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Abstract— This paper presents an optimal design strategy for
magnetic targeting of therapeutic drugs. In this study, to max-
imize the effect of the treatment and minimize adverse effects
on the patient, a mathematical model have been developed to
find the number and the size of the boluses with respect to the
growth of a tumor. Using these models, control strategies are
developed to establish a schedule that allows the physician to
administer the medication while respecting borne by the patient
doses. To transport the drugs, we use therapeutic magnetic
boluses composed of magnetic particles aggregates as navigable
agents controlled by magnetic gradients. Based on the optimal
design of the bolus, an experimental investigation is carried
out in millimeter-sized fluidic artery vessels to demonstrate the
steerability of the magnetic bolus under different velocity, shear-
stress and trajectory constraints with a laminar viscous fluidic
environment.

I. INTRODUCTION

The targeted delivery of nanoparticles to malignant tu-
mors is an important method in the development of can-
cer nanomedicine [1]. Magnetic targeting is a method that
attempts to concentrate navigable micro-entities such as
Therapeutic Magnetic Micro Carriers (TMMC) in a targeted
site by applying external magnetic fields [2]. The magnetic
targeting of deep tissues is highly challenging and is not
used in clinical practice [3]. A new approach based on
upgrading a typical clinical magnetic resonance scanner
with adequate steering coils referred as Magnetic Resonance
Navigation (MRN) has been proposed to navigate TMMCs in
deep tissues and keep the systemic carrier distribution under
control [4], [5]. To benefit both from a large motive force
in the macrovasculature and from a possible break up in
the microvasculature (so as to avoid undesired thrombosis
and to improve the targeting), a promising approach is
to consider aggregates. Such aggregates of magnetic mi-
croparticles (termed bolus hereafter) are binded either by a
biodegradable ligand [6], [7] or by self-assembly properties
[8]. Already, polymer particles embedding doxorubicin as a
therapeutic agent were successfully synthesised and steered
in a rabbit liver using a 400 mT.m−1 unidirectional gradient
coil [2]. However, as shown in Fig.1(a), several milliliters of
therapeutic particles need to be injected in order to reach the
required therapeutic drug dose. Navigation of such agents
requires the injection of consecutive boluses that will be
serially steered from the injection site (the tip of the catheter
as shown in Fig.1(b)) to the target location (tumor site as
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Fig. 1. Inset A represents the vascular network feeding the tumor
growth. By correctly applying magnetic gradients, inset B shows that the
control of the injected boluses to navigate only toward the disease site
(lung carcinoma) preserves healthy tissues. The image zoom illustrates a
schematic representation of a cut of the self-assembled magnetic bolus
loaded with an antitumor drug and magnetic nanoparticles. Inset C displays
the magnetic targeting of the tumor by producing chemoembolization of
the multiple capillaries feeding the tumor. The bolus is broken in multiple
aggregates creating capillary embolies.

shown in Fig.1(c)) before to break-up into nanometer con-
stituents. Navigation of such agents needs to know precisely
the number, size, shape and steering properties of boluses to
be injected with respect to the developmental stage of the
tumor, its location and accessibility [9].

In this study, to maximize the effect of the treatment
and minimize adverse effects on the patient, a mathematical
model has been developed to find the number and the size of
the boluses with respect to the growth of a tumor. Using these
models, control strategies are developed to establish a sched-
ule that allows the physician to administer the medication
while respecting borne by the patient doses. Furthermore,
the aggregation size is the key factor for successful and
efficient propulsion within the blood vessels. A relatively
large aggregation could form clots in the small arteries or
conversely a very small one would be dragged away by the
systemic circulation. Based on the optimal design of the bo-
lus, an experimental investigation is carried out in mm-sized
fluidic artery phantoms to demonstrate the steerability of the
magnetic bolus. Different velocity and trajectory constraints
are considered under a laminar viscous fluidic environment.
The experiments show the feasibility to perform magnetic
aggregation and mechanical break-up of boluses constituted



of hundreds of superparamagnetic microparticles of 9µm of
diameter. This paper consists of four sections. Section II
details the need for a tumor growth model in order to estimate
the number of boluses that are required for medication. Then,
in Section III, the analysis of a bolus aggregate navigating
in blood vessel is presented. Section IV is dedicated to
the experimental investigation of the steerability of a bolus
aggregate and break up under laminar fluid environment.
Conclusion and discussions on open issues are summarized
in Section V.

II. TUMOR GROWTH MODELING

A. Background

Classically, the tumor growth occurs in three stages. First,
an avascular step occurs where the tumor obtains its nutrients
from its immediate environment, through the blood vessels.
At this stage, the tumor is difficult to detect on medical
images. Secondly, the tumor can continue to expand by
seeking additional sources of nutrients. At this angiogenesis
step, endothelial cells migrate to the tumor, forming new
blood vessels. Hence, symptoms may appear and the tumor
becomes detectable. Thirdly, the tumor reaches the metastasis
stage where it spreads to another part of the body. Several
mathematical tumor models have been developed to analyze
the tumor growth. These models can be incorporated into a
given treatment strategy (such as chemotherapy, immunother-
apy, radiotherapy. . . ) or, in some cases, a combination of
therapies. For instance, the mathematical model of Stepanova
[10] is based on two ordinary differential equation (ODE) de-
scribing the interactions between cancer cell growth and the
immunological activities. Nevertheless, Stepanova’s model,
and some of its extensions as in [11], could be used mainly
for small cancer volumes. Other theoretical models [12] take
into account three populations (e.g. populations of normal
cells , of tumor cells and tumor immunity) and serve as an
analytical tool for cell growth with or without chemotherapy.
Hahnfeldt et al. [13] have proposed a theoretical model for
the growth of a tumor that has been validated experimentally
on mice infected with lung cancer (Lewis lung carcinoma–
LLC). Especially, the Hahnfeldt’s tumor growth model is
built by considering the action of angiogenic inhibition (i.e.
limit the growth of new blood cells). Actually, anti-tumor
angiogenesis is seen as a therapy for a wide range of cancer,
and is not subject to provide drug resistance.

B. Hahnfeldt’s Model of Tumor Growth

In this work, we consider the tumor growth formulation
from [14] that is based on the previously developed and
validated model in [13]. In this Hahnfeldt’s model the state
representation of the underlying diffusion that stimulate and
inhibit angiogenesis are incorporated into a model for cancer
cells and vascular endothelial cells. Let p define the volume
(in mm3) of a primary tumor cells, and e denote the volume
(in mm3) of the vascular endothelial cells that supplies the
tumor with nutrients. Classically, the growth of a tumor
is described by different empirical growth curves, such as
exponential [15], Gompertzian [13] or a generalized-logistic

law [12]. The Hahnfeldt’s model considers that the tumor
growth follows a Gompertzian function, and leads to the
following nonlinear equation [13]:

ṗ(t) = −λp p ln
(

p(t)
e(t)

)
(1)

ė(t) = bp(t)−d p(t)2/3e(t)− ke(t)g(t) (2)

g(t) =
∫ t

0
c(τ)exp(−λg(t− τ))dτ (3)

with g(t) the concentration of administered drug inhibitor1

(conc); and c(τ) the rate of administration inhibitor concen-
tration (conc/day).

Drexler et al. [14] have proposed a modified version of
the Hahnfeldt’s model (1)-(3) based on the knowledge of
clearance of the administered inhibitor. To this aims, the
authors consider a Dirac deltas as input u = c(τ), meaning
that the drug was given to the patient in the form of injection.
Hence, the tumor kinetic model is then defined by:

ṗ = −λp p ln
( p

e

)
(4)

ė = bp−d p2/3e− keg (5)

ġ = −λgg+u (6)

where u is the input inhibitor drug administration rate.
1) Tumor Growth Parameters: In the both tumor growth

modeling (1)-(3) and (4)-(6), the model constant parameters
are defined as:
• λp tumor growth rate (/day) ;
• b vascular endothelial cells birth rate (/day);
• d vascular endothelial cells death rate (/(day ·mm2/3));
• k drug killing parameter /(day · conc));
• λg drug clearance rate (/day).

The growth parameters set {λp,b,d} has been identified by
Hahnfeldt et al. [13] from experimental data made with
mice diseased with lung cancer (Lewis lung carcinoma–
LLC). In steady-state, the tumor kinetic model converges
to the equilibrium {p0,e0,g0}. In particular, considering the
above models and if there are no administered drugs, it is
straightforward to demonstrate that:

p0 = e0 =

(
b
d

)3/2

(7)

Hence, the tumor equilibrium is related to the vascular birth
and death rate, which depends only on the type of tumor and
the patient.

The drug pharmacokinetic parameters set {k,λg} rely
on the chosen inhibitor. In antiangiogenic therapy, several
angiogenesis inhibitors are currently in preclinical or clinical
trials. In particular, endostatin [16] is known as one most
efficient inhibitor. Indeed, endostatin inhibits endothelial cell
proliferation, angiogenesis and the endogenous angiogenesis
inhibitors in the body. Moreover, endostatin has the broadest

1The unit of concentration (conc) is measured by the ratio of the mass
of the drug and the body mass of the patient in mg/kg.



anti-cancer spectrum. Therefore in this work we focus on en-
dostatin drug inhibitor. The Table I summarize the different
parameters set used in this work.

TABLE I
TUMOR GROWTH PARAMETERS

Tumor growth Drug pharmacokinetic
parameters parameters

λp 0.192/ ln(10) (/day) λg 1.7 (/day)
b 0.5;5.85;8 (/day) k 1.7 (/(day · conc))
d 0.00873 (/(day ·mm2/3))

2) Model Analysis of Tumor Growth: The open-loop
analysis of the tumor kinetic allows us to evaluate the tumor
evolution over time. The Fig.2 shows the evolution of a tumor
over time. After 120 days, the tumor reached a volume of
433mm3, which will correspond to the avascular phase (blue
line in Fig.2). Without applying any treatment, the tumor
continues to grow to a volume of 17347mm3 until reaching
the vascular phase (green curve in Fig.2). One can notice
that the tumor and the endothelial volume increased rapidly
during the first 60 days through a Gompertzian curve. This
increase is due to the strong presence of nutrients carried by
the endothelial cells, that feed the tumor. That is why the
endothelial volume growths faster compared to the tumor
volume. Thus, if the rate of vascular birth b increases, the
tumor volume is then 27415mm3, and it may reach the
metastases phase.
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Fig. 2. Evolution of the tumor (plain line) and endothelial (dashed line)
volumes in avascular (blue), vascular (green) and metastasis (red) stages.

C. Optimal Control of Input Drug

Optimal control techniques have been applied in the con-
text of cancer immune-interactions [12] or antiangiogenic
therapy [14] to define the optimal treatment and drug dose.
Especially, the motivation is to reduce the volume of the
tumor while avoiding the toxicity of the human body by
the high doses of the drug to be administered. To solve this
optimization problem a solution is to use a linear-quadratic
regulator (LQR) design [17]. Let us consider the nonlinear
system dynamics (4)-(6) which could be linearized as:

ẋ = Ax+Bu, with x = (p,e,g)T (8)

Hence, the following quadratic cost function is proposed to
reduce the volume of the tumor and the drug concentration

in the blood [14]:

J(t,x) =
∫

∞

0
{xT (t)Qx(t)+uT (t)Ru(t)}dt (9)

with:

R = 105, and Q =

1 0 0
0 0 0
0 0 1

 (10)

The Q and R values are chosen to take into account the
volume of the tumor and the drug concentration, while
preventing the high doses. The feedback control law that
minimize the criterion (9) is then classically given by:

u(t) =−Kx(t) (11)

where K =−R−1BT P, with P the solution of the well known
continuous time algebraic Riccati equation (CARE):

PA+AT P−PBR−1BT P+Q = 0 (12)

and the matrix A and B are obtained using the following
method. First, in the growth modeling (4)-(6), the model will
be rewritten as:

ẋ = f (w)+g(x)u, with x = (p,e,g)T (13)

y = p (14)

where

f (x) =

 −λ1 p ln( p
e )

bp−d p2/3e− keg
−λ3g

 and g(x) =

0
0
1

 (15)

The model will be then linearized around the operating point
which varies instantaneously, by calculating the Jacobian
matrix J = ∂ f (x)

∂x defined as:

J =

−λ1 ln( p
e )−λ1 λ1

p
e 0

b− 2
3 d p−2/3e −(d p2/3 + kg) −ke

0 0 −λ3

 (16)

Thus, the linear model is in the following form

A =

−λ1 ln( p
e )−λ1 λ1

p
e 0

b− 2
3 d p−2/3e −(d p2/3 + eg) −ee

0 0 −λ3

 , B =

0
0
1


(17)

C =
[
1 0 0

]
,D = 0 (18)

The proposed linear model is used to apply the linear
quadratic control and to limit the amount of drug, the control
input u is saturated to an upper limit umax.

Fig.3 illustrates the tumor behavior when an optimal
intake of endostatin inhibitor is administered. As one can
see, the tumor and the endothelial volumes vanish in about
60 days for the avascular and 40 days for the vascular
growth. The corresponding administered dose of drug is
depicted in Fig.4. The endostatin has to be injected in two
phases. First, the control input u is saturated to i) umax,1 =
2conc/day for the avascular growth; ii) umax,2 = 79conc/day
for the vascular growth; and iii) umax,3 = 90conc/day for
the metastases stage. The control input is then reduced in



the avascular growth, vascular growth, metastases stage, to
about 1conc/day, 14conc/day and 20conc/day respectively,
when the volume of the tumor remains close to 0. For
instance, a patient with a weight of 60kg, the applicable
daily dose (DD) is given by DD= 60 ·u (mg/day). The Fig.4
shows also the scaling of the posology of injected endostatin
in the different phases of growth. Based on this optimal
drug delivery synthesis, the following section investigates the
feasibility of administrating such treatment using magnetic
bolus.
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Fig. 3. Optimal treatment of a tumor: (a) the optimal drug concentration; (b)
the corresponding tumor and endothelial decreasing volumes, for avascular
(blue), vascular (green) and metastases stage.

III. MICROPARTICLE AGGREGATIONS FOR
OPTIMAL DRUG DELIVERY

To transport the therapeutic drugs, we consider here-
after superparamagnetic iron oxide microparticles (BioMag
BM547, Bang Laboratories, Inc.). The microparticles have
a diameter in the range ∼ 9µm embedding therapeutic
agents. Although the saturation magnetization of iron oxide
is not optimal (Msat = 35emu/g), it is still acceptable with
the advantage to being widely used clinically. However,
to be used as therapeutic agents, their very low value of
magnetic material results in very high gradients fields that
limit their application with MRI-guided delivery. To increase
the effective volume of magnetic material, novel approaches
use self-assembled aggregates (dipole-dipole interactions) of
particles [8] or biodegradable polymer [2] to form large
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Fig. 4. Evolution of the drug uptake over time (left y-axis) and the
corresponding drug amount applied for a patient with a weight of 60kg
(right y-axis).

bolus of aggregates. In order to optimize the magnetic force
being induced, the effective volume should be optimized
with respect to the narrowed vessels in the tumor site, the
quantity of drugs, the number of bolus and the MRI actuation
limitations. In the following, we consider that the bolus
is magnetically actuated thanks to a magnetic gradient of
∇b = 80mT/m generated from a MRI scanner.

To be controllable, the bolus should have its optimal non-
dimensional magnetophoretic number Cmt ratio greater than
1 [9]. This magnetophoretic number, introduced in [18], is
defined as follows:

Cmt =
fm
ftot

= fm
fd+fw+fel+fvdw

(19)

The terms fm, fd, fw, fel and fvdw are respectively the magnetic
gradient, the drag, the apparent weight, the electrostatic, and
the van der Waals forces (for detailed expression of these
microforces see [19]). As shown in Fig. 5, the optimal ratio is
given for the following characteristics: a bolus with a radius
of r = 250µm and a minimum magnetization rate of 46%.

Optimal bolus:
Bolus radius: 250µm

46% FeCo
54% Dox

Bolus radius: 347µm
52% FeCo
48% Dox

Fig. 5. Ratio driving force (fm)/drag force (fd) as function of radius and
magnetization rate (%).

To calculate the number of boluses needed to transport
the amount of drug obtained in Section II, it is necessary
to calculate the overall mass of the bolus. Obviously, the



mass is retrieved from its volume and density. The average
number of boluses is then calculated using Nb =

DD
md

leading
to a number of magnetic particles at a concentration of
0.78×105 particles per ml. The Fig.6 and the Fig.6 represent
the evolution of the bolus and particles number over time
in different phases of growth, during the first 20 days
of treatment. It can be noticed that the maximal number
of boluses needed is i) 720 in the avascular growth, ii)
2.80× 103) in the vascular growth, and iii) 3.25× 103 in
the metastases stage. The corresponding drug volume are
120mg, 4775mg and 5450mg. It can be seen that the number
of bolus decreases gradually over time to a value of 400,
5000 and 7000 boluses corresponding to a concentration of
3×107, 0.35×109 and 0.55×109 of particles.
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IV. RESULTS

A. Experimental Setup

To validate experimentally the findings of model simula-
tions, an experimental setup has been specifically developed
by Aeon Scientific. The system consists of three nested sets
of Maxwell coils and one nested set of Helmholtz coils
[20], and is illustrated in Fig.7(a). Such arrangement allows
generating a constant-gradient magnetic field pointing in x,
y, and z-axis direction. The generated magnetic gradient
is saturated to ∇bmax = 40mT/m to be compatible with
clinical MRI scanner. Magnetic gradient forces will thus be
exerted on the bolus that is placed inside a microfluidic chip
Fig.7(b). An aqueous solution of 50% water–50% glycerol
is pumped using a pulsatile pump (Harvard Apparatus),
and the microcircuits enable the hepatic artery mimicking.
Droplets containing superparamagnetic iron oxide (SPIO)
particles (BioMag BM547, Bang Laboratories, Inc.) are
injected through a controlled syringe pump in the injection
input via a flexible microcatheter.

B. Navigation in cylindrical microchannel

First, the navigation behavior of a single bolus of radius
r = 347.5µm in a microfluidic ship with variable section is
investigated. For such bolus size the optimal magnetization
rate is about 52% that allows carrying 0.084mm3 of drug
load (see also Fig. 5). Fig. 8 shows the bolus navigation
evolution which traveled 11.57mm in about 1s. Especially,
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R2=750 µm

Input
flow
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injection
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Fig. 7. Experimental setup: (a) 3D Maxwell-Helmholtz coils and (b) a
W-shaped microfluidic arterial bifurcation chip.

with a flow rate of Q = 3.33ml/s, the bolus experiences
different dynamics, as illustrated with its velocity in Fig. 9.
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Fig. 8. Magnetic bolus navigating in a cylindrical channel with different
radius.
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Fig. 9. Magnetic bolus velocity.

Furthermore, microaggregates of SPIO particles with poly-
meric solutions demonstrate stability in aqueous solutions
due to their hydrophobicity. The bolus start with a spherical
shape (inlet t0 in Fig. 8) of radius r = 347.5µm. While the
shear stress is increasing, the shape became more ellipsoidal-
like (inlet t1-t2 in Fig. 8). Hence, the aspect ration σ = a/b
(with a the major and b the minor axis) of the magnetic
microrobot evolves during the navigation in thin vessel.
Fig. 10 illustrates the influence of the vessel radii variation on
the bolus shape. We see clearly that the bolus is exposed to
hemodynamic shear stresses that disturb the attractive forces
holding the microparticles together. To determine the shear-



sensitivity of the microparticle deployment mechanism, we
estimated from calculation the shear-stress for a cylindrical
vessel as:

τw =−ηQ
(R−δ )

R3 (20)

with Q the volumetric flow rate, η the fluid viscosity, R
the microchannel radius, δ the distance to the wall. The
experimental results given in Fig. 10 demonstrates the great
influence of the shear-stress mechanism on the shape of the
aggregate, and probably on its break-up.
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Fig. 10. Aspect ratio σ = a/b (with a the major and b the minor axis of
the ellipse) as function of the shear stress τw.

C. Navigation in W-shaped microchannel

The experiments are then carried out in a W-shaped
microfluidic to consider environment with complex bifurca-
tions. Fig. 11 shows a typical bolus navigation results with
its associated magnetic gradient ∇b. This result demonstrated
the feasibility to drive efficiently bolus even with multiple
bifurcations. Let us notice that the motion of the bolus is in
the same order of magnitude as those previously observed in
paragraph IV-B. Thus, this suggests that about 1800 boluses
could be conveyed in 30min, and an amount of drug of
1537.7mg administered.
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Fig. 11. Magnetic navigation control of bolus in W-shaped microchannel.

However, the experiments shows that the bolus must
navigate close to the vessel centerline to avoid its break up.
Actually, the wall shear stress could induce a mechanical
forces that overcome the attractive forces holding the mi-
croparticles together, as depicted in Fig. 12.

Pulsatile
flow

t1

t2

Fig. 12. The wall shear stress induces a bolus splitting in the vicinity of
a bifurcation.

V. CONCLUSION

The paper described an optimal design strategy for mag-
netic targeting of therapeutic drugs using magnetic micropar-
ticle aggregates. To propel these aggregations through the
arteries (∼ 5mm) and small arteries (∼ 500 µm) down to
the thinner blood vessels that surround the tumor requires
important magnetic gradients leading to large boluses of
agglomerates. That is why, to maximize the effect of the
treatment and minimize adverse effects on the patient, a
mathematical model have been developed to find the number
and the size of the boluses with respect to the growth of a
tumor. Using these models, the preliminary results demon-
strate that boluses of aggregates can be navigated though
phantoms-like arteries to initiate drug targeting. Future work
will consider the navigation in a clinical MRI a using various
sizes of aggregates delivered through a microcatheter.
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