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Abstract— We present a novel, soft, tactile skin composed
of a fabric-based, stretchable sensor technology based on the
piezoresistive effect. Softness is achieved by a combination of
a soft silicone padding covered by a skin of more durable,
tearproof silicone with an imprinted surface pattern mimicking
human glabrous skin, found e.g. in fingertips. Its very thin
layer structure (starting from 2.5 mm) facilitates integration on
existing robot surfaces, particularly on small and highly curved
links. For example, we augmented our Shadow Dexterous Hand
with 12 palm sensors, and 2 resp. 3 sensors in the middle resp.
proximal phalanges of each finger.

To demonstrate the usefulness and efficiency of the proposed
sensor skin, we performed a challenging classification task
distinguishing squeezed objects based on their varying stiffness.

I. INTRODUCTION

Augmenting robot hands and complete robot surfaces with
a soft, tactile-sensitive skin is an active research topic promis-
ing many advantages for manipulation and safe human-robot
interaction. Mimicking soft flesh using elastomer pulps [1]
increases compliance, friction, contact area, and thus also
grasp stability and the amount of applicable wrenches.

There exists a large body of work considering tactile skin
and we can only refer to few of them. [2] utilizes PU-
foam as soft flesh for a whole robot body with integrated
LED-based tactile sensors. However, the thickness of the
skin (20mm) impedes the integration on small structures like
robot hands. The tactile skin developed for the iCub robot
consists of triangle-shaped modules based on flex-PCB for
the body [3] and specially folder flex-PCB for the fingertips
[4]. Flex-PCBs with even higher spatial resolution of the
tactile elements are proposed in [5] and [6]. The major
limitation of flex-PCB based sensors, however, is that they
are inherently stiff and only bend along 1D surfaces and
hence cannot be applied for too small structures.

Tactile sensors based on elastic substrates overcome this
limitation. [7] employs a highly stretchable material (150%),
measuring deformations due to applied forces with electrical
impedance tomography, a computationally rather costly ap-
proach. [8] describes a sensor array based on piezoresistive
rubber with an embedded electrode matrix, thus achieving
high spatial resolution. A combination of compliant padding
and tactile sensing was developed for the BioTac R© sensor [9]
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Fig. 1. Cross section through a sensor unit: A flexible basis allows
quick mounting, the fabric-based sensor allows for covering complex curved
shapes, and the two-component padding unites soft grip and robustness.

providing excellent sensitivity and resolution. However, due
to its bulky electronics, integration e.g. on the Shadow robot
hands [10] requires to replace a finger link, thus loosing a
DoF.

In contrast, the proposed sensor technology is flexible and
thin enough to be integrated on existing robot hardware.
Particularly, we strove for augmenting the Shadow robot
hands with a soft, tactile skin all over the palmar surface.
However, the developed technology can be applied in a
similar fashion to other robotic hands or arms as well. In any
case, we attempt to augment existing robot hardware with
tactile sensors, although the manufacturer didn’t prepared
the robot appropriately. Consequently, there is typically only
very little or no space at all available for integration of
sensing elements, acquisition electronics, and wiring. Fur-
thermore, curved robot surfaces require flexible rather than
rigid sensing units.

In this work we draw on our previous results developing
a fabrics-based tactile sensor [11], whose working principles
will be shortly summarized for completeness in the next
section before we describe its integration into a soft skin
for robots. Subsequently, we evaluate the sensor characteris-
tics before considering an application example utilizing the
sensors to classify the stiffness of grasped objects.

II. SENSOR UNIT

To augment curved robot surfaces with a tactile-sensitive
skin we employ our fabric-based sensing technology orig-
inally developed for a highly flexible human data glove
[11]. The sensing elements (taxels) are composed of several
layers of conductive and piezoresistive fabric, having an
overall thickness of only 1.5mm. The piezoresistive layer
is sandwiched between two highly conductive layers used
as measuring electrodes. Two major effects contribute to
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Fig. 2. Illustration of the sensor’s working principle: Applied pressure i)
increases the contact area between conductive layers, creating new shortcuts,
and ii) reduces the resistance of the piezoresistive fabric layer.

Fig. 3. Support layer of proximal finger phalanx unit with integrated strain
relief and assembled connector. Right: Cross section drawing of strain relief.

measured changes of resistance: On the one hand, the
piezoresistive fabric causes a direct change of its resistance
due to a compression of its semiconductive threads. On the
other hand, pressure increases the overall surface contact
area between fabric layers, thus establishing new conductive
bridges. Both effects are nonlinear and superimpose. Figure 2
schematically summarizes these effects.

While the tactile data glove needed to be flexible and
stretchable in all sensor layers, the mounting on a rigid robot
surface allows to replace the lowest fabric electrode layer
by a rigid material that is directly attached to the robot.
However, to facilitate robot repairs and sensor replacements,
an important design constraint was to develop a mounting
interface that allows for quick mounting and un-mounting
of the sensor. To this end, we decided for an almost rigid
support basis that will be clicked onto the robot links. On top
of this support layer, the sensor layers are glued, followed
by a soft elastic skin formed from a silicon rubber pulp.
Figure 1 illustrates this overall structure. In the following
the individual components will be described in detail.

A. Support Basis and Mounting

A robust foil of acrylic glass (PMMA) with 0.5mm
thickness is chosen as the support basis of each sensor unit
(Fig. 4a). This basis handles the fixation of the sensor on the
robot limbs, the distribution of tension stresses arising in the
elastic parts, and it serves as a PCB-like construction ground.
The foil is laser cut and bent in hot air using a 3D-printed
positive template.

For easy mounting the support layers are equipped with
small flaps that clasp on the back of the palm and fingers.
The flaps in turn are pinched between the fingers and their
covers or fixated using narrow Velcro R© stripes on the palm.
To mount the units, the PMMA basis will be clicked onto
the robot links, slightly bending them to fit over the limbs.
Middle and proximal units have their electrical connector
built into the inner side of the flanges as depicted in Fig. 3.

(a) PMMA base material (b) copper foil taxels (c) piezoresistive layer

(d) top electrode layer (e) silicone padding (f) mounted palm sensor

Fig. 4. Intermediate assembly steps of palm sensor unit. (a) laser cut
PMMA sheet, (b) copper foil electrodes stuck on heat-bent sheets, (c) added
piezoresistive layer and mesh, (d) top fabric electrode layer, (e) soft silicone
padding coated with fingerprint pattern, (f) integration on Shadow hand.

The connector can be guided with tweezers for insertion.
As the corresponding sockets are hidden deep inside the
finger links, removing the sensor units requires to pull on
the sensor cables to disconnect them. For this reason, a cable
strain relief was integrated within the support layer for those
sensors as illustrated in Fig. 3.

B. Sensor Layers

The sensor is built from a piezoresistive fabric layer
sandwiched between to highly conductive electrode layers.
In contrast to the original, purely fabric-based tactile glove
design [11], we here use a self-adhesive, thin, and embossed
copper foil as the bottom electrode. By dividing this copper
layer into several cells, multiple taxels within a single sensor
unit can be realized as shown in Fig. 4b.

The top electrode layer is made of silver-coated fabric,
which is elastic and flexible to allow for proper recovering
after the sensor was pushed. In between the electrode layers
is a semi-conductive fabric layer (placed directly above
the copper foil) and a non-conductive mesh. The semi-
conductive fabric exhibits piezoresistive properties due to
its thin polymer matrix coating filled with carbon nano
particles. For better separation of the sensitive cells, this
piezoresistive layer is also individually isolated for each taxel
– matching the taxel structure of the copper foil (Fig. 4c).
The mesh layer with its honey-comb structure serves as an
isolating air film between the conductive layers avoiding
spurious contact measurements. To prevent short circuits and
to uniformly distribute shear forces, all layers are sparsely
glued together along the boundaries of individual taxels
(using non-conductive silicone rubber). For even more details
regarding the fabric-based sensor design we refer to [11].

C. Soft Artificial Pulp and Durable Skin

On top of the sensing layers a soft silicone rubber padding
is placed, covered with a fine-structured, more durable sil-
icone rubber skin. The pulp is realized from 2-component
platinum-cure silicone rubber (Smooth-On Inc. Ecoflex R©



Fig. 5. Left: Photo of the de-molding process. The light material on top
is an elastic, patterned mold. Beneath appears the black colored sensor
surface. Right: Closeup of the embossed aluminium foil with grooves in
size of human fingerprints.

0010 A+B) diluted with Ecoflex R© Slacker. In an extensive
series of tests, the mixing ratio 2/2/3 was found to be highly
soft, but still elastic and not yet gel-like. The steered and
vacuum-vented components are molded in a 3D-printed shell
to obtain the desired shapes. As super-soft elastomers will
always tend to sweat oil, the pulp needs to be encapsulated
to prevent direct contact with the sensor and the surrounding.
By gluing the pulp to the sensor using a silicone adhesive
an oil barrier is established.

The durable skin is made from single-component silicone
rubber, Elastosil R© E43. To cover the pulp with this stronger
elastomer a silicone mold from Elastosil R© E4 was built as
depicted in Fig. 5. Its elasticity allows easy de-molding,
which prevents the sensor from damage. The surface of the
sensing unit is patterned with a fine relief from irregularly
arranged, curved grooves with a groove size of ca. 0.5mm.
This correlates to those of human glabrous skin, as found
e.g. in fingerprints. The irregular pattern is chosen to prevent
directional bias as suggested by [12].

Molding the skin is the last step of sensor production. The
E43 therefore is poured into the mold and the sensor unit
assembly is pushed in. The E43 fills the thin space between
the pulp and the mold as well as all remaining hollows, such
that a smooth sensor surface is obtained.

D. Integration and Data Acquisition on Shadow Robot Hand

Fortunately, the Shadow robot hands offer a few extension
points to integrate additional sensors. Firstly, there are some
free analog to digital channels available at different places
in the palm and the fingers, which are already sampled by
the standard firmware. Secondly, palm and fingers have free
SPI bus sockets to connect additional boards. However, in
this case a firmware modification is required to access those
boards and transfer the data through the EtherCAT R© bus
to the host. Both possibilities were employed. The finger
sensors are directly attached to three resp. two spare AD
channels in the proximal resp. middle phalanx. The number
of free channels thus directly determined the number and
placement of taxels on these units. For the palm, 4 spare AD
channels and a ready-to-use auxiliary SPI board, offered by
Shadow providing 8 additional channels, are used, summing
up to 12 taxels in the palm. The fingertips, providing more
space for electronics integration, are equipped with custom-
made MID fingertip sensors, each providing 12 taxels at
higher spatial resolution [13].

While the fingertip sensors are sampled at 750 Hz with

Fig. 6. Evaluation rig with industrial strain gauge (yellow) and suspension
(orange). The insert shows a spherical tip probing the proximal phalanx.

10-bit ADC, all other sensors distributed across the finger
phalanges and the palm are sampled at 1 kHz with 12-bit
ADC. The tactile data transferred to the host PC is published
by the Shadow ROS driver over separate ROS topics at
100 Hz by default. The full 1 kHz update rate is available
at the host if needed.

E. Sensor Evaluation

A custom built measurement rig was used to evaluate the
performance of various material compositions for the sensor
(Figure 6). The rig consists of 3 perpendicular linear axes
with a calibrated industrial strain gauge attached (colored
in yellow) to provide gold standard force measurements.
To allow for more fine-grained force control, a suspension
(colored in orange) is used, transforming fixed-size end-
effector motions into spring forces. The probe tips on the
end-effector are exchangeable. The sensor characteristic is
recorded by automatic loading and unloading sensor samples
with forces from 0 to 30 N.

The sensor characteristics of the middle phalanx sensor
is depicted in Fig. 7. The curves show the 12-bit sampled
sensor output when using spherical plastic probe tips with
radii of 2.5 mm and 12.5 mm (blue resp. orange curves).
Both force response curves show an idle behavior close
to small forces, which is due to the high idle resistance
deliberately introduced by the spacer layer. First contact
is detected around 2-3 N. The curves exhibit the typical
hysteresis effect that is innate to piezoresistive elastomers
when switching from loading to unloading. Atypical is, that
the sensor output even increases slightly in the beginning of
the unloading phase.

The smaller probe tip produces a higher slope as can be
seen from the blue curve. In previous work, we noticed that
the fabric-based tactile sensor operates more like a pressure
than a force sensor [11]. However, given the soft flesh of the
proposed sensor units, it is impossible to measure the actual
contact area and translate force into pressure values in the
figure. The repeatability of the sensor is rather good as the
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Fig. 7. Characteristics of the proximal phalanx sensor when loading and
unloading it 5 times from 0 to 30 N using differently sized probe tips. The
sensor exhibits good repeatability, but also the typical hysteresis effect.

five consecutive loading and unloading curves exhibit a high
degree of overlap.

III. APPLICATION: ESTIMATING OBJECT STIFFNESS

In order to validate the efficiency of the tactile sensors in a
real-world scenario, a preliminary experiment was performed
to classify various grasped objects based on their estimated
stiffnesses. A recurrent neural network was used to this end.

A. Setup description

The experiment was performed using our bimanual robot
setup employing the Shadow hands fitted with the novel
tactile sensors. Only the hands were actively controlled
during the experiment, while the arms were moved to an
adequate pose in advance.

The hand firmware runs a low-level force control loop
(based on tendon forces) to drive the joints of the fingers. All
higher-level control loops, e.g. position control, are closed in
the host PC, sending tendon force requests to the hand at a
rate of 1 kHz. The firmware provides only basic maximum-
force safety limits, which do not suffice to protect the hand
from high loads over longer time. Hence, an improved safety
limitation was implemented in the host control loop, based
on accumulated tendon force magnitudes for each joint i:

F acc
i (t) = max

(
0,

∫ t

0

|Fi(t)| − Fmax dt

)
, (1)

where Fi(t) is the difference between flexion and extension
tendon forces of joint i and Fmax a threshold under which the
force is acceptable. The maximally allowed force Fmax

i (t) at
time t, decreases over time as F acc

i (t) increases:

Fmax
i (t) = Fmin + (FMAX − Fmin) · exp(−F

acc
i (t)

τ
) . (2)

Here Fmin is the minimal force required for free-space
motion and FMAX is the upper force limit. The exponential
decay rate is controlled with the parameter τ , called force
endurance. The higher the endurance, the longer the hand can

maintain a certain maximum force before saturation limits
apply.

For the experiments an endurance value was used that is 4
times higher than the standard value used for object grasping.
This allows to apply higher forces required for squeezing the
grasped objects. We will refer to the force limiting algorithm
when discussing the force plots in Fig. 9.

B. Experiment protocol

The experiment protocol is illustrated in Fig. 8: An ob-
ject was placed in the palm of the hand with the fingers
opened (a). Then, the hand was position-controlled towards
a power-grasp, the thumb not being involved. As the com-
manded hand posture would penetrate the object, the force
limitation became active, squeezing the object between the
palm and the finger phalanges and/or fingertips (b). This
grasp was maintained for ca. 10 s while the force limitation
algorithm was reducing tendon forces after a while. Then, the
motors were shut off to release tendon forces, allowing the
compressed object to slowly recover its original shape and
size (c). This recovery phase lasted ca. 5 s after which the
hand was commanded to open the fingers again, completely
releasing the object (d). Joint angle and tactile sensor trajec-
tories were recorded at 100 Hz during the whole experiment
duration.

As an example, the data recorded from a single finger
for a single trial is shown in Fig. 9. While the top plot
shows tactile contact forces along with joint angles (solid vs.
dashed curves), the bottom plot displays the effective tendon
forces of the two involved actuators (middle and distal joints
are coupled). The different phases (A: closing to contact,
B: squeezing, C: maintaining, D: recovery, E: releasing) are
marked by vertical lines. The most interesting phases for
stiffness classification are the squeezing (B) and the shape
recovery phase (D). They are clearly separated by events
like contact detection, contact force increase, contact force
release, and contact loss.

Six different test objects were created using a fabric bag
as a cylindrical container, stuffed with various materials of
distinguishable stiffness (bubble wrap, soft and hard foam)
or deformable properties (set of marbles, and fine or coarse
granules) as shown in Fig. 10. A strong cardboard tube
served as a seventh, rigid object. All objects have similar
shape, i.e. are only distinguished by their stiffness.

C. Learning

To classify the objects a Long Short Term Memory Recur-
rent Neural Network (LSTM) [14] was employed that was

(a) released (b) squeezing (c) relaxed (d) released

Fig. 8. Experiment protocol: robot hand grasping and squeezing an object.
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Fig. 9. Plot of tactile data aligned with tendon forces and joint angles
during squeezing of a bag filled with Marbles of 1 cm diameter.

trained on the time series data of various sets of sensor
readings as detailed below. LSTM networks have shown
very good performance in classifying and predicting time
series data, for example in language modeling [15], which
motivated the utilization of this specific RNN type in the
tactile time series classification task. Initial tests with simpler
classification methods like Learning Vector Quantization and
Support Vector Machines did not yield useful results.

A single LSTM unit (left in Fig. 11) is composed of a
self-coupled neuron with a coupling strength of 1.0 assuring
that the neuron can keep its activation x(t) over long time. A
multiplicative input gate regulates to which extend network
inputs will change the state of the neuron. Similarly an output
gate controls to which extend the neuron’s own activation is
fed back into the network. A forget gate allows to reset the
information memorized in the neuron. Hence, the network
dynamics updates a single neuron’s activation x as follows:

x(t) = yf (t)·x(t−1)+yin(t)·σ
(
w·x(t−1)+wu ·u(t)

)
(3)

The output y(t) is computed by weighting this activation by
the output gate’s activity:

y(t) = yout(t) · σ(x(t)) . (4)

The gates are implemented as standard neurons as well,
whose activity y∗(t) is calculated as usual:

y∗(t) = σ(w∗ · x(t− 1) +wu
∗ · u(t)) , (5)

where * is a placeholder for subscripts f , in, or out. u(t),
w∗, and wu

∗ denote the input at time t, and the networks resp.

fabric bag

bubble soft foam hard foam

marbles coarse granules fine granules

strong cardboard tube

Fig. 10. Test objects: bags fitted with different materials.
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Fig. 11. Illustration of a LSTM unit (left) and its integration into a larger
network (right). The recurrent connections are omitted in this schematic, for
details please refer to [14].

input weights. The nonlinear squashing function σ is applied
element-wise to the activation vectors. Commonly used are
the logistic function [14] as well as hyperbolic tangent [16].

All LSTM units are recurrently interconnected. The
recorded time series data u(t) is fed as input to all units.
For final classification, a linear read-out layer with soft-max
normalization is employed.

Training of the LSTM-RNN is done by backpropagation
through time (BPTT). Compared to standard backpropa-
gation in feed-forward networks, the recurrent network is
(virtually) unfolded in time, transforming the repeated appli-
cation of the network update rules (eqs. 3-5) into a sequence
of identical feed-forward layers. This unfolded version can
be trained by means of standard backpropagation. For details
about BPTT, please refer to [17].

D. Results

Different network layouts have been evaluated with a
varying amount of hidden LSTM units. A network with 160
hidden units proved to be sufficient in all of the following
trials up to the 24 dimensional input case, using a learning
rate of 10−5. For the cases with more than 24 dimensional
input, the number of LSTM units was increased to 240. In
order to assess the relevance of different sensor modalities



# dims description test error
1 12-160-7 all taxels on palm 42.23%
2 24-160-7 all taxels on palm + proximal/middle 34.58%
3 16-160-7 4 central taxels per fingertip 32.64%
4 8- 80 -7 2 flexion joints per finger 40.87%
5 20-160-7 combination of (1) + (4) 27.61%
6 32-240-7 combination of (2) + (4) 22.06%
7 36-240-7 combination of (5) + (3) 22.43%
8 48-240-7 combination of (6) + (3) 20.76%

random chance 85.71%

TABLE I
CLASSIFICATION ERRORS OBTAINED FOR DIFFERENT INPUT DATASETS.

for the classification result, different combinations of the
available sensor streams were evaluated as input to the
network with respect to the achievable classification error.

The multi-dimensional time series, with a length of
ca. 3300 steps, was provided to the network one at a time
as is, only normalizing each individual sensor channel to
the range [0, 1]. For each of the objects in Fig. 10, 6 trials
were recorded and split into training, validation and test set
(4-1-1).

The classification task is rather challenging, because the
time series data are very sparse, exhibiting many zero values
for individual tactile cells. This is because only a small
subset of taxels actually have contact at the same moment in
time and because the sensitivity of the tactile sensor units is
still rather limited considering the restricted amount of force
the robot hand can actively exert. The latter can be seen
from the small exploited output range (0-40 units) in Fig. 9,
which is only 1% of the whole ADC range. Additionally,
the materials used for the test objects are highly similar, for
example considering the soft foam and the bubble wrap, or
the marbles and the large granules.

The finally achieved test errors after training are summa-
rized in Table I. Random guessing for this classification task
would result in an error rate of 85.7% – corresponding to
the probability of 1/7 for guessing correctly.

Using individual sensor modalities only (1-4), the network
is already able to produce classification results clearly above
chance level. The fingertip sensors (3) and the proposed
tactile sensors (2) obtain similar results, although the former
are currently much more sensitive (using a different sensor
technology [13]). Thus, the sensitivity of the proposed sen-
sors was sufficient for this real-world task.

Combining different sensor modalities naturally improves
the results. As stiffness corresponds to the relation of ob-
ject penetration and measured forces, we first augmented
the tactile sensor input with angular measurements (5-6),
which significantly decreased the error, but required a larger
network. Incorporating tactile data from the more sensitive
fingertip sensors (7-8), improved the results by a few more
percents. To this end, we considered the four central taxels
on the fingertips, neglecting the other ones, directed sideways
and never exhibiting contact.

Obviously, the more input data is provided, the better the
network can extract the relevant information from the time
series, finally achieving a classification error close to 20%.

IV. CONCLUSION

In this paper, we presented the design and detailed building
steps of a novel, soft, and tactile-sensitive robot skin. Due to
its thin design, the skin can be easily augmented to existing
robot hardware, particularly also in narrow spaces and on
highly curved surfaces. We reported on the integration of
these sensors in the palm and finger phalanges of the Shadow
Robot Hands providing them with a sense of touch not only
in the fingertips but all over the palmar surface.

An example application, classifying various objects from
their differently perceived stiffness properties, proved the
usefulness and efficiency of the proposed sensor skin for
a challenging, real-world task. Even though only a small
fraction of the available output range of the sensors was
exploited in this experiment, the sensor’s sensitivity was
sufficient to achieve promising classification results.

In future work, we will further improve the sensor’s
sensitivity to first touch by fine-tuning the acquisition elec-
tronics and considering other measurement principles, e.g.
measuring changes in capacity of the sensor units. Further,
we will consider to reverse the layer structure of the sensor
units, placing the fabric-based sensor on top of the flesh.
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