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Abstract

This paper considers the semi-automated robotic surgical procedure for removing the brain tumor 

margins, where the manual operation is a tedious and time-consuming task for surgeons. We 

present robust path planning methods for robotic ablation of tumor residues in various shapes, 

which are represented in point-clouds instead of analytical geometry. Along with the path plans, 

corresponding metrics are also delivered to the surgeon for selecting the optimal candidate in the 

automated robotic ablation. The selected path plan is then executed and tested on RAVEN™ II 

surgical robot platform as part of the semi-automated robotic brain tumor ablation surgery in a 

simulated tissue phantom.

I. Introduction

In the last few decades, enormous technical developments in computer science, engineering 

as well as the advanced medical imaging techniques have greatly improved the possibilities 

for complex robotic assisted neurosurgery, where the complexity and high sensitivity of the 

anatomical regions requires fine precision and dexterity [1], [2]. In this study, we consider 

the robotic automation of a surgical subtask in brain tumor ablation surgery, i.e. removal of 

cancerous margin, under surgeon’s supervision.

A. Clinical Scenario

Complete resection of the brain tumors is a extremely critical factor for patient’s survival 

rate and life quality. A retrospective study of more than 400 patients with glioblastoma 

showed significantly longer survival times for patients with resection of 98 % or more of the 

tumor volume than for those with a lesser extent of resection [3]. In the proposed surgical 

scenario, it is assumed a surgical cavity with possible cancerous material on its wall will be 

exposed after manual removal of the bulk brain tumor by surgeon. The proposed surgical 

task is clean-up of the tumor margins in the surgical cavity.

The modern biomarker-’Tumor paint’ [4], that selectively binds to the tumor cells and 

fluoresces with illumination of the conjugated dye, will be applied for detecting the tumor 

margins under a fluorescence-based imaging system using a 1.6mm diameter Scanning Fiber 
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Endoscope (SFE) [5]. The cancerous regions are able to be segmented in the wide-field 

fluorescence image that is co-registered with color reflectance SFE image. Due to the weak 

fluorescence responses and long integration time for image collection, manual treatment of 

the labeled tumor tissue is tedious and requires high precision cutting over long duration. 

Thus, this medical procedure becomes an ideal candidate for the automated robotic task.

B. Preliminary Study

1) Three-dimensional virtual reconstruction of a surgical cavity—Gong et al. [6] 

showed the feasibility of the 3D image reconstruction of a surgical cavity using a set of 2D 

images taken from SFE (Figure 1).

2) Behavior Tree framework for autonomous robotic medical procedure—The 

potential utility of Behavior Tree (BT) as a modeling language for intelligent robotic 

surgical procedures was explored in [7]. A BT representation of the semi-automated brain 

tumor ablation was demonstrated for simplified planar geometry and software integration 

was implemented.

C. Technical Aspect

This paper is built upon the above preliminary work and discusses an intermediate step 

towards the planned intelligent robotic surgical system that will scan the cavity for 

fluorescently labeled tissue exposed by bulk tumor removal, and automatically treat that 

material. This procedure will be repeated until no cancerous tissue is found. Particularly in 

this paper, we present a path planner for this surgical procedure.

Given the tumor segmentation map generated from 3D image reconstruction, our planner 

will synthesize paths which completely cover the segmented area subject to medical 

constraints:

1. Complete removal of all labeled tissue.

2. Minimize the removal of normal tissue.

3. The tumor margin is assumed to be homeomorphic to a sphere (that is have no 

holes) but is likely to have tendrils which will require specialized plans.

4. A surgeon must have reliable control and choose the trusted plan for robotic 

treatment.

The obtained 3D segmentation map is represented as a point-cloud, which is relatively 

smooth on the surface due to the fitting algorithm in reconstruction, however, can vary in 

geometrical shape and size. To deal with the geometrical irregularity, our proposed complete 

coverage path planner provides different types of paths based on the analysis of size and 

shape. Three main types of path pattern are used in planning: zig-zag, contour-parallel, and a 

mixed pattern of both depending on geometry analysis.

Along with the generated path plans, the path planner also computes the number of tool 

retractions (when multiple paths of a plan are found), the total number of via-points, as well 
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as an estimated execution time of each plan. This path information will be delivered to the 

surgeon to decide the most reliable path plan.

We integrate the path planner with the existing BT framework and test the selected plan on 

the RAVEN™ II surgical robotic system [8]. In this paper, we attempt to provide a 

systematic approach for surgical coverage path planning.

II. Related Work

A. Path planning in robot-assisted medical procedure

Most of the path planing in robot-assisted surgery is focused on 1) minimizing the tool path 

length and 2) avoiding the collision with the vital tissue when approaching to target.

In recent years, motion planning for robotic needle steering is one of the most intensively 

studied examples in medical procedures including tissue biopsies, tumor ablation and 

brachytherapy cancer treatment. Alterovitz et al. [9], [10] developed a motion planning 

algorithm for flexible needle steering that considers the uncertainty in robotic motion to 

maximizing the the probability of avoiding collisions and reaching the target. Durham et al. 

[11] presented a 3D constant-time motion planning algorithm for steerable needle using 

inverse kinematics. Jackson [12] proposed a path planner for autonomous robotic suturing 

that aimed to minimize the interaction forces between the tissue and needle. Bernardes et 

al.’s [13] method enabled a closed-loop re-planning strategy for dynamic scenes.

Other related planning in medical fields includes minimally invasive surgery, where the 

optimal port placement and pose planning of the robot are discussed [14], and also in virtual 

endoscopy, where the optimal guidance path for endoscopic exploration of 3D medical 

images is computed [15].

B. Analogy to the industrial task

The proposed intra-operative path planning in this study is related to the tool-path planning 

from point-clouds emerging from the reverse engineering in manufacturing. In this case, the 

point-cloud is obtained by a scanning system from existing physical profiles, such as 

sculptures. Traditional approaches are available by reconstructing the CAD model from 

point-clouds [16]. But those procedures are computationally inefficient and also require the 

interaction with users with advanced knowledge of surface modeling [17]. Alternative 

methods without surface reconstruction include Z-map modeling [18], 3D biarc fitting [19] 

and moving least-square surfaces [20]. Unlike the above methods which mainly emphasize 

the surface uncertainty, our approach is focused on dealing with contour/shape irregularity.

III. Problem Definition and Assumptions

Terminology: Terms used throughout this paper are defined here for clarity.

1. Surgical cavity: is a concave cavity that is exposed after the manual removal of the 

brain tumor, which can grow up to a golf ball size.

2. Tumor margin: represents the tumor residue that remains on the surface of the 

surgical cavity after major removal. Tumor margins can be in any shapes and sizes.
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Assumption: In this work, we assume that 1) all tumor margins are homeomorphic to a 

sphere, i.e. there are no holes in each tumor margin. 2) All cancerous tissue remains on the 

surface of the surgical cavity, although it is possible in real clinical case that the tendrils may 

go deeply into brain tissue. 3). The surgical cavity is close to an inverted shallow spherical 

dome, but its inner surface can be rough.

Problem Statement: The objective of the path planner addressed in this paper is to find 

complete coverage path plans given a 3D segmentation map of each tumor margin detected 

in the surgical cavity. More precisely speaking, we are given a set of points Pc that represent 

the contour of a tumor margin and a set of points Ps that describe the inner surface geometry 

of that margin, as well as a minimum circular treatment area At of the surgical tool. Our goal 

is to deliver at least one and a finite set of possible path plans S that cover the entire margin 

area for robotic ablation.

(1)

where S ≠ Ø, 0 < |S| ≤ n, n is an integer as the maximal number of plans. (n = 3 for current 

version of the planner)

IV. Complete Coverage Path Planning with Geometry Irregularity

A. Guidance Plane and Shape Factor

The remaining tumor margin after the major removal could be represented in any arbitrary 

geometry and size. By assumption, the tumor margins stay on the surface of the surgical 

cavity, thus we define a guidance plane called Plg such that the projection of the point-cloud 

Pc onto Plg preserves the shape similarity. In this study, to get the maximal shape similarity, 

the guidance plane is chosen as the plane perpendicular to the surface normal of each tumor 

margin. The surface normal is computed as the average of point normals using PCL [21]. 

Figure 2 describes the guidance plane Plg of each tumor margin in the surgical cavity.

The projection generates a set of 2D points Pproj with respect to the plane Plg. The shape 

analysis is performed upon the polygonal approximation of the point set Pproj. Shape 

characterization [22], [23] is a large area of image analysis, even a brief review is beyond 

the scope of this paper. In this paper, we focus on the analysis of the shape irregularity, i.e. 

shapes that have irregular, asymmetric and serrated edges, as most of the brain tumor 

margins.

Circularity is chosen for overall evaluation of the shape irregularity and is described by Eq.

(2).

(2)

where P is the perimeter of the polygon consisting of Pproj, A is the corresponding area 

computed using Green’s Theorem, derived as Eq.(3).
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(3)

where n = |Pproj|, (xk, yk) is the k-th point of Pproj in counter-clockwise order, and (xn, yn) = 

(x0, y0)

It is obvious that the circularity of a circle is 1, and much less than one for an irregular 

shape. Circularity determines the path patterns that will be used in planning. Another key 

measurement is the enclosed area A of the boundary Pproj, which determines the maximal 

number of plans delivered to surgeon as final solutions.

B. Flowchart

We divide our planning algorithm into five major steps: 1) projection onto the guidance 

plane, 2) smoothing, 3) 2D coverage path planning on the guidance plane, 4) reverse 

projection onto the original 3D surface formed by point-cloud, and 5) path interpolation on 

3D surface. The planning flowchart is described in Figure 3. The path planning algorithms 

are further divided into two basic groups based on the area of the shape for improving the 

efficiency of robotic execution and reducing the removal of healthy tissue.

C. Planning with Shape Irregularity - small area

The small area shape is defined as a polygon consisting of Pproj whose area is no larger than 

the minimal treatment area, i.e. A(Pproj) ≤ At. At is defined as the minimum area cleaned by 

the surgical probe when approaching to the tissue surface, and is approximated as a circle in 

this study.

The coverage rate of a minimum treatment area is defined as the percentage of the Ps that is 

located within the minimum treatment circle co-centered with Pproj. The path plan of the 

tumor margin with small area is determined by the coverage rate as described in Algorithm 

1.

Algorithm 1

Small area path generation

Require: Pc ≠ Ø, Ps ≠ Ø, At ≥ A(Pproj) > 0

1: if coverage rate ≥ 95% then

2:  Psmall ← centroid of Pproj

3: else

4:  Psmall ← Pproj

5: end if

6: return Psmall
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D. Planning with Shape Irregularity - big area

The big area shape is classified as a polygon consisting of Pproj that its area is larger than the 

minimal treatment area At, i.e. APproj > At. We explore three possible types of plan for each 

big area shape: zigzag, contour-parallel and mixed pattern of both.

Zigzag and contour-parallel are very common path patterns used in industrial CNC pocket 

milling. Here, we discuss the similarity and difference compared to industrial applications. 

The major difference is that in CNC machining, pocket’s contour is well defined as arcs, 

lines using CAD/CAM, while in this work, the tumor’s contour is defined as a set of points 

derived from image processing. The contour in this case can be much noisier even after 

smoothing than the industrial case. Although a certain level of smoothing is performed 

before planning, it is not wise to filter out all noise that is potentially tumor cells. Our 

proposed algorithms are able to robustly deal with edge noise and avoid numerical error.

1. Zigzag path planning is computationally the most efficient algorithm among above 

mentioned plans, although this plan sometimes generates inefficient paths for robotic 

execution. When dealing with very irregular shapes, such as shapes with tendrils, multiple 

tool retractions are required. Our proposed Algorithm 2 for zigzag planning is based on the 

traditional zigzag planning [24] with modifications to fit our application.

Algorithm 2

Zigzag path generation

Require: Pc ≠ Ø, Ps ≠ Ø, A(Pproj) > At > 0

1:

2: Mc ← construction of monotone chains along sweeping direction from Pproj

3: Pinters ← intersection points between Mc and parallel offsetting lines.

4: Pz ← sorting of Pinters into zigzag pattern

5: return Pz

According to the ray casting algorithm, the intersection points computation normally 

generates an even number n of points and n−1 path segments on each parallel offset line. 

The middle point of each path segment lies alternately inside and outside of the polygon. 

However, numerical problems may occur in finite precision arithmetics such that any of the 

above criteria are violated. Thus, the validity of the generated intersection points is checked 

based on both criteria mentioned above. An extra neighboring point with 0.2mm distance is 

inserted when an invalid intersection point is found.

In the sorting part, we first group all intersection points into two parts: “in” and “out”. As 

illustrated in Figure 4, an “in” point has an odd index number and is the starting point for an 

imaginary ray entering into the polygon. An “out” point has an even index number and is 

where the imaginary ray leaving the polygon.

The sorting of intersection points follows five steps:
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step 1. Find “in” point of the lowest row as the starting point of a sub-path:

step 2. If not found, stop, path generation finished.

step 3. Append neighboring “in/out” point to form ’zigzag’ pattern.

step 4. Find closest same group point of the next row and go to step 3.

step 5. Delete visited points, go to step 1 to create a new sub-path.

2. Contour-parallel path planning uses a series of offsetting contours to cover the tumor 

margin. Although the computation time is longer than zigzag planning, the contour-parallel 

path cleans the serrated edges better. The computation of the offset contour is using the 

clipper library [25] which is based on Vatti’s clipping algorithm [26]. The pseudocode is 

described below.

Algorithm 3

Contour parallel path generation

Require: Pc ≠ Ø, Ps ≠ Ø, A(Pproj) > At > 0

1:

, Pp ← Ø

2: while Coffset ≠ Ø do

3:  Coffset ← deflation of Coffset by doffset

4:  Pp ← Coffset ∪ Pp

5: end while

6: return Pp

3. Mixed pattern path planning combines the merits of zigzag and contour-parallel 

planning to deliver the most efficient ablation path for robotic execution: accurate contour 

following and fast ablation of inner material. The mixed pattern planning is designed to 

deliver the most efficient path for star-shaped tumor margins, e.g. tumor margin with 

tendrils. Although for some shapes, such as long ellipse-like shapes, the mixed pattern 

planning may result in the same path as the contour-parallel planning.

Algorithm 4

Mixed pattern path generation

Require: Pc ≠ Ø, Ps ≠ Ø, A(Pproj) > At > 0

1:

2: Coffset ← Pproj, Pm ← Coffset

3: while Coffset ≠ Ø && fcirc(Coffset) < fcircmin do

4:  Coffset ← deflation of Coffset by doffset

5:  Pm ← Coffset ∪ Pm

6: end while

7: if Coffset ≠ Ø then
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8:  if A(Coffset) > At then

9:   Plast ← zigzag path generation

10:  else

11:   Plast ← small area path generation

12:  end if

13:  Pm ← Plast ∪ Pm

14: end if

15: return Pm

Figure 5 shows the generated 2D paths on the guidance plane for an irregular shape. Both 

contour-parallel and mixed pattern covers the contour exactly. But for the zigzag pattern 

there exist over-cover and under-cover of the contour, which indicates more healthy tissue 

and not all tumor tissue will be removed.

E. Reverse Projection and Path Interpolation

Finally, the generated 2D path via-points are projected back onto the original surface of 

point-cloud. For each 2D point, a search circle of radius 0.5mm is used for computation of 

the depth using a weighted average of all points inside the circle. If no points in found inside 

the circle, the depth of the closest point is adopted. Linear path interpolation is performed on 

the 3D surface such that the distance between each pair of neighboring points is no greater 

than 1mm.

F. Path Plan Display

The final path plans S are represented in a set of via-points in 3D. Each plan are displayed 

on terminal with total number of via-points nv for each plan, number of tool retractions nr 

and the estimated executing time which is roughly proportional to nv based on the previous 

study.

V. Experiment and Results

To demonstrate the validity of the planning algorithms, we integrated the proposed path 

planner into the existing behavior tree framework for semi-autonomous robotic brain tumor 

ablation as depicted in Figure 6. We designed an experimental surgical environment and 

used RAVEN™ II surgical robot to carry out the generated robotic ablation task. 

Performance of each plan is compared and analyzed.

A. Testbed

1) Surgical Field—A 3D printed surgical field phantom (60mm x 60mm) was used in this 

experiment as shown in Figure 7. Each corner was marked with a colored dot for registration 

of the surgical field into the stereo-tracking system. The surgical cavity was designed as an 

inverted spherical dome with a spherical radius of 40mm. The diameter of the cavity was 

55mm. To validate the robustness of the proposed path planner, irregular shaped 

indentations were printed for holding the iron fillings that represent tumor cells.
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2) RAVEN™ II Surgical Robot and Ablation System—The simulated ablation was 

performed on RAVEN™ II open-source surgical robotic platform with stereo-vision 

augmentation (Figure 8). A surgical suction system with its tip marked in red was attached 

to one of the robotic arm. The 2mm diameter suction tool clears approximately a 6mm 

diameter circle under 200 mmHg vacuum pressure. This simulates the mechanism of an 

ultrasonic surgical aspirator which removes soft tumor tissue in contact with the tip of an 

ultrasonic horn (3-mm diameter) with saline suction [28]. The tip position was tracked by 

stereo-vision system for closed-loop position control. In the designed experiment, the robot 

should automatically clean up the iron filling using generated path plans.

B. Results and Discussion

1) Plan Generation—Our planner was able to generate coverage path plans for each 

tumor margin illustrated in the tissue phantom. Figure 9 shows the contour-parallel path plan 

for the bigger tumor margin 1 and 4, and small area plan for margin 2 and 3 when a 

minimum treatment area At of 32π mm2 is chosen.

The path planner also generates multiple plans for tumor margin 1 and 4. Table I and II list 

the computed metrics for surgeon’s reference. It is indicated in Table I, both contour parallel 

and mixed pattern planner generate the same path plans for tumor margin 1, because the 

circularity of the offsetting contours is too small to perform the zigzag planning. For tumor 

margin 4 in Table II, the mixed patten planner delivers the plan with fewer tool retractions 

and fewer via-points numbers compared to the contour parallel planner, since the offsetting 

contour of margin 4 is “regular” enough to perform zigzag planning.

2) Computation Time—The computation time of each plan based on an average of 30 

runs on a machine with 4GB RAM and Intel Core™2 Quad cpu@2.5Ghz is compared in 

Figure 10.

Figure 10 indicates the computation complexity for each path pattern. The computation time 

using contour-parallel pattern increases dramatically with the increase of the number of 

vertices and shape complexity. The computation time of zigzag path is extremely fast and 

increases quasi linearly with the number of vertices. For some margins with serrated edges, 

such as tumor margin 4, the mixed pattern planning is able to reduce the computation time 

remarkably compared to contour parallel planning (Figure 10-right), while for some margins 

with long and narrow shape like tumor margin 1, mixed pattern and contour-parallel 

planning result in the same plan (Figure 10-left).

3) Path Execution—Each of the generated path plan was executed by the robot for 

performance analysis. To avoid direct contact between the phantom and suction tool, we 

applied a virtual surface constraint 3mm above the tumor margins. All path plans cleaned up 

the iron filling thoroughly. The suction tool tip position was tracked at 7.5 Hz using stereo-

vision system during the robotic ablation. Figure 11 indicates the robot follows the 

generated path plan within a desired error boundary.
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An enlarged display of each via-point and the robot tip position is presented in Figure 12. 

The RMS error between the actual path and generated path displayed in Figure 11 is 

computed as 0.207 mm in 3D space.

The spatial error during the robotic ablation mainly results from two parts: 1) positioning 

threshold set in the robot motion control. 2) tracking noise of the vision system. Smaller 

threshold leads to better positioning accuracy. However, reducing the threshold may cause 

the instability in motion control. In this experiment, a threshold of 0.4mm is chosen for 

achieving a balance between stability and performance, because this distance is smaller than 

the distance between two neighboring via-points, but is bigger than the precision of the 

vision tracking system.

VI. Conclusion and Future Work

In this paper, we presented a 3D complete coverage path planner as part of the large project 

of semi-automated image-guided robotic brain tumor ablation. The proposed planner was 

integrated into an existing BT framework as top-level automated decision making. We tested 

and analyzed generated plans executed by RAVEN™ II surgical robot with stereo-vision 

tracking, although the surgeon will still need to decide a plan before robotic execution.

Our future work will focus on exploration of a more realistic surgical cavity that is not an 

spherical dome and the inner surface has possibly not been smoothed. More complete 

system integration of SFE and surgical robot will be the next major step towards a final 

intelligent medical robotic system. Furthermore, the stereo-vision may lose the tracking 

ability during the ablation inside a deep cavity. In this case, the pose estimation of surgical 

tool tip from the SFE image [29] will play a key role for robot motion guidance.
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Fig. 1. 
The 3D reconstruction of a spherical tumor cavity phantom with surgical image and residual 

fluorescence tumor targets. (a). A 3d printed phantom with texture of brain surgery photo 

glued on its surface. (b) Image sampling grid 5×6 above phantom. (c) The comparison of 

reconstructed 3D model to the CAD model, shown as blue point cloud. (d). The ICP error 

between the reconstructed model and the CAD design. 96.3% of all the error values locate in 

the range of [0–1] mm.
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Fig. 2. 
Illustration of the guidance plane and surgical cavity
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Fig. 3. 
Flowchart of the path planner
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Fig. 4. 
Definition of an “in’ points and “out” point
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Fig. 5. 
2d path on guidance plane using three path patterns.

Hu et al. Page 17

Rep U S. Author manuscript; available in PMC 2015 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Behavior Tree [27] representation of the semi-autonomous robotic ablation procedure. 

Recovery Node is implemented in [7]
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Fig. 7. 
Simulated surgical cavity after major removal of brain tumor. (a). top view (b). perspective 

view.
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Fig. 8. 
System setup for semi-automated robotic ablation in simulated surgical field.
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Fig. 9. 
Planning results (contour-parallel for bigger tumor margins)
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Fig. 10. 
Computation time in mili-second using different path patterns of two bigger tumor margins
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Fig. 11. 
Robot path and designed mixed pattern path for tumor margin 4 in surgical field frame
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Fig. 12. 
Motion error analysis on xy plane of surgical field frame
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TABLE I

Plans comparison of tumor margin 1

zigzag contour-parallel mixed pattern

number of via-points 98 135 135

number of tool retractions 1 1 1

estimated robot executing time 118 s 166 s 166s
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TABLE II

Plans comparison of tumor margin 4

zigzag contour-parallel mixed pattern

number of via-points 120 164 145

number of tool retractions 1 2 1

estimated robot executing time 154 s 233 s 174 s
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