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Abstract— This paper presents a distributed world model that
is able to adapt to changes in the Quality of Service (QoS) of the
communication layer by online reconfiguration of perception
algorithms. The approach consists of (a) a mechanism for
storage, exchange and processing of world model data and
(b) a feedback loop that incorporates reasoning techniques to
adapt to QoS changes immediately. The latter introduces a
Level of Detail (LoD) metric based on a spatial resolution in
order to infer an upper bound for the amount of data that
can be transmitted without violating an application specific
transmission delay.

Experiments have been performed with Octree-based sub-
sampling techniques applied to data originating from a RGB-D
camera using simulated and real-world data sets for time-
varying bandwidth values as employed QoS measure.

I. INTRODUCTION

With the advent of agile and versatile robot platforms,
operating in the air, underwater and on the ground the
development of Search and Rescue (SAR) missions [1] in
unstructured and harsh environments such as alpine [2],
maritime [3], and desaster [4] settings is becoming more and
more a reality. In these application scenarios mixed teams of
autonomous and semi-autonomous heterogenous agents such
as humans, robots, and distributed sensors need to collaborate
in order to achieve their tasks. To enable collaboration among
these agents a world model needs to support physically
distributed data storage and shared data access in order
to improve the situational awareness of individual team
members and the team as a whole. Here, a distributed world
model creates and maintains a digital representation of the
environment over a period of time based on the results of the
employed perception algorithms. This representation needs
to be exchanged by replication and synchronization among
all agents. Recent approaches for distributed world modeling
such as [5] and [6] do not tackle the requirements imposed
by challenging SAR missions as described below.

To realize collaboration via distributed world models, a
wireless networking and communication infrastructure is
required. However, as Troubleyn et al. [7] pointed out real-
world environments poses significant Quality of Service
(QoS) challenges on the networking and communication
infrastructure. More precisely, QoS metrics such as the time
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it takes to transmit a message from source to destination
(delay) and the number of messages which are lost during
transmission (message loss rate) are not necessarily known
a-priori and can change over time. These time-varying QoS
variations are caused by extreme environmental conditions
such as heat and cold, agent mobility, and general application
deployment in unaccessible environments such as disaster
areas. The QoS properties often stand in contrast with
the requirements coming from the application itself. For
example, an operator in a SAR mission could formulate
a max. tolerated message delay in order to receive certain
information which is crucial to proceed with the mission.

To cope with these challenges in a systematic manner
a representation of QoS properties and a mechanism to
interpret them and eventually adapt the system behaviour is
required. Some mechanism to adapt the system behaviour
(a) reconfigure the QoS properties of the communication
infrastructure [8] which is however framework dependent,
or (b) reduce the amount of data that is sent by applying
a data reduction [9] or compression [10] strategy which is
challenging to adapt at run-time.

This work focuses on reducing the amount of data via
appropriate adaptation of perception algorithms for data
reduction at run-time. This includes an approach for a dis-
tributed world model with mechanisms for storage, exchange
and processing of world model data (see Section II-A)
and a feedback loop (see Section II-B) that incorporates
reasoning techniques to adapt to QoS changes immediately.
We introduce a Level of Detail (LoD) metric as a criteria to
select an algorithm. We use bandwith as a QoS metric and
and an according mapping to the LoD (see Section III). As
illustrative example application we choose a setup involving
a robot equipped with a Kinect RGB-D camera. This data
has to be exchanged with one or multiple Human Machine
Interfaces to be used by the rescuers. The experiments (see
Section IV) show that the adaptation by algorithm selection
satisfies an exemplary chosen application requirement of
a max. transmission delay t,,44 delay = 1s even in the
presence of changing QoS as faced in SAR missions. We
make the following contributions:

o The extension of the Robot Scene Graph (RSG) [11]

world model by a QoS-aware data exchange facility.

« The integration of Robot Perception Specification Lan-
guage (RPSL) [12] to model existing data reduction
algorithms in order to exploit its reasoning capabilities.

o The introduction of a novel LoD metric which is used
to select an algorithm and a mapping to the bandwidth.
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Fig. 1.  Generic architecture for QoS aware data exchange between
multiple agents. An agent embeds the mechanism for storage, exchange and
processing of the data. A QoS Monitor enables the Algorithm Adaptation
to reconfigure the processing modules of the agent.

II. APPROACH

A generalized overview of the presented approach is
illustrated in Fig. 1. It consists of two major parts: (a)
a mechanism for a data reduction work flow that can be
reconfigured online and (b) a feedback loop that continuously
measures the QoS and emits events to configure the reduction
process.

The data reduction work flow is embedded into an agent.
An agent comprises three modules. A Storage module that
contains the data relevant for the target application. The data
has to be modeled with a formal data model (e.g. a database
scheme) because it is relevant for the reasoning module in
the feedback loop. An Exchange module is responsible for
encoding, decoding and transmitting data to other agents.
The Processing facilities allow to apply any algorithm to
the stored data and need to be reconfigurable at run-time.

The feedback loop consists of the QoS Monitor which
reports on the current QoS of the communication layer. The
Algorithms Adaptation module has a formal data model of
the involved data types and the all available data reduction
algorithms. This enables reasoning techniques to determine
the most suitable algorithm given the current QoS situation.
Application specific Task Constraints including preferences
for trade-offs for the data representation have to be taken into
account as well.

For the sake of readability the information flow in Fig. 1
is depicted in a unidirectional manner. The extension to a
bidirectional composition means to apply the feedback loop
to Agent B analogously.

A. Distributed World Model Mechanism

The generic architecture as described in the previous
section can be applied to realize a distributed world model
suitable for collaborative SAR missions as illustrated in
Fig. 2. The agents store the world model data, thus we call
them World Model Agents. The data-types have to comply to
the data model of the Robot Scene Graph (RSG) [11] which
has been introduced as a data representation for robotic world
models shared across multiple agents. It essentially consists
of different types of nodes that are organized in a graph
structure. All nodes are addressable by Universally Unique
IDs (UUID). An update is defined as the creation, deletion
or modification of a single node and is propagated to an

Update Monitor. One particular type of node that is relevant
for the example application is the GeometricNode as it can
store point cloud data. It is used to store the raw data of the
3D sensor of the robot.

The Function Block is a mechanism to perform processing
within the World Model Agent. The input and output is
specified via the UUIDs that describe a set of scene graph
nodes. In this paper the Function Blocks are used to reduce
the amount of data as they contain variations of Octree-
based sub-sampling algorithms for point clouds. Here the
used policy is to trigger the blocks on every insertion of
sensor raw data.

The employed Update Monitor controls the propagation
of changes by a LoD metric (see Section III). For every
update the LoD value of the given point cloud data is
computed and it is only forwarded if it is lower than or equal
to the max. allowed LoD value. This mechanism prevents
sending data that is not suitable to be transmitted given the
current QoS condition of the communication framework.

The distributed world model uses HDF5 [13] to encode
and decode the update messages. HDF5 is a file format
for storing large scale scientific datasets. The datasets are
hierarchically composable. Here the HDFS file format is
used, mainly because it shares similarities with the RSG data
model which eases the mapping of the RSG data types to
HDFS5 structures. Instead of defining our own data protocol
we rather map the RSG data model to the HDF5 data
model and obtain a serialization facility without further im-
plementation efforts. The fact that a framework independent
serialization is chosen allows to make statements on the size
of the transmitted data as seen later for point cloud data (see
Section IV-B).

Conceptually the connectivity between the World Model
Agents is a peer-to-peer topology. A Bridge sends its data
via the communication framework to the bridge of another
agent.

The role of the Configurator is to store which Function
Block has to be executed when new raw data arrives from
the sensor. It also stores the maximum allowed LoD value
that is used within the Update Monitor.

The distributed world model provides the infrastructure
for storage, exchange and processing of world model data.
It does not know why a particular algorithm i.e. Function
Block is selected for which reason. This aspect is completely
delegated to the Perception Algorithm Adaptation module
as explained in the next section.

B. Perception Algorithm Adaptation

The Robot Perception Specification Language (RPSL)
introduced in [12] is used to represent the knowledge re-
quired for the data reduction algorithm selection. It is a
Domain-Specific Language (DSL) which enables to model
two crucial elements of perception systems in a declarative
and formal manner, namely perception graphs and the data
types. In RPSL a Perception Graph (PG) is a composition
of components in the form of a Directed Acyclic Graph

1807



4 World Model Agent )

(e ot (5~ (G5
Monitor

HDF5
Encoder

| ( World Model Agent )

4 World Model Agent h

HDF5 |- @
Decoder -

- |

<

Perception Algorithm
Adaptation

+ Remote connection T
Rrid
[rone 3 (ooe )
\_ /

; QoS
: self-:-cts a Monitor
¢ Function Block

Human Machine Interface

Robot

i Task Constraints

Fig. 2.

Architecture for a QoS aware data exchange between multiple World Model Agents applied to the distributed world model for a collaborative

SAR mission involving a robot and one or multiple HMIs. The data model, its processing and encoding/decoding complies to the RSG approach. The
feedback loop is realized with RPSL in order to select algorithms from the perception domain.

(DAG). Here, components are distinguished between (a) sen-
sor components representing sensors such as cameras and (b)
processing components implementing perceptual algorithms
such as data reduction methods. In the context of this work a
PG is used to model what precisely a single Function Block
in the Robot Scene Graph does and encodes one particular
data reduction algorithm. As PGs consume and produce data
on spanning multiple levels of abstractions ranging from
raw sensor data and subsymbolic representations to symbolic
information a suitable knowledge representation mechanism
is required. In RPSL the vector-based Conceptual Space
(CS) [14] knowledge representation framework is employed.
A CS contains the following constituent parts:

o A Conceptual Space is a metric space where Concepts
are defined as convex regions in a set of domains (e.g.
the concept Level of Detail).

o A Domain includes a set of Domain Dimensions that
form a unit and are measurable (e.g. a single dimension
for the LoD).

« An Instance is a specific vector in a space (e.g. a LoD
value of 1.0 %3’,”6)

o A Prototype is an Instance which encodes typical
values for a Concept.

In the context of this work the CS representation is used
to model the data in- and output of perception graphs
(e.g. concepts of different point clouds with and without
color) and their corresponding LoD values in the form of
prototypes (see LoD,,,, in Table II). Hence, each stored
algorithm is attached with a LoD prototype which is later
used to compute the most suitable algorithm. To select an
appropriate data reduction algorithm a QoS value is first
turned into a LoD prototype which is later compared to
all other existing LoD prototypes stored in the repository.
In this paper we apply the Euclidean distance as a simple,
yet powerful comparison metric. An algorithm is chosen
based on the smallest distance between the requested and the
stored prototypes. The experimental section solely exploits
the LoD concept whereas further concepts expressed by

the task constraints such as existence or absence of color
information in a point cloud can be incorporated. This yields
in an extension of the search space for an appropriate data
reduction algorithm.

To be able to account for QoS changes a mapping from
measured bandwidth to the LoD is required.

III. MAPPING OF LOD TO MEASURED BANDWIDTH

We introduce the Level of Detail (LoD) as a generic metric
to define a spatial resolution of point clouds independent
of the actual data representation (i.e. no byte consumption
is directly inferable). It is used to (a) describe a spatial
resolution of a given point cloud and (b) to describe the
boundaries of the output of a data reduction (in our case
sub-sampling) algorithm. We define LoD as follows

Npoints a sample
v m3
where Npoints is the number of point samples per volume

V. This formula is somewhat similar to printer specifications

that use dots per inch.

The proposed architecture (see Fig. 2) measures in the
domain of bandwidth which is not directly connected to
the representation used in the perception domain (LoD).
The intention is the keep the domains for communication
and perception separated according to the separation of
concerns principle (otherwise the LoD is not reusable in
other applications). Therefore, we define a formal mapping
between both domains.

For the mapping between LoD and bandwidth we define
f as follows f : B — LoD where B denotes the domain of
bandwidth in bytes per seconds and LoD as defined in Eq. 1.
To compute the LoD we define the following parameters
which can be derived for an application a-priori.

LoD = (1)

e lmax_delay: 18 the max. delay in seconds tolerated by the
application.

e Vinaaz_space: 1s the max. volume covered by the sensor.
It can be deduced from the specification of the sensor.
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TABLE I
COSTS OF ENCODING AND DECODING POINT CLOUDS WITH HDFS.

Npoints tencode tdecode bytes bytespev‘,point
10 1.919ms | 20.621ms 11584 ~ 1158
100 4.130ms | 36.932ms 43616 =~ 436

1000 5.690ms | 38.541ms 32517 ~ 32
10000 7.659ms | 40.452ms 331616 ~ 33
100000 9.363ms | 44.643ms | 3211616 ~ 32

o bytesper point: is the relation between the number of
points in a point cloud and it’s corresponding message
size in bytes.

e toffset: s the worst case total time required for encod-
ing and decoding a message.

As the bandwidth b € B is a variable that varies at run-time
we derive the maximum time required to send a message as
tmaz = tmaz.delay — tof fset- The number of max. bytes that
can be send depends on the available bandwidth: bytes, 4. =
tmaz *b. As we know the memory consumption of a point in
a point cloud we can estimate the max. number of points to
be sent in a message: Npoints = bYteSmaz/bYtesper point.
From the V},,44_space Mmax. covered volume and the max.
allowed points we can deduce a max. LoD: LoD, =
Npoints/Vinaz_space- This leads to mapping f:

LoDz = f(b) = <(t7nagc * b)/bytesperpoint)) )

Vmaz,space

This LoD,,,, denotes an upper bound for the LoD to
satisfy the application tolerance t,,qz delay- It is used to
formulate a request to the Perception Algorithm Adapta-
tion module in the presence of bandwidth changes. In the
experimental section algorithms are selected that are capable
of reducing point cloud data up to a max. LoD value.

IV. EXPERIMENTAL VALIDATION
A. Experimental Objectives and Hypotheses

The intention is to assess the feasibility of the approach i.e.
to satisfy an application based tolerance on the max. delay
while having a variable bandwidth of the communication
layer. An assumption for the experiments is that the latency
of the connection itself remains stable. We have the following
main objectives and hypotheses:

e Objective 1: The tolerated max. delay which is defined
by the application always holds even in the presence of
changing QoS i.e. bandwidth.

¢ Objective 2: The lower the available bandwidth, the
lower the number of points that are transmitted.

o Hypothesis 1: The density of the Perception Graph
repository affects the delay significantly.

To assess the objectives and hypothesis above we also

formulate the following side hypotheses:

o Hypothesis 2: The consumed time for encoding and

decoding of messages has each a predictable relation to
the number of points.

o Hypothesis 3: The message length has a predictable
relation to the number of points.

B. Experimental Design

1) Parameters for the LoD to Bandwidth Mapping:
First, for the experiments the set of parameters required for
the LoD to bandwidth mapping (see Section III) has been
experimentally derived: artificial point cloud data sets have
been fed to the system with an increasing number of points.
The according durations for t.ycode for encoding and £ gecode
for decoding and the resulting message size bytes are listed
in Table L.

In our case the HDFS5 encoding and decoding reveals a
predictable monotonic increasing characteristics. This vali-
dates our side Hypothesis 2. Though, for the experiments
we choose 2,775t = 0s. A validation of Objective 1 with
this value is still valid for more realistic values for £, fse:.

We approximate the relation bytesper point = 932 as it
converges to this value for large point clouds. The side
Hypothesis 3 is considered to be frue. Furthermore, as we
are using a Kinect RGB-D sensor we conservatively approxi-
mate Vinaz space = 64 m? accounting for the bounding box!
dimensions of 4m % 4m % 4m. The max. tolerable delay
for the example application is set t0 tymax_ delay = 15 (see
Section I).

2) Algorithm Selection for the Perception Graph Repos-
itory: Octree-based sub-sampling [15] filtering is a com-
monly used strategy to reduce point cloud data. Here we
choose a set of Octree filters with different leaf sizes.

We recapitulate the relation between Octree leaf size Nicq s
and max. possible LoD, given the parameters from the above
section: The smaller the leaf size, the higher the possible res-
olution. A leaf size Nicqy = 1 m means all points (if any) in
a leaf with size 1 m*1 m=*1m are discarded and represented
by the center point of that cube. One point per such unit cube
is exactly LoD, = 1 Sa;?fle. The according formula for
other leaf sizes is: LoDynaz = 1/(Nieas)?

The selection focuses on a set that emphasizes more
variability within a bandwidth range for cell phone networks
i.e. a bandwidth range of ~ 10° - 105 bytes per second that
corresponds according to equation (2) to a LoD range from
97.66 W;Lifle - 976.56 Sa;’ifle. Table II repesents the chosen
algorithms including all leaf size and corresponding LoD
values.

A dummy algorithm called camera is also stored in the
repository to account for situations where enough bandwidth
is available. In this case the raw data is not changed at all.

3) Experiments for the main objectives: The following
two experiments have been designed. Both use bandwidth as
controlled variable, the parameters from Section IV-B.1 and
the PG repository as indicated in Section IV-B.2 . As point
cloud dataset for the camera an office scene is chosen.

o Experiment A: Uses a full bandwidth spectrum with
respect to existing communication technologies. I.e. the
values start at zero, are incremented each after 10s,

I These values can be enforced with an appropriate pre-filtering step.
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Fig. 3. Experimental results. Plot (a) presents the measured transmission delay while (b) indicates the transmitted number of points for the full bandwidth

spectrum data set. Accordingly, (c) and (d) show the used real-world data set.

TABLE II
USED PERCEPTION GRAPH REPOSITORY.

Name Nicag in [m] | LoDpmag in [22705€)
octreefilterl 1 1
octreefilter0.5 0.5 8
octreefilter0.25 0.25 64
octreefilter0.2 0.2 125
octreefilter0.1 0.1 1000
camera - 10000

and stop at 108 bytes per seconds. The range includes
typical bandwidths for cell phone networks (105 - 10°),
WiFi (10 - 107) and Ethernet (107 - 108).

+ Experiment B: Some SAR missions propose to use cell
phone networks [3] as one part of their communication
infrastructure. Hence, a real-world data set called Car
Snaroya Smestad® [16] is chosen to test the system
under realistic bandwidth settings for such cell phone
networks.

C. Experiment Execution

All experiments have been performed on a single off-the-
shelf Laptop with Intel Core i7 CPU and ~ 8GiB RAM and
Ubuntu 12.04. The used C++ compiler is g++ version 4.6.4
and the used Ruby interpreter has version 1.9.1.

2File name: report.2011-02-14_2032CET

The BRICS_3D? implementation of the RSG is used
together with a set of Octree-based sub-sampling Function
. For RPSL we use the Ruby based implementation®.

As communication framework ROS Hydro is used. Two
World Model Agents are each embedded into a ROS node.
To be able to control the bandwidth an additional relay node
is employed that introduces an artificial delay to the used
topic based on a configurable bandwidth parameter. A band-
width generator node sends simultaneously the bandwidth
parameter according to the experimental design to the relay
node and the perception adaptation

Blocks*

D. Experiment Results and Analysis

For Experiment A (see Fig. 3a and Fig. 3b) the delay
tolerated by the application always holds with a maximum
delay of ~ 0.3s. As shown in Fig. 3b the adaptation decision
which leads to increased or decreased number of points
is clearly visible in discrete steps. This verifies Objective
2. Each discrete step represents a different selection of an
algorithm. The last step represents the transmission of the
raw camera data as the bandwidth becomes sufficient. This is
caused by the selection of the camera PG. The granularity
of discrete steps is dense in the cell phone bandwidth range
whereas in the WiFi range the selection is rather sparse.

3github.com/brics/brics_3d
4github.com/blumenthal /brics_3d_function_blocks
Sgithub.com/nicoh/RPSL
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This can be explained with the chosen algorithms and corre-
sponding parameters (see Table II) stored in the repository.
We argue that an application developer needs to consider
this effect at design-time through a carefully population of
the PG repository. By doing so the application developer
can influence the overall performance of the adaptation. In
our case we emphasized the cell phone bandwidth range.
Hypothesis 1 seems to be correct.

For Experiment B (see Fig. 3c and Fig. 3d) which uses a
real-world data set in the cell phone bandwidth range the
delay tolerated by the application holds mostly with one
exception. This outlier occurs on a sudden change to a very
low bandwidth value (2736). In this case the system selected
octreefilterl, however the reduction was not enough.
This input value is beyond the range of the what algorithms
in the repository are capable of. The plot indicated in Fig. 3d
shows that mostly a rather similar data reduction has been ap-
plied. The selection toggles between octreefilter0.2
and octreefilter0.25 but as the leaf cell parameters
are so similar to each other they produce nearly the same
output. At the exceptional case that misses the application
tolerance 15 points have been transmitted. 2 points would
have still met the requirement. This shows a limitation of
the approach: it only performs well if the repository has been
carefully designed to cope with all possible cases. Also the
extreme case for b = 0 cannot be handled with this setup. A
policy for the Update Monitor to not send anything below a
certain threshold could be a remedy for that.

Both experiments support Objective 1. The approach is
able to handle QoS changes for this experimental setup.

V. CONCLUSION AND FUTURE WORK

This paper has presented an approach for a generic QoS
aware data exchange between multiple agents. It is applied to
an example application for a SAR mission that has to adapt
to QoS changes immediately. The approach realizes a mech-
anism for storage, exchange and processing of world model
data by employing the data model and processing facilities
of the Robot Scene Graph (RSG). The feed backloop utilizes
the Robot Perception Specification Language (RPSL).

We clearly separated world modeling (the what), percep-
tion (the how) and QoS communication aspects. For the latter
two domains we introduced a mapping of the LoD parameter
to the used QoS metric: bandwidth.

The proposed approach allows to have a dedicated data
exchange mechanism while the Perception Graph (PG)
repository can be filled with any algorithm or algorithm
combination. Though, we only selected a single type of
algorithm, namely an Octree-based sub-sampling technique
to prove the overall feasibility. This has been experimental
validated for the used example setup. The experiments reveal
that the population density of the repository has a strong
effect on the granularity of the adaptation and the boundary
case for low bandwidth.

Extension of the repository with more diverse algorithms,
other QoS concepts, integration on concrete robot platforms
and incorporation of task constraints in the experimental

setup are promising directions for future work. This will also
help to study the connection between the tolerable transmis-
sion delay, required LoD, and the overall performance of the
task to achieve.
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