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Abstract— We address the problem of controlling modular
robot manipulators. The challenge of modular-robot control is
that the overall system dynamics are unknown due to its flexible
composition from given modules. Most previous work has faced
this problem by designing decentralized controllers. Simple
decentralized controllers do not guarantee global asymptotic
stability without knowledge of the overall system dynamics and
alternative versions involving communication with neighboring
modules result in complicated control concepts. Our approach is
completely different: we store parameters regarding the dynam-
ics and kinematics of each module and a unique identification
number in itself. After finishing the assembly of the modules,
the parameters are gathered in a central controller, which also
detects the configuration using the identification numbers. Our
centralized controller uses this information to synthesize model-
based control laws on-the-fly as if the full system dynamics are
known beforehand. We introduce a novel and compact notation
to automate this procedure and to generalize the derivation of
the kinematic and dynamic model for heterogeneous modules.
Finally, a possible application is shown using simulations.

I. INTRODUCTION

Reconfigurable and modular robot manipulators are
mechatronic systems composed of interchangeable mod-
ules. The modular nature of these systems allows them
to be adapted for different applications, which is a clear
advantage with respect to fixed-structure robots. This is
especially useful in ultra-flexible environments, e.g. search
and rescue operations, space explorations, service robots
and robots for human-robot cooperation in manufacturing.
In general, modular robots meet the different needs of the
users through reconfigurations. Furthermore, modularity is
also useful for robot manufacturers to reduce the number of
parts as different robots can be assembled from a small set of
modules. This makes it possible to provide a huge portfolio
consisting of e.g. Selective Compliance Assembly Robotic
Arm (SCARA) robots and anthropomorphic robots with a
few standard modules.

In the last three decades several modular robot manip-
ulators have been developed, for instance the RMMS [1],
TOMMS [2], IRIS [3], PolyBot [4] and a spring assisted
reconfigurable modular robot [5]. The high versatility of
the modular and reconfigurable robot manipulators leads to
several challenges, especially for the design of the control
system. Considering arbitrary configurations of a nonuniform
set of modules, an enormous number of different dynamic
systems can be obtained, challenging the control design.
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We present a new idea for controlling modular and re-
configurable robot manipulators based on distributed data
stored in each module using a centralized control approach.
After assembly of the modules, the modular information is
collected by the central control unit, which automatically
generates a centralized and model-based control law with
guaranteed global asymptotic stability.

The control design for modular robot manipulators has
been a longstanding problem in research. Most work has
mainly focused on decentralized control approaches. Adap-
tive decentralized control methods for modular robots are
presented in e.g. [6], [7]. In the former the dynamic model
of each subsystem is approximated to cancel the couplings
and in the latter the parameters of distributed proportional-
integral-differential (PID) controllers are adjusted on-line. A
decentralized control method for modular and reconfigurable
manipulators is developed in [8] based on joint torque
measurements for automatic compensation of the coupling
effects. A decentralized and robust control method is pre-
sented in [9] that increases the performance with respect to
a PID controller. A method for precision control of modular
and reconfigurable manipulators with guaranteed stability is
presented in [10] using the virtual decomposition approach.
A hybrid architecture for centralized and decentralized op-
erations is proposed in [11], where the authors consider
the decentralized approach for controlling the manipulator
dynamics.

Even though satisfying results have been achieved with
advanced decentralized schemes, every decentralized control
method can be considered as a special case of a central-
ized one. In principle, it is always possible to design a
centralized controller with performance equal to or better
than a decentralized control scheme. Especially when fast
trajectory tracking is required or direct drive actuation is
employed, centralized control schemes are superior com-
pared to decentralized controllers since subsystem couplings
can be compensated instead of treating them as disturbance
[12]. Moreover, centralized architectures are also beneficial
for optimal control, compliance and impedance control [12],
dynamic scaling of trajectories [13], and failure detection
[14].

Automatic generation of complete models from modules
has previously been investigated in [15]. In [16] a centralized
control design is considered. In contrast to our work, these
approaches assume similar modules with symmetric geom-
etry and a central database storing the information of all
modules, which is impractical as discussed later. A previous
approach that considered the storage of information in the



modules is described in [17], where the automatic derivation
of kinematics is considered for joint modules with similar
geometry.

Our proposed approach is different because we consider
modules with arbitrary kinematic and dynamic parameters
stored in each module. Our kinematic modeling procedure is
based on the Denavit-Hartenberg convention, which is related
to the works in [18]–[20]. In these works, it is required
to store homogeneous transformation matrices in a central
database, which is not a requirement of our approach. We
introduce a novel notation and an extension of the standard
Denavit-Hartenberg convention that simplifies the automatic
procedure for obtaining the relative parameters, especially
when considering prismatic joints. Moreover, our approach
also considers dynamics with the final goal of automatically
designing model-based control laws. The main novelties that
this work introduces are summarized as follows: i) none of
the cited approaches have considered distributing information
to the modules to enable and/or automate the centralized and
model-based controller design after information collection;
ii) our automatic controller design approach is generalized
and can thus be applied when modules are heterogeneous
(e.g. with different shapes and dynamic parameters); iii) we
provide a systematic method to characterize modules using
a novel notation and an extension of the standard Denavit-
Hartenberg convention; iv) our approach does not require
symbolic computation for the automatic centralized con-
troller design of reconfigurable modular robot manipulators.

The paper is organized as follows. In Sec. II we describe
the control problem for modular robot manipulators in detail.
The proposed method is presented in Sec. III followed by
simulation results in Sec. IV.

II. PROBLEM DESCRIPTION

We consider a modular and reconfigurable robot manipu-
lator composed of serially connected rigid links. Throughout
this paper we also assume that:
a) each module includes a rigid proximal part, a rigid joint,

and a rigid distal part (see Fig. 3);
b) the connectors are standardized and allow the assembly of

two subsequent modules at only one relative orientation;
c) the motor inertia effects are not considered for a succinct

presentation of the material since this does not affect the
basic idea of our approach.

For a concise presentation of our method, we further
exclude modules that do not introduce a new degree of
freedom (e.g. link modules). The consideration of such
modules is trivial, as it becomes evident later.

A reconfigurable modular robot manipulator with N seri-
ally connected modules constitutes an open kinematic chain
and has the following dynamic model (see [12]):

M(q) q̈+C(q, q̇) q̇+ f(q̇)+g(q) = u, (1)

where q ∈ R
N is the vector of the generalized coordinates,

M(q) ∈ R
NxN is the symmetric and positive definite mass

matrix, C(q, q̇) q̇ (with C(q, q̇) ∈R
NxN) is the vector of the

Coriolis and centrifugal terms, f(q̇) ∈ R
N and g(q) ∈ R

N

are respectively the vectors of friction and gravity terms,
finally u ∈ R

N is the vector of the actuation forces/torques.
We consider only viscous friction without loss of generality
of our presented approach. The matrices and vectors of the
dynamic model in (1) are different for various compositions
of the manipulator and type of modules.

We face the problem of automatically generating a cen-
tralized controller in the joint space that guarantees global
asymptotic stability after a reconfiguration:

lim
t→∞

‖e(t)‖= 0,

where ‖e(t)‖= ‖qr (t)−q(t)‖ is the Euclidean norm of the
error vector in the joint space and qr (t) is the differentiable
(of class C2) desired trajectory. We consider the development
in time of this error as a performance indicator.

III. PROPOSED METHOD

Our proposed approach is illustrated in Fig. 1: each mod-
ule is first characterized according to our proposed notation,
which is stored within the module. After the selection of the
modules and the manual assembly of the robot, the automatic
controller design process starts. First, information related to
the kinematics, dynamics and a unique identification number
(e.g. the Media Access Control (MAC) address) are collected
from all modules by the central control unit. Next, the
centralized controller is automatically generated to let the
robot operate with guaranteed motion control performance.

Manual Assembly

select modules

Automatic Controller Design

information collection
model-based

controller generation
(automatic)

system in operation

Characterization of each module and
storage of the information in itself

Fig. 1. Illustration of the proposed approach.

The information of the modules can be stored in two
ways: i) using a centralized database with stored information
of all the modules that can be used; ii) using distributed
memory to store information of a module in the module
itself. Obviously, the latter option is preferred since the first
one requires database updates when new modules are created
and additionally requires storage of all possible modules
(leading to storage and legacy issues).



We propose a tree structure as a suitable topology of the
communication network for modular robotic manipulators
with an open kinematic chain. The tree-structured network
supports serial and branch-structured manipulators and is
composed of a coordinator associated with the central con-
trol unit, routers associated with the intermediate modules
and end-devices associated with the end effectors. In this
structure, each module allows the coordinator to get measure-
ments (e.g. joint position and velocity), set input commands
to the actuators and set/get data in/from its local memory
database (e.g. dynamic and kinematic parameters and type
of joints). Moreover, collecting additional information (e.g.
the routing tables) makes it possible for the central control
unit to detect the robot configuration.

Appropriate information from the modules enables the
central control unit to automatically compute the forward
kinematics based on an extended Denavit and Hartenberg
convention as is described in III-A and the dynamic model
with the recursive Newton-Euler method as presented in
III-B. Finally, model-based control laws are automatically
synthesized as discussed in III-C.

A. Forward Kinematics using Modular Information

The forward kinematics allows obtaining the pose of the
end effector (position and orientation) given the joint posi-
tions. For an open kinematic chain the forward kinematics
is commonly derived in a recursive way, by multiplying the
homogeneous transformation matrices that relate the frame
of reference of each link to the previous one. A systematic
method for the assignment of the frame of reference of each
link is the Denavit-Hartenberg (D-H) convention [21], which
we briefly recall.

Consider that the ith link of the robot has a body-fixed
frame of reference with axes xi, yi and zi. According to
the standard D-H convention (see Fig. 2), zi is aligned with
the axis of the joint at the connection with link i+ 1. The
xi axis is chosen along the common normal between the
axis zi−1 and zi pointing toward the link i+ 1. The origin
of the frame i is set at the intersection of the common
normal with zi. Finally, the yi axis completes the right-
handed coordinate system. Once the frames of reference are
assigned, four parameters are introduced to define the relative
transformation of coordinates: ai, di, αi, θi. As shown in Fig.
2, ai is the distance along xi between the origin of the frame
i′ and i, di is the distance along zi−1 between the origin of the
frame i−1 and i′, αi is the angle between the axis zi−1 and
zi around xi and θi the angle between xi−1 and xi around zi−1

(the angles are positive counterclockwise). The only variable
parameter is di when the joint is prismatic and θi when it is
revolute [12].

Considering that our proposed approach is automatic and
that the standard D-H convention is not unique, we extend
it to handle some particular cases that need special consid-
eration (see Fig. 2):

• when the z axes intersect, the xi unit vector is obtained
from the cross product between them;

xi

zi
yi

αi

ai

θi

xi′
zi′yi′

zi−1

xi−1

yi−1

di

linki

oi
oi′

oi−1

PJi−1

PJi
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ni−1

Fig. 2. Representation of a link showing the parameters for kinematics.

• when the z axes are parallel the xi unit vector is set
along the common normal between them and the origin
oi is set at the joint connection PJi;

• when the z axes are superimposed the xi unit vector is
aligned with xi−1 and the origin oi is set at the joint
connection PJi.

In order to automate the derivation of the four D-H
parameters for each link (D-H table), we introduce two
additional parameters associated to each link. These are
obtained on the basis of the link geometry: pi and ni, and
are the z coordinates of the point PJi−1 from oi′ and of the
point PJi from oi, respectively (see Fig. 2). Using these two
parameters, di can be recursively computed as:

di = ni−1 − pi (revolute joint),

di = ni−1 − pi +qi (prismatic joint),

where qi is the joint displacement. Additionally, in order
to capture the constant angular offset that can be present
between xi−1 and xi when the joint is in its zero position and
when it is prismatic, an additional parameter γi is introduced.
With this addition, the D-H parameter θi is:

θi = γi +qi (revolute joint),

θi = γi (prismatic joint).

In the following, we introduce a notation to characterize
arbitrary modules and the automatic procedure to obtain
the parameters of the extended D-H convention (ai, αi, pi,
ni, γi) for each link of an assembled manipulator. Let us
consider the exemplary module shown in Fig. 3(a). This
module is composed of an input connector, a joint and
an output connector. To define the new notation, we first
have to decompose the module into a proximal (pl) and a
distal part (dl). These parts are shown in Fig. 3(c) and Fig.
3(b), respectively. In this description, we consider modules
with only one degree of freedom without loss of generality
because more complex modules can be modeled as a series
of those considered, by setting the relevant parameters to
zero.

The first step to characterize the module is to fix a frame
of reference for the proximal part and the distal part. These
two frames are located in the center of the interfaces of the
respective connectors. The axes xin and xout are positioned
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Fig. 3. Kinematic notation for module characterization. The connectors
are indicated in light-grey color, (a) is the entire module, (b) the distal part
and (c) the proximal part.

along a unique and standardized direction on the connection
plane. The z axes are normal to the respective connector
planes, zin points in towards the input connector and zout

points outwards from the output one (see Fig. 3). The axes
yin and yout are selected to complete the respective right-
handed frames of reference. According to our notation we
characterize both the proximal and the distal part with a set of
parameters. To obtain these parameters, the same approach of
the extended D-H convention described previously is applied.
Accordingly, we obtain four parameters for the proximal
part: apl , α pl , ppl , npl , and for the distal part: adl , αdl , pdl

and ndl .
Regarding the proximal part illustrated in Fig. 3(c), two

auxiliary frames are considered. The first one has its origin at
o′pl , the intersection of the common normal between zin and
the joint axis with zin. The axis x′pl is set along the common
normal pointing toward the distal part, z′pl is set along zin

and y′pl completes the right-handed frame of reference. The
second auxiliary frame has its origin in o′′pl at the intersection
of the common normal with the joint axis, its axis x′′pl is set
along the common normal and points toward the distal part,
z′′pl is set along the joint axis and finally y′′pl completes the
right-handed frame of reference. The four parameters for the
proximal part have the following meanings:

• apl is the distance between o′pl and o′′pl along the
common normal;

• α pl is the angle between the axis zin and the joint axis
around x′′pl ;

• ppl is the z coordinate of the input connection point oin

from o′pl ;
• npl is the z coordinate of the joint connection point PJ

from o′′pl .

For the distal part illustrated in Fig. 3(b), two auxiliary
frames are analogously introduced. The four parameters for
the distal part have similar meanings:

• adl is the distance between o′dl and o′′dl , along the
common normal;

• αdl is the angle between the joint axis and zout around
x′′dl ;

• pdl is the z coordinate of the joint connection point PJ
from o′dl ;

• ndl is the z coordinate of the output connection point
oout from o′′dl .

Finally, three additional parameters are required: δ pl , δ dl ,
δ j. As shown in Fig. 3(c) and (b): δ pl is the angle between
x′pl and xin, δ dl is the angle between x′′dl and xout , and finally
δ j is the angle between x′′pl and x′dl when the joint is in
its zero position (all the angles of this notation are positive
counterclockwise). Particular cases of the relative orientation
between the z axes (e.g. parallel, intersect or overlap) are
handled similarly to the previously described extension of the
standard D-H convention. The connection points to consider
are: oin and PJ (proximal part); PJ and oout (distal part). We
collect the parameters required to characterize a module for
kinematics in Tab.I.

TABLE I

INFORMATION STORED IN EACH MODULE FOR KINEMATICS.

Proximal apl α pl ppl npl δ pl

Distal adl αdl pdl ndl δ dl

Joint δ j Joint type

It is worth noting that the same approach can be applied to
modules with multiple input and output connectors. In those
cases, a set of parameters for each realizable combination of
the connectors is required and has to be stored in the module.
When the information is forwarded to the central control unit,
the set of parameters corresponding to the connectors in use
are sent.

Using the proposed notation, the derivation of the parame-
ters of the extended D-H convention for each link (ai, αi, pi,
ni, γi) can be automated. Let us assume that the ith connection
between a module i− 1 and a module i is established. In
order to obtain the parameters for the link, we require the
homogeneous transformation matrix Fi of a frame oriented
as the D-H one located at PJi (see Fig. 2) with respect to a
frame parallel to the first auxiliary frame of the distal part
of the module i−1 with origin PJi−1 (see Fig. 3(b)). From
now on, we use a compact notation to indicate operations
with homogenous transformation matrices. For instance:
Tk(·)/Rk(·) are homogeneous transformations that represent



the translation/rotation along/around the k axis. Using the
parameters that characterize subsequent modules, we first
calculate an auxiliary matrix F′

i. This matrix describes the
transformation of a frame with origin at PJi, parallel to the
second auxiliary frame of the proximal part of module i, with
respect to a frame parallel to the first auxiliary frame of the
distal part of module i− 1 and with origin at PJi−1. It is
calculated as:

F′
i =Tz(−pdl

i−1)Tx(a
dl
i−1)Rx(αdl

i−1)Tz(n
dl
i−1)

Rz(δ dl
i−1 −δ pl

i )Tz(−ppl
i )Tx(a

pl
i )Rx(α pl

i )Tz(n
pl
i )

=

[
R′

i U′
i

0T 1

]

. (2)

In order to complete the synthesis matrix Fi, an additional
possible rotation φi around zi is considered. In fact, we need
to align the x axis according to our extended D-H convention.
With the transformation of (2) we only reached a frame
located at PJi with the orientation of the second auxiliary
frame of the proximal part of module i. An additional rotation
around z may be required to bring this frame parallel to the
D-H one. In order to find this angle, we have to consider
three possible cases for the joint axes. The detection of the
case that occurs is performed using U′

i, and the unit vector
of the z axis in R′

i, which contains the information of the
relative orientation of two subsequent joint axes.

i. When the axes overlap: φi = 0.
ii. When the axes are parallel: φi = arctan(vy/vx), from

V =
[

vx vy vz
]T

= R′T
i U′

i.
iii. When the axes are skew or intersect:

φi = arctan(vy/vx), from
V =

[
vx vy vz

]T
= R′T

i V′ and V′ = zi × zi−1.

The synthesis matrix is completed as:

Fi = F′
iRz(φi) =







rxi sxi txi uxi

ryi syi tyi uyi

rzi szi tzi uzi

0 0 0 1






. (3)

The same transformation of Fi can be expressed in terms of
the parameters of a link and an auxiliary rotation (φ ′) as:

Li =Tz(−pi)Rz(φ ′
i )Tx(ai)Rx(αi)Tz(ni)

=







Cφ ′
i

−CαiSφ ′
i

SαiSφ ′
i

aiCφ ′
i
+niSαi Sφ ′

i

Sφ ′
i

CαiCφ ′
i

−SαiCφ ′
i

aiSφ ′
i
−niSαiCφ ′

i

0 Sαi Cαi niCαi − pi

0 0 0 1






, (4)

where Sε/Cε are the abbreviations of sine/cosine of an angle
ε . Equating (4) and (3), the parameters of our extended D-H
convention for the ith connection (or link) can be inferred:

ai = uxi rxi +uyi ryi ,

αi = arctan(szi/tzi),

γi =

φ ′
i

︷ ︸︸ ︷

arctan(ryi/rxi)+δ j
i−1 −φi−1.

If szi 6= 0:

ni =
(uxi ryi −uyi rxi)

szi

,

pi =
(uxi tzi ryi −uzi szi −uyi tzi rxi)

szi

.

If szi = 0:

ni = 0,

pi =−uzi .

B. Dynamic Model from Modular Information

The problem of deriving the dynamic model of a rigid
link manipulator is usually solved either with Lagrangian
formulation [22] or recursive Newton-Euler (N-E) methods
[23]. A comparison of the methods for the derivation of
the equations of motion of a rigid link manipulator is in
[22]. A computationally efficient variant of the Newton-Euler
method has first been proposed in [23] with a complexity
that grows linearly with the number of the joints

(
O(N)

)
.

Subsequently, enhanced versions of this algorithm have been
presented in e.g. [24], [25]. A review on methods for robot
dynamics can be found in [26].

The recursive N-E algorithm studies the manipulator link
by link and is composed of two recursions, one for kine-
matics (forward recursion) and one for forces and torques
(backward recursion). It can be used either with symbolic
computations to obtain the closed form dynamic model or
with numerical ones for control as described later. We con-
sider the recursive N-E algorithm of [12] without motor iner-
tia effects. Similar to the kinematics, we provide a systematic
approach to characterize the modules for dynamics. The set
of required parameters for each module is presented as well
as the procedure to synthesize them for each established
connection. For each link of the manipulator (see Fig. 4), a
body-fixed frame of reference with origin in Di is considered.
We consider this frame to have the same orientation as the
D-H one so that the results of the forward kinematics are
exploited to infer relative orientation of subsequent links.
With reference to the generic link of Fig. 4, the vector from
Di−1 to Di is ri

Di−1,Di
and the vector from Di to Ci (the

center of mass) is ri
Di,Ci

. In addition to these vectors, the mass
mi, the inertia tensor Ii

i and the viscous damping coefficient
of the joint FJi−1 are also required for the algorithm. The
superscript of all the vectors indicates in which frame of
reference they are expressed.

Similarly to the kinematics, a synthesis procedure is
required for the dynamics based on modular information.
A graphical representation of the ith connection involving
dynamic parameters is shown in Fig. 5. In our approach,
the required parameters for dynamics are expressed in the
output frame for the distal part and in the input frame for
the proximal part. For each module, beyond the mass for both
the distal (mdl) and the proximal part (mpl), we require their
inertia tensors: Iout

dl , Iin
pl , and the coordinates of the centers of

mass: rout
Cdl , rin

Cpl , expressed in the output and the input frame,
respectively.
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Fig. 4. Representation of a link for dynamic related parameters.
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Fig. 5. Representation of a connection involving parameters for dynamics.
Connectors are indicated in light-grey color.

Using this notation, when the ith connection is realized,
the output frame of module i− 1 and the input frame of
module i match. We denote the matched frame as “io”. The
synthesis of the total mass of the link mi, the coordinates of
its center of mass rio

Ci
and the inertia tensor Iio

i can thus be
automated:

mi = mdl
i−1 +mpl

i , Iio
i = Iout

dli−1
+ Iin

pli ,

rio
Ci
=

mdl
i−1 rout

Cdli−1
+mpl

i rin
Cpli

mi
.

Our proposed automatic procedure transforms these quan-
tities to be expressed in a frame parallel to the D-H one and
located at Di for each realized link i (see Fig. 4). Since the
kinematic parameters are known, these transformations of
coordinates are performed using homogeneous transforma-
tions and Steiner’s theorem [12] for the inertia tensor. The
coordinates of the center of mass are computed as:

[
ri

Di,Ci

1

]

=
[
Aio

i

]−1
[

rio
Ci

1

]

,

where

Aio
i = Rz(−δ pl

i )Tz(−ppl
i )Tx(a

pl
i )Rx(α pl

i )Tz(n
pl
i )Rz(φi)

=

[
Rio

i Uio
i

0T 1

]

.

The inertia tensor in computed as:

Ii
i =RioT

i

(

Iio
i −mi ST (rio

Ci
)S(rio

Ci
)
)

Rio
i +mi ST (ri

Di,Ci
)S(ri

Di,Ci
),

where S(·) is an anti-symmetric matrix:

S(U)=





0 −uz uy

uz 0 −ux

−uy ux 0



 , with U=
[

ux uy uz
]T

.

The last parameter that needs to be synthesized for each
constituted link is ri

Di−1,Di
. Also for this vector we can use ho-

mogeneous transformations with the synthesized kinematic
parameters:

Ai−1
i = Tz(−pi)Rz(γi +qi)Tx(ai)Rx(αi)Tz(ni) (rev. joint),

Ai−1
i = Tz(−pi +qi)Rz(γi)Tx(ai)Rx(αi)Tz(ni) (prism. joint),

and finally

Ai
i−1 =

[
Ai−1

i

]−1
=

[
Ri

i−1 Ui
i−1

0T 1

]

, ri
Di−1,Di

=−Ui
i−1.

We store the additional parameters in each module for the
dynamics as collected in Tab. II.

TABLE II

INFORMATION TO STORE IN THE MODULES FOR DYNAMICS.

Proximal mpl Iin
pl rin

Cpl

Distal mdl Iout
dl rout

Cdl
Joint FJ

C. Centralized Controller Design

The procedures described for automatic derivation of
kinematics and dynamics enable the automatic generation
of model-based control laws using the modular information
in Tab. I and II. Our proposed centralized controller for
modular and reconfigurable robot manipulators takes as input
the position vector (q), the velocity vector (q̇), the reference
trajectory (qr, q̇r, q̈r) and finally the array of structures
containing the information of the modules: ModRob. The
array of structures ModRob contains the information of Tab.
I and II for each module. The output is the closed loop
force/torque command, which guarantees global asymptotic
stability. In order to realize the model-based control laws, we
have implemented a function u = NEmod (q, q̇, q̈,ModRob),
that performs the recursive N-E algorithm using ModRob as
described in Sec. III-A and III-B and returns the force/torque
commands.

We have implemented the automatic generation of two
model-based control laws: proportional and derivative (PD)
control with gravity compensation and computed torque
control. Computed torque control is one of the most effective
centralized and model-based control methods for robotic ma-
nipulators with rigid links. Assuming perfect knowledge of
the system dynamics, computed torque linearizes the model
of (1) by compensating the nonlinear and coupling terms
through feedback. The control law is completed by assigning
an input (υ) to the linearized system that guarantees asymp-
totically stable dynamics of the error in joint space [27].
The PD control with gravity compensation [12] is suitable
for point to point motion and is designed to compensate
the gravitational terms of the dynamic model and to include
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Fig. 6. Representation of the modules for illustrative purpose used for
simulations. Connectors are indicated in light-grey color.

TABLE III

INFORMATION OF THE MODULES USED FOR SIMULATION.

Parameter a b c
apl (m) 0 0 0

α pl (rad) −π/2 0 0
ppl (m) −0.1 −0.1 −0.1
npl (m) 0 0 0

δ pl (rad) 0 0 0
adl (m) 0 0 0

αdl (rad) −π/2 0 0
pdl (m) 0 −0.1 −0.05
ndl (m) 0.1 0 0

δ dl (rad) 0 0 0
δ j (rad) π 0 0

Joint Type Rev. Rev. Prism.
rin

Cpl (m) [0 0 0.05]T [0 0 0.05]T [0 0 0.05]T

mpl (kg) 0.5 0.5 0.5
Iin

pl

(
kgm2

)
10−3· 10−3· 10−3·

(diagonal) [2 2 0.65] [2 2 0.65] [2 2 0.65]
rout

Cdl (m) [0 0 −0.05]T [0 0 −0.05]T [0 0 −0.025]T

mdl (kg) 0.5 0.5 0.25
Iout

dl

(
kgm2

)
10−3· 10−3· 10−3·

(diagonal) [2 2 0.65] [2 2 0.65] [0.36 0.36 0.31]
FJ (Nms) 3 3 3

a linear feedback control law for positions and velocities.
Assuming perfect knowledge of the gravitational term, PD
control with gravity compensation guarantees global and
asymptotic stability for any desired constant equilibrium
posture [12].

We obtain the compensating commands for the control
laws numerically by varying appropriate numerical argu-
ments to the function NEmod . For example, the numer-
ical vector of the gravitational terms used for PD con-
trol with gravity compensation is computed as g(q) =
NEmod (q,0,0,ModRob) and the closed loop command of
the computed torque control is computed numerically as
ucl = NEmod (q, q̇,υ ,ModRob) where q, q̇ are the current
numerical vectors of positions and velocities.

IV. SIMULATION RESULTS

A point to point motion in the joint space is simulated for
a configuration using a given set of modules. We show and
compare results of the automatically generated control laws:
PD control with gravity compensation and computed torque
control. Gaussian measurement noise and input disturbance
are included. We consider these distributions with zero mean
and standard deviation of σn = 0.03 for measurements of
joint positions (rad and m) and velocities (rad/s and m/s)
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Fig. 7. Simulation using PD with gravity compensation controller. The
dashed lines represent the desired trajectories.

0 0.5 1 1.5 2 2.5
-0.2

0
0.2
0.4
0.6
0.8

1

-0.2
0
0.2
0.4
0.6
0.8
1

Module 01
Module 02
Module 03
Module 04
Module 05

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

q 1
:4
(t
)
(r

ad
)

q 5
(t
)
(m

)

time (s)

time (s)

∥ ∥
e(

t)
/

q r
(
t f

in
)
∥ ∥

Fig. 8. Simulation using computed torque controller. The dashed lines
represent the desired trajectories.

and σu = 0.3 for the input forces/torques (N and Nm). We
perform the simulations using three kind of modules shown
in Fig. 6: a, b (revolute joints) and c (prismatic joint).
The parameters of the modules used for these examples
are collected in Tab. III. Using these modules we build a
configuration composed of five modules: [b-a-b-a-c]. The
trajectory of each joint is designed with a quintic polyno-
mial. The coefficients have been selected to guarantee zero
initial/final velocity and zero initial/final acceleration. The
final time of the planned motion is t f in = 1s with a starting
time tin = 0s. The joints start from zero to reach the final
positions: q(t f in) = [0.2, 0.4, 0.6, 0.8, 0.1]T . The simulations
are performed using the following gain matrices [12] of the
controllers: Kp = 250I and Kd = 30I, where I is the identity
matrix of proper dimensions.

As shown in Fig. 7 and Fig. 8, computed torque control
has better performance observing the development in time of
the Euclidean norm of the error. In these figures, we show
the error vector as a fraction of the respective final positions
of the trajectories for normalized presentation in one plot.

V. CONCLUSIONS

We present a systematic and effective approach for cen-
tralized control of modular and reconfigurable robot manip-



ulators. To the best knowledge of the authors, none of the
approaches presented in the literature so far have considered
distributing information to the modules to automatically
generate a pure model-based centralized controller, espe-
cially when considering heterogeneous modules. This idea
paves the way for future modular and reconfigurable robotic
systems with performance and capabilities that approach
those of fixed structure ones from a control perspective.
Having the possibility to auto-generate a model-based cen-
tralized controller with guaranteed asymptotic stability for a
non-uniform set of modules, the central control unit does
not require a large database and successive updates. Fast
reconfiguration with guaranteed stable operations and motion
control performance ensures hyper-flexibility of the robotic
system.

A drawback of this approach compared to conventional
methods for controlling modular robot manipulators is the
necessary storage of information in the modules that may
increase manufacturing costs. Additionally, if self-detection
of the configuration were required, network solutions that
support a tree-structured topology would be needed. A
communication bus (e.g. CAN bus) could also be suitable
but additional communication lines have to be employed as
described in [17]. However, we believe that the cost savings
from standardization of modular robots would outweigh such
cost increases. Furthermore, the automated generation of
the controller with guaranteed motion control performance
would reduce the time and costs required for commissioning
the robot after assembling or reconfiguration.

An important continuation of this work is the introduction
of robustness for uncertain modular information, elasticity
in the joints and measurement noise, especially because in
future works this control approach will be implemented on
a real robot.
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