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Abstract— Exploration of unknown environments is an im-
portant aspect to fielding teams of robots. Without the ability to
determine on their own where to go in the environment, the full
potential of robotic teams is limited to the abilities of human
operators to deploy them for search and rescue, mapping, or
other tasks that are predicated on gaining knowledge from
the environment. This is of particular importance in real-
world 3-Dimensional (3-D) environments where simple planar
assumptions can lead to incomplete exploration, for example,
real-world environments have areas underneath overhangs or
inside caves. As an additional challenge, when the teams of
robots have vastly different capabilities, the planning system
must take those into account to efficiently utilize the available
assets. In this paper, we present a combined air-ground system
for conducting 3-D exploration in cluttered environments. We
first describe the hardware and software components of the
system. We then present our algorithm for planning 3-D goal
locations for a heterogeneous team of robots to efficiently
explore a previously unknown environment and demonstrate
its applicability in real-world experiments.

I. INTRODUCTION

Exploration of unknown environments is a cornerstone of
robotic systems wishing to operate in the real-world without
having constant human operator input. The ability to seek
out locations to gain information about the environment is a
foundation for the coverage problem and plays a significant
role in tasks such as search and rescue, infrastructure in-
spections, and other tasks requiring a sensor to be repeatedly
positioned and re-positioned so as to evaluate every possible
location in the environment.

In many real-world environments a ground robot is in-
capable of reaching and observing all desired points. For
example, small wheeled robots have difficulty seeing the
items on top of a table. In these cases, a flying robot can
get a camera into a better position than the ground robot
can. However, since aerial robots have to support all of their
weight through the expenditure of energy, they are typi-
cally limited to small payloads and short mission durations.
Ground robots typically have greater power reserves and are
frequently capable of long duration missions while carrying
significant amounts of payload. For the environments where
an aerial vehicle is required to reach certain sections, a good
compromise is to search the accessible areas with a ground
vehicle and reserve the aerial vehicle for just those areas that
require the higher vantage point or are otherwise unviewable
by the ground robot.
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Fig. 1: UAV mounted on UGV.

Motivated by this, we present a heterogeneous system of
air and ground robots (Fig. 1) that can fully explore an envi-
ronment even in the case where either vehicle alone would
not succeed. We also present a 3-D exploration planning
algorithm that is capable of accounting for the differences
in sensing and movement between the robots on the team
during the goal selection process, enabling them to find a
desired object within an initially unknown 3-D environment.

The paper is organized as follows: we present the state-of-
the-art in exploration in Section II, our system in Section III,
and our 3-D exploration planning algorithm in Section IV.
Finally, we cover experimental results from our air-ground
robotic system operating in an indoor environment when
tasked with finding a particular object in Section V.

II. RELATED WORK

Frontier-based exploration uses the concept of a “frontier”
between the known and unknown portions of an environment
and directs robots to this frontier to discover unknown areas
[1]. This approach has been expanded to cover multi-robot
teams [2], [3], [4], [5], [6] with great success and this work
is an extension of our earlier work in this category [7], [8].
However, most of these approaches, including our previous
work, only deal with 2-dimensional (planar) exploration.
Even the approaches that use 3-dimensional motions tend
to treat the environment more as 2.5-D (elevation- or height-
map) rather than full 3-D [9], [10], [11]. In particular, few
of these approaches consider the search target to be on the
underside of obstacles or require movement under obstacles
in order to get into a position to see the target.



One impressive approach that does consider flying under
or through obstacles is the potential field/harmonic function
approach used in [12]. Like our approach they use an octree
to represent the environment, and a camera to explore, but
where they differ is that all of their simulated UAV’s were
identical. It is unclear how easy it would be to incorporate
a heterogeneous team of robots (including ground robots) to
their scenario. Additionally, they only consider exploration of
the top surface of obstacles and have no method for finding
a search target located on the underside of an obstacle.

There have also been numerous works relating to coop-
eration between aerial and ground vehicles [13], [14], [15].
Our work is based on the general principles found in these
- minimize the amount of information that has to be shared
between platforms, maximize the amount of computing that
can be performed in a distributed manner, and reduce the
load on the operator. Our system is not fully decentralized,
however; it does require a globally knowledgeable planner.
While many of these only look at general collaboration be-
tween air and ground robots, our approach looks specifically
at collaborative exploration of cluttered 3-D spaces.

III. AIR-GROUND ROBOTIC SYSTEM FOR 3-D
EXPLORATION

We concentrate on the problem of autonomous exploration
for the purpose of finding an object of interest (OOI). The
robotic team will have minimal human input: the human
operator will initiate the exploration, concur with launching
the UAV, and concur with any OOI detections, but will
not provide any other direction or guidance to the robots1.
Therefore, all other navigation, sensing, and decision making
must be done on-board. To achieve this, we developed several
modules to guide the robots through the environment as
shown in Fig. 2.
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Fig. 2: Overview of system. The Robots both have sufficient
computing capability and sensors to move through the environment
based on higher-level goals without further guidance.

Our system uses two primary components: a team of
robots executing their own software for localization, navi-
gation, object detection, and other local processes; and a set
of high-level software modules that combine the individual

1As part of a separate line of research regarding the User Interface,
we imposed the constraint that the human would have to confirm OOI
detections. Because of this, we included a decoy object in the environment
during testing.

robot maps, select goal locations for each robot, and interface
with the user.

The first part is our two robots: an Unmanned Aerial
Vehicle (UAV) and an Unmanned Ground Vehicle (UGV).
The UGV has a large battery capacity (sufficient for 3-4
hours of operation), substantial on-board computing power,
and is very stable. On the other hand, the UAV has a limited
flight time (10 minutes maximum) and computing power, but
can traverse terrain that the UGV cannot. In addition, it can
move vertically allowing it to get a better vantage point of
the environment and “see” areas the UGV cannot. The robots
are detailed in Section III-A and their on-board software in
Section III-B.

The second part of the system is the high-level modules
which are responsible for coordinating activities between
the two robots and can be executed from any available
computing platform. To perform their coordination function,
the high-level executive has access to a map merge capability
and the exploration planner. The map merger receives map
updates from the two robots and forms a global map. Using
this map, the exploration planner determines appropriate
goals for each robot and provides them to the executive
module for transmission to the robots. In addition, the
high-level software incorporates a mechanism for providing
feedback to, and input from, the human operator. The high-
level software modules are discussed in Section III-C.

A. Robot Platforms
1) Melvin the Segbot: The ground vehicle component

of our system is Melvin the Segbot. Melvin is a custom
designed robot built on a Segway RMP 200 base. Attached
to this base are two computers, two 30m Hokuyo scanning
laser range finders, and a Logitech webcam (see Fig. 3a).

The computing power is split between two distinct hard-
ware components. The first is the controller computer. This
machine is responsible for the direct planning and control
of Melvin and is a 3.0GHz i5 with 8GB RAM. This
machine handles all hardware interfaces including the motion
interface to the base. The second computer is a dual quad-
core Xeon server with 16GB of RAM that executes all of
the high level planning including the exploration planner and
map merger nodes.

(a) UGV (b) UAV

Fig. 3: Robots used for experiments. a) UGV - Large box on right
is main battery pack. Upper gray box is server, lower gray box is
controller computer. Hokuyos and camera are mounted on structure
on left. b) UAV - closeup showing bottom panning vertical Lidar,
upper fixed horizontal Lidar, and forward facing camera.



2) Hexacopter: The Hexacopter serves as the aerial com-
ponent of the exploration team. Like Melvin, it is equipped
with two 30m Hokuyo scanning laser range finders, a Log-
itech webcam, and its own computer. The computer is an i7-
2660 with 16GB of RAM that runs all of the automation on-
board. The body of the Hexacopter is a modified Mikrokopter
Hexa XL frame with custom sensor and computing mounts,
power distribution electronics, and blade guards (see Fig. 3b).

B. Local Software

1) General Software & Communication: All of the com-
puters run Kubuntu 12.04 with ROS Groovy. Each robot
has its own instantiation of a roscore with an additional
roscore for the exploration planner and map merger, and one
for the user interface. Both of these additional roscores are
physically executed on the UGV server computing system.
For the few messages that needed to be passed between
systems, we used the ROCON software package to transfer
standard ROS messages to multiple roscores. This setup was
made to allow for movement of the high-level modules to
any available computing system. By having its own roscore,
all that was necessary was to update the ROCON links if we
ran it on a different physical machine.

2) Localization: Both robots were fully capable of inde-
pendent autonomous behavior and only used the executive
for coordinating goal locations. To achieve this, each ma-
chine ran its own SLAM subsystem based on the Hector
SLAM package[16]. The SLAM system only maintains a 2-
D map for determining the x, y, θ position and heading of
the robot. A 2-D SLAM system was used as it provided
adequate positional accuracy with significantly lower com-
putational load compared to a full 3-D system. For the UAV,
there was an independent system that used the vertically
oriented panning lidar to determine the ground plane. Since
the UAV was initially mounted on top of the UGV, and
during operation it was allowed to fly over obstacles, the
height estimation system could not update the absolute height
with every received lidar scan. On initialization, the height
estimator would analyze several scans in order to determine
its initial height. Then, while flying, it would filter scan
points that deviated more than expected from the current
estimate in order to maintain an accurate height and allow
operation over obstacles. To backup this system, there was an
emergency system that would automatically reset the height
estimate if the perceived height exceeded a threshold even
if the estimate did not. Knowing that we were operating
indoors, this system ensured that we did not inadvertently
collide with the ceiling.

3) Navigation: Each robot was responsible for its own
navigation to the provided goal positions. We used a 3-D
state lattice-based planner [17] running AD? to generate
kinodynamically feasible trajectories for the UAV and a
simple 2-D planner for the UGV. Upon receiving a goal, the
on-board planner would perform a search on the local ob-
stacle map to generate a trajectory from the current reported
position (from the SLAM subsystem) to the goal state. In the
event the robot was unable to generate a feasible trajectory

(for example, if the goal was too close to an obstacle)
the system would time-out and receive an updated goal
from the exploration planner. The states used for planning
are tuples consisting of a discretized translation in two or
three dimensions, and a rotation in one dimension. The
UGV planned using planar spatial coordinates and heading,
〈x, y, θ〉, with 10cm cells2 and 16 discretized headings,
while the UAV planned in 〈x, y, z, θ〉 with 5cm cells and
16 discretized headings. The UAV was provided with a
user defined “nominal height” that it would preferentially
fly at during transits, but would deviate from as necessary.
In addition, the exploration planner was provided this same
height and would preferentially select goal locations at this
altitude. This setup allowed the planner to construct full 3-
D trajectories going over, below, or around obstacles while
maintaining a preferred height for the UAV to operate at.

Once the robot had a feasible trajectory, it would use the
local controller to generate motor inputs to follow the trajec-
tory. For the UGV this was performed using a trajectory roll-
out scheme that estimated different motions based on a small
finite set of short-time horizon control inputs and selected
the input that provided an endpoint closest in position and
orientation to the desired trajectory. The UAV controller used
a PID control for position to generate its control inputs based
on the measured error between its current location and the
next way-point along the desired trajectory. Altitude and yaw
were handled by separate PID controllers in a similar fashion.

4) Object Detection: Besides the motion control subsys-
tems, each robot performed its own analysis of the video
feed in an effort to detect the OOI. This subsystem was
based around an existing vision detection system CMVision
[18]. This system was trained to detect a specific colored
object; for our experiments it was a green tablet case. Like
many other color based object detection systems, recalibra-
tion was required for different lighting conditions. Color-
only detection was selected in order to keep the processing
requirements minimized. Even so, this sub-system required
the largest percentage of computing power used. When a
robot detects a possible OOI, it will transmit a still image
to the user (Fig. 4, right image - OOI is bottom center),
pause exploration, and hold position until it receives either
confirmation or rejection of the reported OOI.

C. High-Level Software

1) High Level Executive: The high-level executive is
responsible for coordinating the robots. As part of this
function, it provides the interface between the map merger /
exploration planner module, the user interface module, and
the robots.

2) User Interface: The human user only has a a few
inputs to the system during run-time. The two chief inputs
from the user are to start and concur with the completion of
exploration. The only other input is concurrence on launching
the UAV which is included for safety considerations. All

2In this text, we use the term “cell” to refer to 3-dimensional discretized
locations defined by a center-point, 〈x, y, z〉. We use the term “state” to
refer to a 3- or 4-dimensional discretized pose, 〈x, y, (z), θ〉.



three of these inputs are handled via the User Interface
module, Fig. 4. This module displays a dynamic web page
to the user with zero to four buttons3. In addition, when one
of the robots has a possible OOI detection, the best image of
the OOI is forwarded to the user for confirmation. If the user
confirms the OOI, the executive directs both robots to cease
exploration (and presumably return to a home location and
land, as appropriate). If the user denies the OOI detection,
whether it is due to a false positive or other reason, the
executive will direct the detecting robot, who had paused,
to resume exploration. This setup reduces the cognitive load
of the human operator requiring them only to judge whether
the provided image is indeed of the OOI.

The interface can be accessed with any HTML browser on
any device with a WiFi connection. During our testing we
verified that a tablet, an Android smart-phone, and a laptop
were all able to provide the high-level commands and receive
the images, satisfactorily.

Fig. 4: The user interface. On the right, the UAV has detected an
OOI and sent the image to the operator for confirmation (green
tablet bottom center). Two buttons are visible along the top in green.

3) Map Merging: The map merging algorithm seeks to
generate a unified 3-dimensional map of the environment
by taking into account the offset between the two robots
starting position. The global map was tracked in three spatial
dimensions, 〈x, y, z〉, with 10cm cells and was stored as
an occupancy grid [19] using an Octomap [20]. When the
system initially starts, it attempts to align the two existing
maps. It starts with a rough estimate of the offset between
the two robots, and iterates through a finely discretized set
of points around the initial estimate. This process checks
for deviations in translation, 〈x, y, z〉, as well as angular
deviations in heading, 〈θ〉 (it assumes no roll or pitch errors,
〈φ, ψ〉). Once the initial transform between the two maps
is determined, this value is no longer modified. This does
have the potential to cause drift errors over longer runs as
the on-board SLAM system accumulates errors, however, in
our testing, both robots had insignificant deviations from the
global map at the time they found the OOI. Approaches
such as [21] may alleviate this accumulated SLAM error
if it becomes substantial.

During run-time, the map merger module uses the fixed
starting transform to place new data into the global map.

3Available buttons are: accept OOI, reject OOI, and commence explo-
ration, for two robots plus enter area for the UGV, of which a maximum of
four are ever available at a given time.

This data is characterized as either obstacle or free space
and is represented as an occupancy grid where we store the
log likelihood that the cell is either free or occupied with
the middle value indicating unknown. In addition we track
which cells have been viewed by the camera. To accurately
annotate which cells have been seen by the camera, we must
first determine which ones are free. The panning scanning
laser rangefinder generates information about a wedge shape
projecting from the center-line of the robot in its direction
of motion. By ray-casting out towards each laser scan echo,
we can identify free space between the robot and the nearest
obstacle. In conjunction, with the receipt of each image, we
ray-cast from the location of the camera in the direction of
each camera pixel up until we reach either an unknown or an
obstacle cell, or we reach the maximum effective detection
range of the OOI subsystem. The set of cells traversed by
the camera ray are marked as visually cleared. In this way
we can positively track which cells are guaranteed to not
contain the OOI in 3-D space (see Fig. 5).

Fig. 5: Combined map. Blue objects are obstacles, green objects
are cells that have been visually cleared. Free and Unknown cells
are not shown.

4) Exploration: The exploration module is responsible
for analyzing the environment and determining where to
send each of the robots next. This module is capable of
adding or removing robots from the assignment list during
each iteration, if necessary, to accommodate dynamic teams
or, in our case, the launching and landing of a UAV. This
module can assign goal locations at any point in 3-D space to
position a robot to view a particular location taking all known
obstacles into account. In addition, this module is capable of
differentiating which cells are visible from ground versus
aerial robots and preferentially assigning those cells to the
respective robot types. Technical details of the exploration
planner are found in Section IV. By using the ability to
determine the existence of cells not capable of being sensed
by the UGV the exploration algorithm could be used to
determine when to launch the UAV. This determination could
be based on a large number of factors including number of
these un-sensable cells, the size or arrangement of these cells,
or other parameters.



Fig. 6: Overhead view of exploration planner goals. Dark Blue is
current position of the UGV, Magenta is UGV goal, Green is UAV
position, and Yellow is UAV goal. The UAV has been tasked to
explore the top of the desk (dark object bottom center) while the
UGV is exploring a corner that has not been explored yet. In this
2-D projection, the lighter areas indicate less uncertainty in the
vertical column at that point.

IV. PLANNING FOR MULTI-ROBOT 3-D EXPLORATION

The exploration module provides goal locations for the
robots to survey in an effort to minimize search time and
overlap between robots. While our experiments only used a
two-robot pair, the algorithm is extensible to n independent
robots and has been used in past work with up to eight robots.
The planner uses the combined map from the map merger
module along with the points annotated as visually cleared
to determine where to send each robot next. The algorithm
is shown in Algorithm 1. Of note, the subscript following
variable names indicates the dimensionality of the data where
3 indicates 〈x, y, z〉 and 4 indicates 〈x, y, z, θ〉.

Algorithm 1 G4[·] = GetGoal(poses p4[·], robots r[·])
1: Global: map3, NumRobots
2: for all i in NumRobots do
3: CountMap4[·] = 0
4: InflatedMap4[·] = INFLATEMAP(map3, r[i])
5: CostMap4[·] = DIJKSTRA(InflatedMap4, p[i])
6: FrontierP ts3[·] = FINDFRONTIER(map3, r[i])
7: for all fp3 in FrontierP ts3[·] do
8: V iewPts4[·] = VIEWS(FrontierP ts3[fp], r[i])
9: for all vp4 in V iewPts4[·] do

10: CountMap4[vp4]++
11: end for
12: end for
13: for all pt4 in CostMap4[·] do
14: score4[p] = ScorePt(CountMap3[pt4],
15: CostMap4[pt], G)
16: end for
17: G4[i] = argmax(score4)
18: end for
19: return G4[·]

The inputs to the GETGOAL function are the 〈x, y, z, θ〉
poses p of all of the robots and a parameter list r providing
the footprint, nominal altitude (= 0 for UGV), sensor field

of view, and sensor position and orientation relative to the
robot body frame, for each robot.

During each planning iteration the exploration planner will
generate new goals to all robots (that are ready to accept new
goals) based on the current map. In practice, we transmit a
goal to each robot as soon as the goal is determined and
repeat the loop continuously.

The planner first inflates the obstacles in the combined
map to account for the footprint of the robots (line 4).
Because of having possibly non-circular robots, the inflated
map has the robot heading θ as a dimension. The inflation
is followed by a Dijkstra Search starting from the current
location of the robot to determine the cost to each accessible
state in the environment (line 5). Once these two initial
processing steps are completed, the map is parsed to de-
termine all of the frontier cells. A standard definition of a
frontier cell is an unknown cell that is directly adjacent4 to
a known free cell. We use a slightly modified definition of
this in that we consider a visually cleared cell as known,
and all others, even if we have laser data on that cell, as
unknown (line 6). By using this approach, we can guarantee
that the robot will find the OOI, given sufficient battery and
permissible obstacle configuration5, as it will maneuver to
view all visually unknown cells within the environment.

Since our goal is to determine information about the
map, selecting goal points with higher information gain
is beneficial. We approximate the total information gain
accrued by traversing to a given 4-dimensional state by the
number of frontier cells visible from that state. To accomplish
this, for each frontier cell we determine the 4-dimensional
set of states that the robot could be at in order to successfully
visually clear the frontier cell. This requires knowledge of the
robot sensing model including the field of view of the camera
system and its mounting location as well as the maximum
range the OOI detection algorithm can robustly detect the
object at (lines 8-11). The sensing model was used to ray-
trace within the field of view of the sensor from the robot
out to the nearest obstacle and to subsequently annotate the
intervening states as obstacle-free.

Finally, each potential state in the reachable space receives
a score based on how many frontier cells are visible from
that state, the distance the potential goal state is from the
current state, and a penalty term. The distance and count
terms are weighted by a user-defined parameter, 0 ≤ ξ ≤ 1
that adjusts the propensity to move farther to get a higher
information gain or to select a nearby but not very lucrative
state (1). For ξ = 1 the planner will select the state with
the highest information gain, ignoring the distance term.
Conversely, setting ξ = 0 will result in the planner selecting
the lowest cost state without regard to the information to be

4For our system we define “directly adjacent” to mean cells that differ
along only a single dimension by one unit, i.e. 〈x, y, z〉 and 〈x, y + 1, z〉
are adjacent but 〈x, y, z〉 and 〈x+1, y+1, z〉 are not. Note: frontier cells
are not defined by any heading information.

5We assume that a valid configuration contains a state accessible from
the starting state and from which the OOI may be sensed.



gained.

score[i] =
count[i]ξ

cost[i](1−ξ)
· penalty[i] (1)

The penalty term can incorporate a wide range of user
preferred behavior. For our system, this term was constructed
to downgrade states that are in close proximity to any other
robots goal state. In addition, this term also penalized very
short range motions that are harder to execute (2). The
thresholdL and thresholdD values are set by the user6.

penalty[i] = LENGTH(i) · min
j,i6=j

(
PROXIMITY

(
i, G(j)

))
(2)

LENGTH(a) =

{
1 COSTMAP(a) ≥ thresholdL
COSTMAP(a)

thresholdL
otherwise

PROXIMITY(a, b) =

{
1 dist(a, b) ≥ thresholdD

dist(a,b)
thresholdD

otherwise

Due to the UAV’s limited flight time, we provide a
further enhancement to maximize the UAV’s value. When
determining the frontier points on line 6, the exploration
planner first considers only those points that are not visible
to the UGV. In this way, the planner will first send the UAV
to cover portions of the environment the UGV cannot sense.
Once it has exhausted the UAV-only points without finding
any candidates, it will reevaluate based on all frontier points7.

In order to determine which states are or are not visible to
the UGV, we ray-cast from the potential target state to the
set of states that the UGV sensor could be located in (taking
into account orientation and obstacles). If all rays encounter
obstacles then the state is not visible. In all other cases there
exists at least one viable configuration of the UGV that will
allow the target state to be sensed.

V. EXPERIMENTS

A. Setup

Our experiments aimed to validate our entire approach to
exploration by having the robot team search a previously
unknown area attempting to locate a particular tablet (our
OOI) identified by its unique color. The operator stood
outside the area and issued the allowed commands with no
other interaction with the robots. We defined a successful
run if either of the robots were able to identify the tablet
before the UAV depleted its battery. Depending on the length
of time spent airborne, and to a lesser extent the amount
of processing load and time spent operating while mounted
to the UGV, the UAV is limited to between four and ten

6The Length thresholdL duplicates to some extent the ξ parameter. The
difference being that thresholdL is an absolute value - the penalty is applied
independent of the information gain - while the ξ parameter only changes
the relative importance of cost vs. information gain.

7This process may transition multiple times between UAV-only and all
frontier points as the environment is explored and new obstacles discovered.

minutes of flight, compared to several hours of exploration
time for the UGV. An unsuccessful run was one in which
after conducting a search the robots were not able to find the
tablet before a low battery forced the UAV to land8.

We conducted our experiments in an enclosed indoor area
measuring approximately 30m × 10m × 5m of which the
upper 2-3m were occupied with pipes and conduit. The area
was partitioned into sections with movable walls and objects
such as a desk and filing cabinet were placed inside the area.
This resulted in approximately 400,000 cells capable of being
detected and analyzed, depending on obstacle placement
and room configuration. The robots started from the same
location for all tests near the edge of the search area and
had a predetermined first goal located 5m into the exploration
zone that the UGV moved to when commanded to “enter the
area”.

We had different people place the OOI during our ex-
periments to rule out any bias in selecting locations that
were particularly easy or hard for the system. The direction
provided to the person placing the OOI was to place it so
that the OOI would only be visible to the UAV once it was
airborne. This was done by placing the OOI in a location not
visible from the UAV prior to it taking off from the UGV
and not visible to the UGV. Separate tests were performed
to verify the UGV was capable of also detecting the OOI,
and it was successful on all runs.

The test environment had one object that had an identical
color as the OOI and served as a decoy for the detection
system by causing a false positive. In the event the decoy was
detected, the operator rejected the classification and resumed
the exploration. Decoy detection was not deemed to be a
failure but the time spent pausing and waiting for the operator
to reject the OOI was counted towards the completion time.

Since the exploration algorithm has several user selectable
parameters, we set them as follows: To achieve balance
between distance traveled and information gain, we set
ξ = 0.5, to facilitate the robots spreading out, we set
thresholdD = 5, and to discourage very short range goals,
we set thresholdL = 1.2 for all runs. In addition, while the
map merger process can determine when to launch the UAV
based on detecting unreachable frontier states, for all of the
test runs, we had the UAV launch at the first opportunity after
2 minutes 30 seconds of UGV only exploration9. The 2:30
takeoff time was based on prior experiments that indicated
a reasonable percentage of the UGV accessible space was
explored by that point on average (for an example, see
Fig. 7b for the case where the UAV took off late - the UGV
exploration progress plateaus at approximately 2:30).

The cameras used on both robots were identical Logitech
C310 webcams that provided images at 1280 × 720 pixels at
25Hz. The UGV camera was mounted approximately 20cm

8The action was automatic and occurred when battery voltage under
load averaged less than 13.8V for 10 seconds. Runs terminated due to a
mechanical failure of a robot were not counted in the results.

9There was one area of the environment that the overhead obstacles were
too low to allow for the UAV to launch which caused the takeoff to be
delayed on two occasions - once by 10 seconds (run 5) and once by 2:25
(run 1).



(a) Full Run (b) Prior to Takeoff (c) After Takeoff

Fig. 7: Percentage of cells explored over time (based on full volume of search area). Heavy magenta line indicates best fit.

from the ground along the vehicle center-line with the camera
axis parallel to the ground. The UAV camera was mounted
on the UAV forward axis and tilted downward by 10° from
horizontal. With the UAV nominal flying height set to 1.65m,
the camera typically was at 1.6m.

B. Results

TABLE I: Experimental Results.

Run Detect Detect % of Env. Time to Time Since
OOI Decoy Explored Detect OOI UAV Launch

1 X 8 55.6 7:08 2:23
2 X X 63.3 5:51 3:21
3 X X 57.9 4:49 2:19
4 X 8 50.5 4:01 1:31
5 X 8 45.6 3:48 1:08
6 X 8 49.3 3:50 1:21
7 X 8 45.3 3:56 1:26
8 8 8 60.5 7:00 4:30
9 X 8 58.5 6:20 3:50
10 X 8 56.2 5:02 2:32

We made 10 complete runs with the results as shown
in Table I. Only 1 run failed to find the OOI within the
time allowed due to the UGV exploring the particular corner
containing the OOI (but at too low an altitude) prior to the
UAV launch. Since the area was already predominately ex-
plored, the UAV did not return to verify the small remaining
unknown area during the available time. Two runs detected
the decoy initially, but after the operator rejected the false
positive, they both successfully found the actual OOI.

Using 400,000 as an approximation of the number of
detectable cells10 in the environment we can estimate the
percentage of the environment covered prior to discovery
of the OOI, Fig. 7. For all of the runs we cover 80-90%
of the environment prior to detection of which 40-60% is
discovered by the UGV prior to the UAV taking off. As can
be seen in Fig. 7b, the UGV progress has already begun to
plateau by this point. The UAV continues to make progress
as it explores areas inaccessible to the UGV accounting for
an additional 10-30% before detecting the OOI or landing11,

10The remainder being internal to obstacles.
11The values in Fig. 7c are a combination of both UAV and UGV

information, however, since we know that there are significant portions
of the map that are inaccessible to the UGV, and the pre-launch data is
plateauing, we surmise that the majority of the gain post-launch if from the
UAV.

Fig. 7c.
Since the UAV preferentially visits locations that the UGV

is incapable of exploring, it detected the OOI within the first
few goals (1:30 of flight) almost half of the time.

VI. CONCLUSION & FUTURE WORK

Our contribution is two-fold: we have introduced an air-
ground robotic system capable of operating autonomously
and an algorithm for performing exploration in cluttered
3-D environments. With our experiments, we have shown
how planning for heterogeneous teams of robots can be an
effective method of exploring environments that either robot
alone would be unable to explore. Our results show that
the system is capable of entering, exploring, and detecting
an OOI within the time constraints imposed by the limited
battery life of a UAV. In the future, we will expand the system
to include robots with different sensor packages in addition
to the different modes of locomotion shown in this work as
well as examining how to optimize the threshold used for
launching the UAV. In addition, we will look to making the
high-level executive a distributed process that can remain
functioning with the loss of any one robot.
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