
Real-time Adaptive Kinematic Model Estimation of Concentric 
Tube Robots

Chunwoo Kim, Seok Chang Ryu, and Pierre E. Dupont
Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, 
Boston, MA 02115, USA

Chunwoo Kim: firstname.lastname@childrens.harvard.edu

Abstract

Kinematic models of concentric tube robots have matured from considering only tube bending to 

considering tube twisting as well as external loading. While these models have been demonstrated 

to approximate actual behavior, modeling error can be significant for medical applications that 

often call for positioning accuracy of 1–2mm. As an alternative to moving to more complex 

models, this paper proposes using sensing to adaptively update model parameters during robot 

operation. Advantages of this method are that the model is constantly tuning itself to provide high 

accuracy in the region of the workspace where it is currently operating. It also adapts 

automatically to changes in robot shape and compliance associated with the insertion and removal 

of tools through its lumen. As an initial exploration of this approach, a recursive on-line estimator 

is proposed and evaluated experimentally.

I. Introduction

Concentric tube robots are a promising continuum robot technology that are being applied to 

a broad variety of interventions in such fields as neurosurgery [1], [2] and cardiac surgery 

[3], [4]. Comprised of a telescoping combination of precurved superelastic tubes, the shape 

of these robots is controlled by rotating and translating each tube with respect to the others 

at their base. Many aspects of this technology have been investigated including kinematic 

modeling [5]–[7], design and workspace evaluation [8]–[10], stability [11]–[13] and motion 

planning [14].

A continuing challenge, however, is that the most frequently used kinematic model [5], [6], 

while formulated from principles of mechanics, is a function of a small number of 

imprecisely known parameters. Furthermore, as designers of these robots attempt 

increasingly challenging applications, simplifying assumptions inherent in the model are 

being violated. For example, while the assumption of linear elasticity typically holds up to 

about 1% strain for NiTi [15], designs fabricated by our group often use significantly higher 

strains. Additional factors such as cross section ovalization and friction also contribute to 

model error.

Furthermore, the kinematic model can be time varying. Many procedures require the 

insertion and removal of tools and implants through the lumen of the robot. See, e.g., [3], 

[4]. As shown in Fig. 1(a), these devices are mounted at the tips of tubes that are inserted 
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from the base of the robot. While designed to be compliant, these tubes change both the 

curvature and the compliance of the robot when inserted or removed. An additional source 

of model variation with time corresponds to relaxation of tube precurvature with use.

Modeling error manifests as steady-state position or force error during closed-loop control. 

For example, most current implementations of tip position control for concentric tube robots 

are kinematic-model-based feedforward controllers [5]–[7]. During teleoperation, the 

operator manually closes a feedback loop by observing slave error and then moving the 

master beyond the desired position and orientation in order to drive the slave to the desired 

configuration. This can result in a confusing mismatch of configuration between master and 

slave as shown in Fig. 1(b).

The addition of a sensor-based feedback loop can improve performance [16], [17], but is 

currently challenging to implement in practice since existing sensors, e.g., electromagnetic, 

tend to fill the entire robot lumen leaving no room for tools. As better sensors become 

available, the smoothest, most accurate motions will result from the combination of an 

accurate model-based feedforward controller with sensor-based feedback.

Several approaches to reducing model error are possible. The first is to derive more 

sophisticated models that incorporate some combination of neglected phenomena. This 

approach will help the community sort through the relative importance of the various effects. 

This will, however, add to the complexity of solving the equations in real time. Furthermore, 

the insertion and removal of additional tubes for tool delivery is an important case. And, 

while this can be certainly modeled analytically, it is impossible to predict what tube or tube 

shape a clinician may attempt to insert through a robot in an actual procedure.

These observations motivate an alternative approach, which is to use existing models, but to 

adaptively update the model parameters. This approach, while requiring sensing, provides 

several advantages. For example, the model can automatically adapt to changes associated 

with the insertion and removal of tool tubes. Furthermore, the parameters of a kinematic 

model are typically calibrated to minimize error over the entire workspace of a robot. Many 

surgical procedures, however, are confined to small regions of the workspace. Adaptive 

tuning of model parameters within these regions at the start of a procedure can enable 

substantial local error reduction. It is always possible to save both the global parameter 

values as well as parameters tuned for different workspace regions in order to facilitate 

transitioning outside the current region.

Considering tip position control, the sensing required for model adaptation could be 

provided by electromagnetic tracking [16], [17], FBG curvature sensing [18] or by imaging 

[19], [20]. Most of these sensors have a separate coordinate system that must be registered to 

the robot coordinate system. Another advantage of model adaptation is that the registration 

transformation can be incorporated into the kinematic model and included in the online 

adaptation.

On-line model estimation and adaptive control have been considered extensively for rigid 

robots. See, e.g., [21]–[23]. Much of this work exploits the fact that the kinematic and 
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dynamic equations of rigid manipulators are linear in terms of the link parameters, which is 

not generally the case for continuum robots.

In the context of tendon-based continuum robots, a few papers have considered adaptive 

modeling [24], [25]. For example, in [24], recursive linear estimation is used to update 

friction and backlash parameters for actuation compensation. In [25], the authors propose a 

technique called model-less control in which the kinematic Jacobian is continuously 

estimated based on commanded differential motions of the actuators and sensed tip location 

- without using a nominal underlying kinematic model. In an alternative approach, Gaussian 

Process Regression was used to learn an unknown function that modifies the control input to 

compensate for the imprecise internal kinematics model of a cable-driven surgical assistant 

robot [26].

The contribution of this paper is to propose, develop and validate a method for on-line 

adaptive kinematic modeling of concentric tube robots. This approach can provide some of 

the robustness to disturbances addressed by model-less control while still providing the real-

time error reduction associated with accurate feedforward control. Section II summarizes the 

current mechanics-based model as well as the functional approximation described in [5]. 

This section also describes a recursive approach to parameter estimation. This section also 

describes a recursive approach to parameter estimation. Validation experiments appear in 

Section III and conclusions in Section IV.

II. Kinematic Modeling

Mechanics models of concentric tube robots have been developed [5]–[7] under certain 

assumptions: tubes can bend and twist elastically, but cross section shear and axial 

elongation are neglected. Furthermore, tube stiffness in bending and torsion is assumed to be 

linear elastic.

While this model and parameter set are very useful for designing a tube set with a desired 

workspace [12], it ignores phenomena such as friction [27] as well as nonlinear elastic 

material behavior. Thus, it can be anticipated that when the parameters are calibrated over 

the entire workspace, it will be impossible to eliminate error due to these unmodeled 

phenomena.

To avoid the real-time computational burden of solving this split boundary value problem, an 

algebraic functional approximation was previously proposed [5]. In this approach, the 

mechanics model was solved off line for a dense set of tip configurations over the 

workspace. The input-output data pairs of actuator variables (tube rotations and extensions) 

and tip configurations were then modeled using a product of truncated Fourier series. For 

example, a positional coordinate, pi(smax) was represented by

(1)
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(2)

Here, H(βj, q) is a scalar Fourier series of order q involving the actuator variable βj. The first 

product term in (1) involves the rotational inputs while the second term involves tube 

extension variables, Lk, nondimensionalized using wavelength parameters λk.

Using this representation, the forward kinematic solution reduces to an algebraic function 

evaluation while the inverse kinematic solution was implemented as a root finding problem. 

The order of the Fourier series, q, determines the number of free parameters of the model 

and can be selected to achieve a desired maximum error over the workspace. Assuming the 

same order series for all actuator variables and that each tube is rotated and translated 

independently, each tip coordinate is modeled by (2n − 1)(2q + 1) parameters.

While the model was originally validated based on its ability to closely match the input/

output data of the mechanics-based model, an additional unintended benefit of this approach 

is that the adjustable number of model parameters may enhance the ability of the model to 

match the actual kinematics.

An additional advantage is that the model is linear in its parameters and so, for example, 

positional coordinate pi(smax) can be written as

(3)

where c̄pi(smax) ∈ ℜ(2n−1)(2q+1) is a vector obtained by appropriately stacking the Fourier 

coefficients in (1) and ϕ̄ is the vector of corresponding trigonometric terms. Thus, it is 

possible to refine parameter values on line using recursive least squares as described in the 

subsection below.

A. Recursive Algebraic Model Estimation

Recursive least square (RLS) [28] is an algorithm to recursively update the parameters of a 

linear model from the observed output. This algorithm was chosen as it is straightforward to 

implement on the functional approximation kinematics model and is linear in its parameters. 

The updated parameter set is optimal in the sense that it minimizes the weighted sum of 

squares of the error between the observed and predicted output. In terms of the parameter c̄ 

and measured position coordinates p of (3), the estimated parameter c̄k+1 from the k 
observation is given by

(4)

The weighting factor κ ≤ 1 is called a “forgetting factor” since it assigns less weight to 

earlier errors. Instead of solving the optimization problem of (4), c̄k+1 can be recursively 
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updated from its value c̄k at the previous step and the kth measured position coordinates, pk, 

by the following equations.

(5)

(6)

(7)

There are two free parameters that can be tuned and influence the performance of the on-line 

parameter estimation. One is the the initial value of the matrix M0 and the other is the 

forgetting factor κ. The matrix M is related to the covariance of the kinematics input ϕ̄. Its 

initial value, M0, can be estimated from the sampled kinematics inputs collected prior to 

adaptation or it can be initialized to an identity matrix multiplied by constant, M0 = σI [28]. 

The initial value can significantly impact the rate of convergence.

Since it has not been shown that the actual kinematic model lies in the set of models 

corresponding to the algebraic model, it is likely that the best fit parameters of the algebraic 

model will vary for different regions of the workspace. Consequently, selection of the 

forgetting factor, which controls the contribution of prior prediction errors to the parameter 

update, may have significant implications when moving between regions of the workspace. 

The choice of forgetting factor is a compromise between local tracking accuracy, speed of 

response to perturbations and stability [29].

III. Experiments

The proposed adaptive estimation method was evaluated using the teleoperated concentric 

tube robot depicted in Fig. 2a. Due to space limitations, only adaptation of the position 

coordinates is considered here. The robot is comprised of three tubes with parameters listed 

in Table I where regions of constant curvature are denoted by section number. The two outer 

tubes form a variable curvature section and are rotated independently, but translated together. 

The innermost tube is significantly more compliant that the outer two tubes and is translated 

and rotated independently of the other tubes. Thus, the kinematic variables are {α2, α3, L3}. 

Including translation and rotation of the tube assembly, the robot possesses five degrees of 

freedom. The missing degree of freedom is the roll orientation at the tip.

The robot controller was implemented on a PC in C++ using a CAN bus to communicate 

velocity commands to each motor amplifier. Desired tip position and orientation are read 

from the encoders of a 6 DOF haptic interface (Phantom Omni) and converted to motor 

commands by computing the inverse kinematic solution using a second-order model based 

on (2). The model has 125 parameters per tip coordinate which were initialized by pre-

computing 40 x 40 x 40 grid points over the workspace using measured values of tube 

stiffness, curvature and length.
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The controller block diagram is shown in Fig. 3. A motor-control loop operates via the CAN 

bus at 1Mbps, reading motor counts and sending velocity commands. The teleoperation loop 

operates at 1kHz reading commands from the haptic device, computing the inverse 

kinematics using root finding and updating the set point for the motor controller. The 

adaptive model estimator runs at 240Hz reading the position of the robot tip from an 

electromagnetic (EM) sensor and updating the kinematic model.

An EM tracker sensor (TrackStar, NDI, Waterloo, Canada) was mounted at the tip of the 

robot to track tip position and orientation and was integrated with an adaptive parameter 

estimator as shown in Fig. 3. The robot was registered to the sensor coordinate system by 

rotating the entire tube set around the its axis (Z in Fig. 2b) and then fitting a circle to the 

measured position of the tip. When the robot is in its initial configuration, the initial position 

of the tip in the robot coordinate system is (r, 0, d), as shown in Fig. 2b. Then, when the tube 

set is rotated, the measured tip position forms a circle of radius r on a plane Z=d with center 

located at (0, 0, d) in the robot coordinate system. Fitting a circle to the measured tip 

positions identifies the plane and the center of the circle. The Z and X axes of the robot 

coordinate system comprise the normal of the circle and the line from the circle center to the 

initial tip position, respectively. The origin of the robot coordinate system is located dmm 

away from the center along Z axis. The value of the parameter d is measured from the tube 

design.

To validate the proposed approach, two types of experiments were conducted. The first 

considered model adaptation for motions performed in a specific region of the workspace. 

This is intended to reproduce the situation in which a surgery will involve precise motions in 

a localized region. The second type of experiment addresses model adaptation when a tool is 

first inserted and then removed from the robot lumen.

In these experiments, the matrix M of the recursive least square estimation was initialized as 

M0 = σI, with σ = 0.1. The value of σ influenced the convergence speed of the adaptation 

and the errors during the adaptation. This value was found to provide fast convergence and 

was used for all experiments. The forgetting factor κ was set to unity leading to equal 

weighting of the entire measurement history. This is a reasonable choice for trajectories 

located in one region and represents the conservative limit of what can be achieved through 

adaptation.

A. Trajectory-based Model Adaptation

To evaluate adaptation in a specific region of the workspace, a periodic trajectory was 

generated corresponding to the robot tip tracing a square in space. The square was 40mm on 

a side, was perpendicular to the z axis and was centered at {0, 0, 210}. The desired tip 

orientation was specified as the constant value of {0, 0, 1}. The robot was commanded to 

trace out the square at a speed of 16mm/s.

Initially, model-adaptation was turned off and the error shown in Fig. 4(a) reflects the 

difference between actual robot kinematics and the algebraic model whose parameters have 

been fit to the mechanics-based model. Note that registration error could also be present here 

and would correspond to a rigid body displacement.
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The adaptive estimator was then turned on and allowed to update the model as the square 

trajectory was traversed five times. The five traversals are plotted in Fig. 4(b). Notice that 

convergence to a steady-state path occurs almost immediately. To quantitatively examine 

convergence, the path error magnitude as a function of time is plotted in Fig. 5 with and 

without adaptation. Without adaptation, the error is a constant periodic function with a 

maximum error of 8mm, but with adaptation, maximum error over the perimeter never 

exceeds 3mm.

To examine the error from a geometric perspective, its in-plane and out-of-plane components 

are plotted in Fig. 6 as a function of perimeter coordinate. Again, notice that error reduction 

occurs so quickly that the transient is not visible.

B. Robustness to Tool Insertion and Removal

To evaluate the ability of the method to adapt to model perturbations caused, e.g., by the 

insertion and removal of tools through the robot lumen, additional experiments were 

performed. To simulate tool delivery, a 0.8mm NiTi wire inserted inside a 1.45mm outer 

diameter polyimide tube was used. This combination is similar to the system used to 

delivery and actuate the forceps shown in Fig. 1(a).

For these experiments, the robot tip was commanded to trace out a 40mm diameter circle at 

a velocity of 14mm/sec (40°/s). The circle was normal to the x axis and centered at {−35, 0, 

180}. The desired tip orientation was specified as the constant value of {−sin 60°, 0, cos 

60°}. In initial tests with this trajectory, it was observed that minimum error was achieved in 

2 traversals of the circle. Consequently, results reported below correspond to those achieved 

after 2 adaptive traversals of the curve. Error distance is reported using a parameterization of 

in-plane radial distance, er, and out-of-plane distance, ep.

The ability to adapt to a model change due to tool insertion and removal is illustrated Fig.7. 

Fig.7(a) illustrates initial model error prior to any adaptive tuning and prior to tool insertion 

(maximum error: er = 6.42mm, ep = 5.41mm). The adaptive algorithm is then turned on and 

run for 2 traversals resulting in the converged path of Fig.7(b) (maximum error: er = 

1.37mm, ep = 1.66mm).

The adaptive algorithm was then turned off and the mock tool was next inserted in the robot 

lumen. The effect of inserting the straight tube and wire is to straighten the robot causing the 

path shown in Fig.7(c) to rise roughly vertically above the commanded path (maximum 

error: er = 2.94mm, ep = 3.93mm). Allowing the adaptive algorithm to run for 2 traversals, 

however, eliminates much of this perturbation as shown in Fig.7(d) (maximum error: er = 

1.61mm, ep = 1.34mm).

When adaptation is turned off and the straight tube and wire are removed, robot curvature 

increases causing the path to shift downward as shown in Fig.7(e) (maximum error: er = 

2.04mm, ep = 3.49mm). Finally, adaptation is turned back on and the model converges again 

to the desired circle as shown in Fig.7(f) (maximum error: er = 1.52mm, ep = 1.97mm).
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IV. Conclusions

This paper proposes a new direction in the control of concentric tube robots, namely, 

adaptive on-line model estimation. There are many reasons why such algorithms could prove 

to be an important component of any commercial concentric tube robot control system. For 

example, small variations in the geometric and mechanical properties of tube sets 

comprising any robot design will likely necessitate initial calibration of every tube set. 

Furthermore, significant modeling error can occur during operation due to both neglected 

mechanical phenomena (e.g., nonlinear elasticity) and perturbations, such as tool insertion 

and removal.

The approach described here exploits the linearity with respect to model parameters of the 

kinematic functional approximation proposed in [5]. This enables model adaptation to be 

implemented using recursive least squares. By selecting the order of Fourier series used in 

the functional approximation, this approach also provides a direct means to control the 

number of free parameters of the kinematic model.
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Fig. 1. 
Motivation for adaptive modeling. (a) Model perturbation due to insertion and removal of 

tools. (b) Mismatch in master and slave configurations due to model error.
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Fig. 2. 
a) Teleoperated concentric tube robot. b) Coordinate system of the CTR used for 

registration.

Kim et al. Page 11

Rep U S. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Control and model estimation block diagram.
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Fig. 4. 
Trajectory tracking results. (a) No adaptation. (b) With adaptation.
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Fig. 5. 
Total path error versus time for square trajectory.
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Fig. 6. 
Parameterized path error versus perimeter coordinate. (a) In-plane error. (b) Out-of-plane 

error.
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Fig. 7. 
Circular trajectory tracking a) using initial kinematic model, b) after adaptive update, c) 

using same model from b) after insertion of tool tube, d) with model updated to compensate 

for tool insertion, e) using same model from d) after removing tool tube, and f) with model 

updated to compensate for tool tube removal.
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Kim et al. Page 17

TABLE I

Concentric Tube Parameters.

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 1 Section 2

Length (mm) 150 150 150 86.39

Curvature (m−1) 4.348 4.348 0.0 18.182

Relative Stiffness 1 1 0.286 0.286
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