaluation

results show in [14]. By reconstructing the planar surfaces the

representation of the pointcloud becomes more compact and

computational efficient. We used our surface reconstruction

algorithm [14] which is characterized by a high execution

speed of over 30 Hz and has no needs for any preprocessing

of the pointcloud. The algorithm fits polynomial functions

into a pointcloud with the help of a quadtree data structure

from top down. Other surface reconstruction methods (e. g.

[15]) can also be used if they output delimited, planar

surfaces.

In comparison to the discrete model of single points

the surface representation has two main advantages for the

presented feature estimation:

• Data reduction which leads to a significant speed up

• Independence of point sampling density

B. Keypoint selection

Fig. 3: Visvalingam-Whyatt algorithm: Detail view of com-

putation of the effective area. The blue area is the effective

area for the red point which is smaller than the effective are

for the following point. Therefore the red point is removed.

The surface reconstruction outputs shapes from the current

view of the camera. Each shape is an individual plane which

is delimited by a polygon supporting holes. Small movements

of the camera (around one meter) will generate resembling

visible shapes which is sufficient for recognizing locations.

To reduce the number of descriptors locally stable keypoints

are identified. We use the polygons of the shapes to compute

the keypoints by an adaption of the Visvalingam-Whyatt

algorithm [16]. The Visvalingam-Whyatt algorithm is meant

to simplify the polygons. In our case we use it for two

purposes:

• Remove noise and reduce the size of the resulting

triangulated mesh which enhances the processing speed

and leads to more stable features in the next step

• To detect interest points

The requirements of an interest point are stability to stay

at the same location and repeatability to be often visible.

Therefore a low noise sensitivity is an advantage.

The Visvalingam-Whyatt algorithm is an area based algo-

rithm to eliminate points with a minimal change of the whole

area of the polygon. The effective area of each point of a

polygon is defined by the area of the triangle of the current,

next and previous point. The point with the least effective

area is removed (see Fig. 3). These steps are repeated until a

break condition occurs. For the simplification of the surfaces

we stop the point elimination if the minimum effective area

is greater than the threshold tmin area.

If subtle noise was removed, further deletion of points

is only done virtually to identify the most stable points

of the polygon with a different threshold tkp area which

allows more area to be removed. The remaining points are

potential keypoints. By evaluating reasonable settings on real

world data we achieved the best results with the thresholds

tmin area = 12.5 cm2 and tkp area = 225 cm2 which are used

throughout the paper.

The resulting interest points can be near to each other at

bordering areas. For example a box will generate four interest

points for each visible face. At the completely visible corner

of the box there will be three potential keypoints at the same

location. By thinning out random interest points near to each

other within the fourth of the radius r we generate a list of



Fig. 4: Vectors of a triangle

keypoints. The radius r is defined by the feature estimation

which uses the radius to limit the local influence of the input

data. Further we exclude keypoints which generate features

that are not completely visible within their search radius r

in the current field of view.

C. Descriptor computation

Before computing the view point invariant features at the

keypoints the simplified shapes are converted to single trian-

gles (4). The triangulated mesh is a universal representation

of the environment. At each keypoint the intersection of

a sphere with radius r and the mesh is used to limit the

influence of the input data to a local feature. Therefore only

the area of the surfaces within the search radius around the

point is visited. To achieve rotation invariance in literature

spherical harmonics are used [10] beside other methods. In

general continuous functions are needed to evaluate spherical

harmonics because the integration of a visible surface yields

always zero as no volume is present. Existing approaches use

voxel grids to approximate pointclouds or CAD models by

converting the discontinuous representation in R
3 to a contin-

uous representation in R
3. The voxel grid has the drawback

that the input data is discretized to a fixed resolution.

Instead our approach overcomes discretization and trans-

lation variance by converting the surfaces into the frequency

space which is continuous without discretization. The trans-

formation from surfaces to frequency domain still encoun-

ters the problem of a zero volume. Yet, in the Cartesian

coordinate system the limit of the function is analytically

resolvable.

Each triangle (see Fig. 4) is defined by an offset vector

~o and two direction vectors ~s1 and ~s2. Then there exists

a function f(s) which maps the surface coordinate s to a

Cartesian vector.

f(s) = ~o+

[

~s1
~s2

]

s

By integrating over the delimited surface A2 (triangle) the

Fourier transformation can be computed. The evaluation of

the Fourier transformation at point p is stated as follows:

c(p) =
1

(2π)
3

2

lim
∆→0

(
∫

s=A2

1 · e−2πip(f(s)+∆))

)

By substitution it can be formulated as

A = e−2πi(~op+ ~s2p+ ~s1p)

B = e−2πi(~op+ ~s2p)

C = e−2πi(~op)

c(p) =
1

(2π)
3

2

−~s1pC + (~s1 + ~s2)pB − ~s2pA

~s1p(~s2p)2 + ~s2p(~s1p)2

which simplifies further limit value considerations which

have to be handled for numerical stability. The superposition

of c(p) allows the computation of the frequency domain for

the submap by summing up the complex values for each tri-

angle of the submap. Translation invariance is accomplished

by evaluating the amplitude of the frequency domain.

In the next step (7) spherical harmonics are used for

the rotation invariant description of the submap. Instead of

applying the spherical harmonics on a voxel grid we use

‖c(p)‖ as volumetric image which is sampled spherically at

different radii with an uniform distribution distribution from

0 to r excluding 0.

The result is a discrete matrix which describes again the

frequency domain of the translational invariant description

of the mesh. Reducing the matrix to the amplitude yields a

rotation invariant description. The number of radii as well

as the number of the sampled frequencies of the spherical

harmonics have influence on the accuracy and computational

complexity. By cross validation we achieved good results

with 8 radii and 32 frequencies. This parameters are used

throughout the paper.

As the resulting rotation and translation invariant descrip-

tor has a fixed size, fast nearest neighbor search methods like

k-d tree is applicable. In addition the proposed approach can

be used for all input data which can be converted to triangles

which allows a broad application range.

IV. EVALUATION

We evaluated the proposed method for keypoint selection

and descriptor computation against existing algorithms on

publicly available datasets of indoor environments from the

university of Freiburg. The dataset [2] is meant for com-

parison of SLAM algorithms for Kinect data and includes

ground truth trajectories of the camera. The used recordings

are listed in table II. We used every 10th frame, in total 950

pointclouds. Our keypoint selection is evaluated against SIFT

and Harris (with the variations: HARRIS, TOMASI, NOBLE

and LOWE). The descriptor is compared with ESF, FPFH,

SHOT and VFH. All feature estimators output a vector of a

fixed size. The number of bins is stated in Table I. In the

following we abbreviate the proposed algorithm as Fourier

Shape Descriptor (FSHD). All algorithms are implemented

in PCL 1.7. The used computer system is equipped with an

Intel Xeon CPU E5-2643, no GPU acceleration was used. For

both execution steps the execution time and the qualitative

analysis is stated. All scripts used for the evaluation can be

found in the project repository3.

3https://github.com/ipa-josh/cob environment perception



TABLE I: Evaluation results for descriptor: Bin size and

execution time (including preprocessing)

Algorithm Bin size Execution time [s]

FSHD 128 0.019

ESF 640 0.13

FPFH 33 3.2

SHOT 352 0.071

VFH 308 0.11

TABLE II: Real world datasets from the university of

Freiburg which were used

Filename No. of frames

rgbd dataset freiburg2 desk 217

rgbd dataset freiburg2 desk no loop 59

rgbd dataset freiburg2 pioneer 360 77

rgbd dataset freiburg2 pioneer slam2 131

rgbd dataset freiburg2 pioneer slam3 190

rgbd dataset freiburg2 pioneer slam 229

rgbd dataset freiburg3 long office household 247

A. Keypoint Selection

The keypoint selection algorithms estimate the keypoints

for the specified datasets. The points are then transformed

into a global reference coordinate system according to the

ground truth transformation of the dataset. The keypoints of

different frames are compared against each other. If the L2

norm is below the fourth of the feature radius the keypoint

is assigned to the stable keypoints ns. Otherwise it is an

unstable keypoint nu. For the stable point the minimum

distance in Cartesian space to the best match is computed

for an accuracy comparison.

Figure 5 shows the relation between stable keypoints and

the total number of keypoints by ns

ns+nu

in dependence

of the selected search radius. A maximum is reached at

0.6 m with 30 keypoints per frame in average. Above

0.6 m the repeatability is decreasing as the viewport of the

camera limits the keypoint detection. The compared keypoint

selection algorithms work directly on the pointcloud with
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Fig. 5: Evaluation results for keypoint selection: Relation

between stable and total number of keypoints in dependence

of the selected search radius to state the repeatability
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Fig. 6: Evaluation results for keypoint selection: Averaged

minimum distance of the matched stable keypoints to state

the stability
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Fig. 7: Evaluation results for keypoint selection: Number of

of detected keypoints in dependence of search radius r

a higher granularity. For the following evaluation of the

descriptor a search radius of 0.6 m was used.

TABLE III: Evaluation results for keypoint selection: Exe-

cution time for keypoint selection (including preprocessing)

Algorithm Execution time [ms]

FSHD 0.035

SIFT 5.31

HARRIS 4239

TOMASI 4425

NOBLE 4237

LOWE 4252

The averaged minimum distance of the matched stable

keypoints are similar for all approaches as shown in Figure 6.

The proposed method shows a slightly lower accuracy as

the discretization level of the shapes is higher than of the

pointcloud. Yet, the reduced size of the shapes compared

to the pointcloud has a great impact on the execution time

as stated in Table III. The number of detected keypoints is

stated in Figure 7.



Fig. 8: Matching of our descriptor between two recordings.

On the left a human is visible, working at a table. Green

arrows show best matching correspondences.
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Fig. 9: Evaluation results for descriptor: L2 norm of the

features are evaluated against each other which fall within

the stated Euclidean distance to state the distinctiveness
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Fig. 10: Evaluation results for descriptor: recall (solid lines)

and true negative rate (dashed lines) of the features with

an average descriptor distance (L2) threshold of the outliers

(from stated search radius up to a radius of 1.5 m)

B. Descriptor

The keypoints of our approach are used as common basis

for the descriptor evaluation. Like in the evaluation of the

keypoint selection each local point is transformed into a

global coordinate system. The L2 norm of the features are

evaluated against each other which fall within the stated

Euclidean distance. Figure 8 shows the correspondences of

a typical match between two scenes using our algorithm.

Figure 9 visualizes the Euclidean distance on the abscissa

and the corresponding and normalized average L2 norm

of the feature distances on the ordinate. The normalization

is necessary because each descriptor has a different range

of values. The normalized values are stated relative to the

feature distance value at a radius of 1.5 m.

A high distinctiveness is achieved by a low feature distance

within the search radius of the feature estimators. As it can

be seen the feature distance of our approach is lower than

the results of the other algorithms. Therefore a good match

of the descriptor corresponds well with the feature distance.

As the curve approximates steadily but slow against 1

over the Euclidean distance the descriptor is stable against

transformations.

The recall and true negative rate for different search radii

are stated in Figure 10. The features within the stated search

radius are the positive samples and samples above the search

radius up to 1.5 m are used as outliers. The matching thresh-

old for the feature distance was chosen from the average L2

norm of the outliers. FSHD and VFH have both a high recall

rate with a similar distance to the true negative rate which

indicates a higher distinctiveness than the compared feature

estimators. The true negative rate of around 0.5 results

from the adaptive threshold. Furthermore the specificity is

limited because of similar and ambiguous geometries of

the indoor scenes like repeating walls or furniture. Failure

cases of our approach are results of the limited bandwidth

of the descriptor which is true for all 3D descriptors and

the dependence on the surface reconstruction. The execution

time for all approaches is listed in Table I. Our descriptor

estimation based on surfaces instead of pointclouds requires

the lowest execution time.

C. Example Application: Real-world experiments with Rat-

SLAM

In conclusion the descriptor was used for a first example

application with a SLAM approach on the robot MobiNa. We

used the open source implementation of RatSLAM [3] for

localization and mapping. RatSLAM is a bio-inspired SLAM

system based on the insights of the functioning of the brain

of rodents (therefore the name ”rat”) which uses a grid-based

attractor network dynamics for integrating odometry and

landmark sensing to form a topological map. The outputted

map describes a set of relative transitions of poses which can

recover from major path integration errors.

Unlike many other SLAM systems RatSLAM does not

depend on pose refinement by registration of the input data

against a map. Instead it uses local scene identification

for loop closure and rough pose correction. Local scene



Fig. 11: Pipeline of the scene recognition and SLAM system:

First the computed features are classified by a k-d tree to a

distinct vocabulary. Second, all features of a scene generate a

unique word of the recognized scene. The recognized scene

is used by RatSLAM for localization and loop closure which

leads to a non-Cartesian pose map.

(a) Two captures of the same scene from
rgbd dataset freiburg2 desk

(b) Two captures of the same scene from
rgbd dataset freiburg2 pioneer slam

Fig. 12: Correct scene identifications from different poses

show the transformation invariance of the descriptor, however

are misleading for loop closures

identification is achieved by exteroceptive sensor input like

visual features. For the proposed descriptor we used a

bag-of-words approach to retrieve a scene identifier from

multiple features of a single-shot scene. Figure 11 shows the

pipeline of the implemented scene identification. At first the

features are classified to a sparse vector of occurrences by a

nearest-neighbour classifier (k-d tree for the L2 norm of the

descriptor). To identify a scene the similarity is computed for

the perceived features Fperc compared to all known scenes

Fscene. The similarity score is defined by
|Fperc∩Fscene|

|Fperc|
. The

thresholds for the L2 norm (80) and the minimum similarity

score (0.2) were determined by cross validation and the

previous evaluation results. The default settings of RatSLAM

were used.

(a) Picture of floor scene (b) Picture of office scene

Fig. 13: Pictures of indoor scenes used for experiments

To evaluate the average precision and recall rate for correct

loop closures we compared the camera poses of the scene

matches from the groundtruth dataset of the university of

Freiburg. Poses which lie within 0.4 m and have a maximal

angle deviation of 0.2 rad are considered to be correct loop

closures. For the application of SLAM the higher precision

rate of 0.76 is more important than the lower average recall

rate of 0.36. False positives are partly results from the view

point invariance of the descriptor. Two examples are shown

in Figure 12 of unsuccessful loop closures. Yet, the scene

was identified successfully.

The real-world scenes were captured by the service robot

MobiNa in indoor environments. The telepresence robot is

based on an iRobot Create platform and is equipped with an

Asus Xtion Pro Live and an embedded computing system

(Exynos 4412: 4×1.7 GHz, 2 GB RAM). The odometry

information has an significant average linear deviation of

4.9% because of the heavy setup. Surface reconstruction and

feature estimation was computed online on the robot with

around 10 Hz.

In the first experiment the robot was driven manually up-

and downwards in an office floor (Fig. 13a, duration: 649 s).
The floor has a regular geometry with some side doors and

houseplants. In the second experiment a circular route was

chosen within an office (Fig. 13b, duration: 443 s). The office

has a more complex geometry and is equipped with tables,

chairs and other equipment. For both experiments the course

was driven 10 times round to provide enough possibilities to

recognize the scene again.

Figure 14 shows the comparison of the pose map with and

without scene recognition. The odometry drift is drastically

reduced through the pose correction by exploiting the addi-

tional information of the features. In the office experiment

two false loop closures resulted in ”jumps” in the pose map

from which the SLAM system recovered successfully after

the next correct loop closure. From 2179 scenes 400 were

recognized in the office experiment. In the floor experiment

1061 scenes of 1990 were identified.

V. CONCLUSIONS

We presented processing steps to retrieve keypoints and

rotation and translation invariant descriptors for surface-



(a) Pose map from odometry
only shows drift (round
course in office)

(b) Pose map generated from
odometry and features
can recover from drift
(round course in office)

(c) Pose map from odometry only shows drift (patrol in
floor)

(d) Pose map generated from odometry and features can
recover from drift (patrol in floor)

Fig. 14: Comparison of RatSLAM results with and without

the usage of the proposed descriptor

based input data. By using the efficient data representation of

the shapes and their transformation to the frequency domain

it is possible to compute spherical harmonics descriptors

online. The evaluation results show low computation time

of 19ms and good distinctiveness compared to the state of

the art. First experiments on a mobile robot were successful.

The next steps include extensive experiments for different

applications like localization and object recognition. In fur-

ther developments the descriptor will be extended to include

additional information like color or intensity.

REFERENCES
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