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Haptic Identification of Objects using a Modular Soft Robotic Gripper

Bianca S. Homberg, Robert K. Katzschmann, Mehmet R. Dogar, and Daniela Rus

Abstract— This work presents a soft hand capable of ro-
bustly grasping and identifying objects based on internal state
measurements. A highly compliant hand allows for intrinsic ro-
bustness to grasping uncertainty, but the specific configuration
of the hand and object is not known, leaving undetermined if a
grasp was successful in picking up the right object. A soft finger
was adapted and combined to form a three finger gripper that
can easily be attached to existing robots, for example, to the
wrist of the Baxter robot. Resistive bend sensors were added
within each finger to provide a configuration estimate sufficient
for distinguishing between a set of objects. With one data point
from each finger, the object grasped by the gripper can be
identified. A clustering algorithm to find the correspondence
for each grasped object is presented for both enveloping grasps
and pinch grasps. This hand is a first step towards robust
proprioceptive soft grasping.

I. INTRODUCTION

Soft and under-actuated robotic hands have a number of

advantages over traditional hard hands [1]–[8]. The addi-

tional compliance confers a greater intrinsic robustness to

uncertainty, both for manipulating a broad range of objects

easily and for more leniency towards interactions with the

static environment.

A common downside of soft hands is that, due to their

extra compliance, the hand’s specific configuration at a given

time is usually not known, especially when it is interacting

with objects or the environment. Knowing the configuration

of the hand, however, is crucial for decision making dur-

ing the manipulation process. The hand configuration, for

example, can be useful for determining whether a grasp is

successful, whether a grasp is robust, and whether the object

was grasped in the intended pose. The hand configuration can

also be very useful in determining the shape of an object the

hand is grasping, since the soft links tend to conform to the

environmental constraints they interact with.

In this paper we present a new soft robotic gripper

with proprioception. The proprioceptive sensors enable us to

recover certain features of the configuration of the fingers.

Each finger in our multi-fingered hand is designed based

on the soft manipulators outlined in [9], [10]. We modify this

design by adding a bend sensor to measure the curvature of

a finger around a certain axis. Furthermore, we add a new

constraint structure to limit the finger to curve only along

the axis we can sense.

We pay special attention to the modularity of our design.

Our goal is to build a general-purpose proprioceptive hand

which can easily be used by existing robotic arms/platforms.
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Fig. 1: The soft robotic hand, mounted to the wrist of a

Baxter robot, is picking up a sample object.

Therefore, we designed each finger such that they can be

attached on top of an existing rigid finger. Figure 1 shows

the Baxter robot grasping an object with our hand.

Having proprioceptive soft hands enables exciting appli-

cations in robotic manipulation. In this paper we focus on

the haptic identification of objects. With the integrated bend

sensors – one data point from each of the three fingers

– our robot is able to identify a set of canonical objects

of different shape, size and compliance by grasping them.

We do this by building a relation between objects and

the configurations the soft hand takes while grasping them.

Then, given an unidentified object from our training set,

our robot grasps it and uses proprioception to identify it.

Through experiments we show that our hand can successfully

distinguish between objects up to the resolution limit of the

proprioceptive sensors.

Our soft hand’s compliance allows it to pick up objects

that a rigid hand is not easily capable of without extensive

manipulation planning. Through experiments we show that

our hand is more successful compared to a rigid hand,

especially when manipulating delicate objects that are easily

squashed and when grasping an object that requires con-

tacting the static environment. To show our hand’s grasping

capabilities, we perform grasping experiments using more



than 70 randomly selected daily objects.

In this paper we make the following contributions to soft

robotic grasping:

• A modular, easily adapted three finger soft gripper

which can interface to a variety of robot arms.

• Development of algorithms to successfully identify a

set of canonical objects while grasping using internal

sensor data of the soft gripper.

This gripper is a first step towards robust proprioceptive

grasping and we conclude our paper with possible future

steps.

II. RELATED WORK

In the following we present recent related work on soft

manipulators and hands, state sensing within soft robots and

compliant manipulation.

Recently there has been a significant interest in the design

and development of soft or underactuated hands. Dollar

and Howe [1], [2] presented one of the earliest examples

of underactuated and flexible grippers. Deimel and Brock

[3] developed a pneumatically actuated three-fingered hand

made of reinforced silicone that is mounted to a hard

robot and capable of robust grasping. More recently, they

have developed an anthropomorphic soft pneumatic hand

capable of dexterous grasps [4]. Ilievski et al. [5] create

a pneumatic starfish-like gripper composed of silicone and

PDMS membranes and demonstrate it grasping an egg. In

[6], Stokes et al. use a soft elastomer quadrupedal robot

to grasp objects in a hard-soft hybrid robotic platform. A

puncture resistant soft pneumatic gripper is developed by

Shepherd et al. in [7]. An alternative to positive pressure

actuated soft grippers is the robotic gripper based on the

jamming of granular material developed by Brown et al. and

detailed in [8]. The fast Pneu-net designs by Mosadegh et al.

detailed in [11] and by Polygerinos et al. detailed in [12] is

closely related to the single finger design used in this paper.

The design and the lost-wax fabrication of the fingers of our

hand builds upon the soft gripper and arm structure proposed

in Katzschmann et al. [10], which demonstrates autonomous

soft grasping of objects on a plane.

To the best of our knowledge, configuration estimates of

soft robots so far have been acquired through exterocep-

tive means, for example motion tracking systems [13] or

RGB cameras [14]. Various sensor types that can measure

curvature and bending have been studied, but none have

been integrated into a soft robot. Park et al. [15], [16]

have shown that an artificial skin made of multi-layered

embedded microchannels filled up with liquid metals can

be used to detect multi-axis strain and pressure. Danisch et

al. [17] describe a fiber optic curvature sensor, called Shape

Tape, that can sense bend and twist. Weiss et al. [18] have

reported on the working principle of resistive tactile sensor

cells to sense applied loads. Biddiss et al. [19] describe the

use of electroactive polymeric sensors to sense bend angles

and bend rates in protheses. Kusuda et al. [20] developed a

bending sensor for flexible micro structures like Pneumatic

Balloon Actuators. Their sensor uses the fluid resistance

change of the structure during bending. Other recent work

in this area include [21] and [22].

Previous studies on haptic recognition of objects focus on

hands with rigid links [23]–[27]. Paolini et al. [28] present

a method which uses proprioception to identify the pose of

an object in a rigid hand after a grasp. Tactile and haptic

sensors have also been used in manipulation to sense the

external environment in [29]–[32]. We believe our study to

be the first one to investigate the haptic recognition of objects

using a soft hand.

III. GRIPPER DESIGN AND FABRICATION

In this section, we discuss the design goals contributing to

the design of the gripper and the fabrication methods used

to construct the gripper.

Fig. 2: Attaching a finger onto the 3D printed interface.

A. Design Goals

We designed this gripper with the following key goals in

mind:

• Ability to grasp a range of objects

• Ease of fabrication

• Modular interface to existing hardware

To this end, we developed a gripper consisting of three

individual soft fingers that can be slipped onto 3D-printed

interface (see Figure 2). The interface piece screws onto an

already existing robot hardware. We prioritized a modular

interface in order to enable the gripper to be usable for

a variety of existing hardware bases simply by swapping

out the 3D printed interface. The fingers are identical in

their design; this modularity allows for faster fabrication

and therefore more rapid design iterations. The soft fingers

and their composition allow the gripper to grasp a range of

objects with varying diameters.

We designed each finger with several key goals in mind:

• Internal state sensing capability

• Constant curvature bending when not loaded

• Partially constant curvature bending under loaded con-

ditions

• Highly compliant and soft in order to be inherently safer

So far, most soft manipulators require exteroceptive sens-

ing to estimate their bending state. During manipulation

tasks, an external tracking system can be blocked by objects

within the line of sight so that the observation of the

curvature of each finger is not always possible. We therefore

decided to enable the gripper with internal sensing to give the



(a) Wax core model (b) Base finger mold (c) Mold assembly for finger base

(d) Constraint layer (e) Top mold for constraint and sensor (f) Wrist attachment parts

Fig. 3: Shown are all the essential components needed for fabricating a soft finger: (a) A wax core model, (b) a base finger

mold, (c) a base mold assembly that contains the wax core and is filled up during the first pouring step of the finger, (d) a

constraint layer that was laser cut from thin Delrin, (e) a mold add-on from the top for embedding a constraint layer and a

bend sensor through a second rubber pouring step, and (d) two wrist interface parts to attach the fingers to existing robotic

hardware.

user more flexibility during manipulation tasks. A resistive

flex sensor was embedded into each finger by affixing it

on top of the finger’s inextensible constraint layer. Bending

the resistive strip changes the resistance of the sensor. The

resistive change can be correlated with the curvature of the

finger under the assumption that the finger bends with a

constant curvature. This only holds true for the unloaded

case; in the loaded case, partially constant curvatures can be

assumed between points of loading.

B. Fabrication

The fabrication and assembly of a single finger is de-

scribed followed by a description of how the fingers are

composed and assembled to a gripper.

1) Single finger: The fabrication of a single finger is based

on a lost-wax casting process.

The process begins with 3D printing a set of model and

mold parts (see Figure 3). First, the wax core model piece

(Figure 3a) is used to make a rubber mold for a wax core.

Following this, wax is poured into this mold to make an

actual wax core in the appropriate shape. Next, the first layer

of the finger is cast in the base mold (Figure 3b) with the wax

core inset, as seen in Figure 3c. This first layer is cast out

of a medium-soft rubber (Dragonskin 20A), which is able to

extend significantly without breaking. The wax core is then

melted out of the rubber piece.

Next, the rubber piece is reinserted into the mold. The

constraint layer (Figure 3d) is placed on top of the rubber

piece within the mold. The constraint layer is made out

of thin Delrin. In order to allow for flexing in the desired

direction, the constraint layer is laser cut with horizontal

strips to allow for bending. The bottom portion of the

constraint, which is required to stay flat, has a non-flexing

pattern of cut circles to retain stiffness. To insert the resistive

flex sensor (the BendShort 2.0 sensor from the company I-

CubeX), we glue it to the constraint layer at two points, one

along the length of the sensor, one at the circuitry base. This

keeps the sensor in place when the silicone rubber is setting.

Figure 4 shows an image of the inside of the finished finger;

through the transparent silicone rubber, the constraint layer

and the sensor are both visible.

Once both parts are in place as shown in Figure 3e, a

second layer of rubber is poured into the mold. The rubber

(Dragonskin 10A) has a lower shore hardness than the rubber

used for the base rubber portion of the finger. This gives

the inside of the finger greater compliance when grasping

objects.

When the finger is completed, it is removed from the

molds, cleaned with wax remover, and the tip is plugged with

a piece of solid silicon tubing and sealed. Various views of a

completed finger can be seen in the left column of Figure 5.

The finger is 2.5 cm wide by 2.5 cm tall by 11 cm long.

2) Three finger gripper: The combined gripper is com-

posed of three fingers, as seen in the right column of

Figure 5. To use these fingers on an existing robot, we

3D-printed interface parts (Figure 3f), which allow for two

fingers on one side and one finger on the opposite side. The

parts screw into the hand, securely attach to the fingers, and

guide the pneumatic tubing to the fingers. Each finger is

connected via a tube attached along the arm to a pneumatic

piston. Each pneumatic piston has its volume changed by

a linear actuator. The linear actuators are controlled by



Fig. 4: This is a view of the inside of the finger. Through the

translucent rubber, the constraint layer and the bend sensor

are visible.

Fig. 5: Views of an individual finger and the entire hand.

motor controllers connected to a PC and controlled via serial

messages sent from a ROS node. Each sensor within a

finger is connected to an Arduino micro controller running

rosserial. To complete the hand, we made a compliant palm

out of a very soft rubber (Ecoflex 00-10).

IV. HAPTIC OBJECT IDENTIFICATION

Our goal with this hand is to enable the robot to pick

up objects and, based on internal sensing data, identify the

object. To achieve this we first characterize the relation

between hand configurations and sensor readings. Then, we

present a data-driven approach to identifying an object based

on sensor readings.

A. Modeling the sensor noise

Our hand attains different configurations as it interacts

with the environment and grasps objects. We define a con-

figuration of our hand as a vector q = [q1, q2, q3], where

each qi ∈ Q represents the way finger i is bent. Q is the

configuration space of a finger: that is, the space of all

different shapes our soft finger can achieve. For a given

configuration of the hand, we get sensor readings s =
[s1, s2, s3], where each si represents the sensor reading for

finger i.

Our sensor readings are noisy. Therefore, we represent

the sensor reading given a hand configuration as a proba-

bility distribution, p(s|q). We assume the sensor value on a

finger is independent of the configurations of other fingers,

and therefore the sensor model of the whole hand can be

expressed in terms of the sensor model for each finger:

p(s|q) =

3∏

i=1

p(si|qi) (1)

We can model p(si|qi), the sensor noise for a finger,

in a data-driven way by placing the finger at different

configurations and collecting sensor value data. In Sec. V-A

we present experiments for such a characterization, where we

use constant curvature configurations of the unloaded finger.

Note that when the finger is loaded, for example during

an actual grasp, the resulting finger configurations and the

corresponding sensor readings display significant variation

due to the highly compliant nature of the fingers. Therefore,

to identify objects during grasping, we use data collected

under the grasp load, instead of assuming that the unloaded

sensor model applies to the loaded case.

B. Object identification through grasping

When our hand grasps an object, it attains a certain

configuration. We use the sensors on the hand to predict

the hand configuration, which we then use to identify the

grasped object.

The grasping configuration for an object can be different

for different types of grasps. In this work we focus on two

types of grasps: enveloping grasps (Fig. 10d, 10e) and pinch

grasps (Fig. 10a, 10b, 10c, 10f, 10g, 10h). For a given ob-

ject, o, we represent the configuration during an enveloping

grasp as q
envel
o ; and we represent the configuration during a

pinch grasp as q
pinch
o .

For a given sensor reading s and a grasp type g ∈
{envel, pinch}, we define the object identification problem

as finding the object with the maximum likelihood:

o∗ ← argmax
o∈O

p(qg
o|s) (2)

where O is the set of known objects and o∗ is the predicted

object. Applying Bayes’ rule and assuming a uniform prior

over finger configurations, the above formulation becomes:

o∗ ← argmax
o∈O

p(s|qg
o) (3)

In our experiments we use k-means clustering to build

models of p(s|qg
o) for different objects and grasp types. Then,

we identify the object for a new grasp (Eq. 3) using a k-

nearest neighbor algorithm. The implementation details are

presented in Sec. V-C and Sec. V-D.

V. EXPERIMENTS AND RESULTS

In this section, we describe the experiments we performed.

The first experiment characterized the resistive sensor within

each finger. The second experiment performed grasping tests

to cluster and then to identify objects based on the sensor

values.



A. Resistive Sensor Characterization

The sensors embedded in each finger are resistive flex

sensors. The resistance of a sensor changes as it is bent. A

sensor has three pins: power, ground, and signal. The signal

pin outputs a voltage based on the differential change in

resistance between two flex sensors along its length. The

output signal reads somewhere between 0 and the input

voltage based on the bending of the sensor. We buffer

the output voltage through an operational amplifier before

reading the voltage via an Arduino micro controller. The

output voltage ranges from 0 to 5V in value. The Arduino

is running rosserial and publishes messages with the sensor

values to the main controller PC.

Due to the construction of the sensor, the relative change in

resistance increases as the curvature of the sensor increases.

Thus, the sensor has better accuracy and resolution as its

diameter decreases. The diameter we refer to is the diameter

of a circle tangent to the bend sensor at every point, for

some constant curvature bend of the sensor. A diagram of

the diameter can be seen in Figure 6. We see this relation

between diameter of the finger and sensor value clearly in

Figure 6, where sensor values versus finger curvatures are

plotted for the unloaded case.

We can also map the diameter values to the linear actuator

position: the linear actuator can be controlled by specifying

its linear position between 0 and 100mm. Thus, for the

unloaded case, we can know the approximate diameter of

the finger’s bend even without sensors, as seen in Figure 7.

Due to the inherent changes in variance for the sensor

values, we are able to distinguish objects more accurately

for objects with a smaller diameter.

Fig. 6: The diameter of the finger versus the sensor values.

B. Grasps

We ran tests with two types of grasps: enveloping grasps

that had the object entirely contained within the gripper and

pinch grasps that had the object held by the tips of the fingers.

1) Enveloping Grasps: With enveloping grasps, we were

able to pick up a variety of objects. Objects were grasped

firmly between the fingers and the compliant palm of the

hand. The objects grasped in these tests were a container of

zip ties, an empty coffee cup, a lemonade bottle, an egg,
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Fig. 7: The input linear actuator value versus the resulting

diameter of the finger bend.

and a tennis ball. Figures 10d and 10e show two examples

of enveloping grasps.

2) Pinch Grasping: For pinch grasping, we were able to

pick up a variety of light objects between the tips of the

fingers. In our tests, we picked up an empty zip tie container,

an empty coffee cup, an empty lemonade bottle, a tennis ball,

and a pen. For the pinch grasps, multiple orientations were

possible for the grasps of the same object, so the clustering

is less accurate. Figures 10a, 10b, 10c, 10f, 10g, and 10h

show examples of pinch grasps.

C. Object Clustering

Based on the data from the bend sensor in each of the

three fingers, we can cluster the data using K-means [33] to

accurately distinguish each of the objects. For each of these

tests, the fingers were simply commanded to close all of the

way: the robot had no knowledge of the object which was

being picked up. The clustered data for the enveloping grasps

can be seen in Figure 8a and the clustered data for the pinch

grasps can be seen in Figure 8b.

To get the data for clustering, we first warm up the gripper

by repeatedly opening and closing it in order to get the best

data from the sensors. Then, each object is grasped ten times,

including the recorded values from ten empty grasps. All of

this data is entered into K-means, which accurately outputs a

point associated to each of the clusters. We plot each object’s

points in a different color. For four out of the six enveloping

grasps, all items were classified correctly. Some grasps of the

cup and the lemonade container were misclassified. However,

the means generate by the K-means cluster were still close

to the true average of the sensor values for each object. The

pinch grasp results still had means generated by the K-means

cluster close to the true averages. However, only one object

had all trials classified correctly in the same cluster.

The clustering algorithm runs in less than 0.03 seconds.

D. Object identification

Based on an initial dataset, we can match grasped objects

and identify them based on the sensor data. We use the same

dataset that was used for clustering, but with the originally
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(a) Two views of the 3D data collected from enveloping grasps.
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(b) Two views of the 3D data collected from pinch grasps.

Fig. 8: The clustered three dimensional sensor data for enveloping grasps and pinch grasps. There were ten grasps of each

object; points can be identified via color, as seen in the keys of each subfigure.

known identities of each of the objects. We use this training

set to identify objects as they are grasped in a separate testing

phase. After each new grasp, the five nearest neighbors of

the new point in the original training data are determined.

We calculate the distance via the Euclidean metric on the 3-

dimensional point comprised of the three sensor values. The

object is identified based on the most common identity of the

five nearest neighbors, using the KNeighborsClassifier from

scikit-learn [34]. Pseudocode describing this is outlined in

Algorithm 1. 98% percent of tests (59/60 trials) identified

the objects correctly for enveloping grasps; the breakdown

per object is shown in Figure 9. For pinch grasps, 68% of

tests (34/50 trials) identified the objects correctly; again, the

breakdown per object can be seen in Figure 9. This includes

correctly identifying the empty grasp when the robot did not

actually pick up an object (for enveloping grasps).

The identification algorithm runs in less than 0.01 seconds.

Algorithm 1: Object Identification Algorithm

Import previously recorded grasp data, 10 data points

per item

for all objects to be grasped do
Grasp item.

Record sensor values.

Calculate Euclidean distances to all recorded points

Find the 5 nearest neighbors.

Output the identity of the object-based voting from

the 5 nearest neighbors.
end

VI. COMPARISON TO A RIGID GRIPPER

In order to demonstrate the advantages of the soft hand,

we ran a series of experiments comparing our gripper to the

default Baxter gripper. The Baxter gripper can be seen in

Figure 12a deforming a cup. We kept the rigid gripper in a

similarly sized configuration to the soft gripper. We used the

same control inputs for the rigid gripper as we did on the

soft gripper – the gripper had two states: entirely closed and

entirely open. We did not adjust the gripper for the different

Object Enveloping grasp Pinch grasp

zip tie container 100 % 60 %
cup 90 % 100 %
egg 100 % –

tennis ball 100 % 0 %
lemonade bottle 100 % 80 %

pen – 100 %
empty grasp 100 % – %

Fig. 9: Identification percentages for each of the tested

objects.

objects. We used the same program with symmetric positions

for grasping objects vertically and off the table; there was no

complicated manipulation planning needed in either scenario,

just moving the arm to different pre-determined positions and

executing a grasp. To demonstrate that objects were held

securely, we included a 90 degree rotation of the hand after

picking up an object.

These experiments tested two areas in which soft hands ex-

cel: interfacing smoothly with the environment and grasping

delicate objects. Specifically, we tested grasping a CD and

a piece of paper off of a table and grasping an empty soda

can and a cup. In these experiments the soft hand greatly

outperformed the default rigid gripper. The default gripper

was unable to pick up a CD or piece of paper. Our soft

gripper was reliably able to pick up the CD and the piece of

paper. A picture demonstrating how the soft gripper smoothly

interfaces with the environment to pick up the CD can be

seen in Figure 12b. When the default gripper picked up the

cup (Figure 12a) and the soda can, it crushed them; the soft

gripper was able to pick them up without issue.

Additionally, we had the soft gripper pick up a wide

variety of objects to demonstrate the capability of the hand.

Some grasps of these objects can be seen in Figure 10. The

full set of objects grasped can be seen in Figure 11. The

flat objects were grasped off of the table as it was show for

the CD. All of the other objects were grasped from a fixed

horizontal position with the fingers first actuated to close, the

hand then raised to test for a successful grasp, then lowered



(a) CD (b) paper (c) egg (d) container

(e) soda can (f) pen (g) box (h) tape

Fig. 10: Various objects grasped by our soft gripper.

again and released. Some objects were naturally configured

so that the gripper could easily pick them up off the table.

Other objects needed to be raised to the height of the gripper:

for instance, the tennis ball and egg had to be placed on a

small pedestal. Some objects such as the bin were placed in

an easy to grasp configuration by laying it on its end, which

is not the default configuration for the object. Some other

objects were held vertically by pushing them into a piece

of clay. This was done for several objects, including a hair

brush, a pen, and a whisk.

When we discovered objects that weren’t able to be

picked up, it was primarily because they were too heavy,

too slippery, or both. The gripper had trouble picking up a

slippery chopstick and toothbrush, though it had no issues

picking up similarly sized pen or long Q-tip. The gripper was

unable to pick up a slippery calculator and a small book,

though it was able to grasp other heavier objects in other

configurations. The gripper was unable to pick up a heavy

action figure.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a soft gripper which can successfully

identify a set of objects based on data from internal flex

sensors. Internal sensing addresses one of the primary disad-

vantages of soft hands: the final configuration of the fingers

and the final pose of the object are unknown. This system

allows us to maintain the positive aspects of soft hands,

including increased compliance leading to greater ability to

pick up various objects with arbitrary shapes with no need

for complicated grasp planning. The resulting data from the

internal sensing, assumed to be independent for each finger,

can be clustered in k-means and is sufficient to be used to

Fig. 11: All of the objects grasped by the soft gripper.

(a) Cup squashed
by rigid gripper.

(b) Gripper performs a compliant grasp to pick
up a thin object off a table.

Fig. 12: Rigid gripper squashing a cup and soft gripper

picking up a thin object.

identify objects within a trained set of objects.

Future work will take these core principles and methods

and expand them to create a more robust and capable

gripper. Our algorithm allowed us to identify objects up to

the sensor resolution. We assume that with more accurate

sensors, the same algorithm would allow us to distinguish

finer changes and improve the capability of the identification

system. In addition to adding resolution with better flex

sensors, we plan to add multiple internal flex sensors to give

independent data about different segments of the finger to get

more fine-grained knowledge about the pose of the finger.

Additionally, we plan to add force sensors to the fingers to

help us distinguish whether an object is being grasped via an

enveloping grasp or via a pinch grasp. Force sensors along

the inside of the finger will also allow us to perform force

control. Force sensors will help with modeling the pose of

the finger since they will identify which sections of the finger

are loaded or unloaded. We also plan to consider using liquid

metal sensors [22] in the fingers to get even higher resolution

data. In order to create as robust a system as possible, it will

be necessary to also incorporate data from multiple grasps

and perhaps from visual data as well.

With additional sensor data, we will be able to create a

more robust and accurate prediction of the configuration of

the fingers, the identity of the grasped object, and the pose of

the grasped object. This knowledge is useful for creating a

system which can use objects in more complex ways: rather

than just performing pick and place operations, robots should

be able to pick up a variety of tools designed for human use

and be able to handle them appropriately. This additional



data will also make it simpler for the system to identify

when objects are not grasped robustly and enable them to

re-grasp accordingly.

Future work may also include to take the fingers off

the gripper and restructuring them into a different format,

for example an anthropomorphic hand, to determine which

configuration is the most capable at grasping and identifying

objects robustly and usefully.
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