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Abstract— Accurate surface normal computation is one of
the most basic and important tasks for 3d perception. While
much progress has been made in speeding up normal esti-
mation algorithms and improving their accuracy, a significant
inaccuracy still remains even with modern implementations,
which is the correct determination of surface normals close
to non-differentiable surface edges. Current algorithms tend
to amalgamate neighborhood points from independent surfaces
yielding normals that neither fit well to the one nor the other
surface. This paper introduces a fast and accurate 3d edge
detection algorithm suitable to detect discontinuities both in
depth and on surfaces with nearly 90% accuracy at rates
beyond 30 Hz. Based on this method, we demonstrate how
established normal estimation algorithms can be extended for
edge-awareness. Additionally, a new edge-aware, fast, accurate,
and robust normal estimation approach is described which
exploits the data structures computed for 3d edge detection
and estimates normals at 23 Hz. We assess the performance of
all proposed methods and compare them with other state-of-
the-art approaches.

I. INTRODUCTION

Surface normals are the backbone of a myriad of 3d per-
ception algorithms and acquiring them in a fast and accurate
fashion is absolutely crucial. The most prominent normal
computation algorithms today utilize a point neighborhood to
estimate the surface normal as the third principal component
of the point set, i.e. the surface normal represents the normal
of the tangential plane to these points [1]. Although this
method has been implemented very efficiently and delivers
accurate results in most cases [2], [3] it has its drawbacks
when it comes to surface discontinuities such as the edges
of a box. In those cases the unrestricted selection of neigh-
borhood points mistakenly mixes points from two or three
different surfaces of the box to compute a normal which is
the mean of all contributing surfaces and commonly far away
from the correct result. In the macroscopic view this issue
establishes as round-shaped normals at edges of objects or
rounded normal transitions from a ground plane to an object.
In effect, this error typically harms the performance of 3d
perception algorithms, e.g. surface segmentation might not
distinguish between individual surfaces, surface classification
could assign wrong properties to an area or 3d object
modeling might produce different models when the object
is standing on a table or when it is held by a gripper.

This paper proposes a simple and efficient solution to
the problem of inaccurate normal estimation at surface

1 R. Bormann, J. Hampp, and M. Hägele are with the Robot and
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Fig. 1. 3d edge detection (blue lines=depth edges, green lines=surface
discontinuities) enables accurate normal estimation near edges (green frame)
instead of computing rounded normals (red frame).

discontinuities. The basic idea is to select only points from
the same surface to estimate a normal correctly. Surfaces are
delineated by surface borders that need to be determined first.
Let an individual surface be defined as a smooth manifold in
the Euclidean 3d space. Hence, the borders between surfaces
are non-differentiable sharp bends. We introduce a method
that computes local gradients to detect surface borders at
acute changes of local slope. The resulting 3d edge image is
utilized to only select valid neighboring points from the same
surface for normal computation. This algorithm attains high
efficiency if the point cloud data is available in an ordered
structure, e.g. in a depth image. Fig. 1 presents an example
of the improved normal quality when the proposed algorithm
is employed. The main contributions of this paper are:

1) An efficient 3d edge detection algorithm suitable to
detect edges originating from both depth and surface
discontinuities.

2) The extension of established accurate normal estima-
tion methods especially to handle surface discontinu-
ities through intelligent neighborhood point selection.

3) A highly efficient, accurate, dense and edge-aware
normal estimation procedure based on data structures
of the edge detection method.

4) A thorough evaluation of the developed algorithms.
The remainder of this paper is structured as follows. Sec. II

provides a brief overview over related literature, followed by
an explanation of the 3d edge detection algorithm in Sec. III
and the approach for accurate normal estimation in Sec. IV.
Subsequently, Sec. V is dedicated to the evaluation of the
proposed methods before we conclude in Sec. VI.



II. LITERATURE

Estimating point normals from range sensor data is a
common exercise in the area of mobile robotics and the
prerequisite for many 3d perception algorithms in this field
[2]. According to its importance the robotics community
has adopted numerous approaches which can be divided
into optimization approaches, that minimize a cost functional
and usually work with a tangential plane, and methods that
average normals within a local neighborhood [1].

One of the most popular and classic optimization methods
is the minimization of point distances to a common tangential
plane via singular value decomposition (SVD) [4]–[6]. This
approach can be improved w.r.t. speed and robustness by
transforming the depth image into spherical coordinates [7].
A similar solution to the minimization problem is obtained
from the analysis of local variance in the point coordinates,
which results in the application of a principal component
analysis (PCA) whose first two components span the tan-
gential plane and the third yields the normal vector [2],
[8]–[11]. The plane fitting can also be formulated as a
Maximum Likelihood estimation problem [12]–[14], yielding
an equivalent solution to the SVD or PCA based approaches.
Other authors propose to estimate normals from fitting higher
order geometric models to the local point neighborhood, e.g.
quadric surfaces, which allow to estimate curvature at the
same time [15]–[19]. The drawback of these methods is
the need for more neighboring points to solve the higher
dimensional linear equation system [1].

Examples for the averaging approach are [20]–[22] where
simple normals are computed as cross-product between
the vectors originating from a central point towards two
neighboring points. Robust normals are then estimated as
the neighborhood’s average of these simple normals. Jin et
al. [23] summarize multiple variants of this method which
compute a weighted average of the simple normals, e.g.
angle-weighted [24], area-weighted [25], centroid-weighted
[25] and gravitational-weighted [25].

According the the analysis of [1], [12], [14], optimiza-
tion methods generally attain higher accuracy and compu-
tation speed than averaging approaches at similar neighbor-
hood sizes. However, the computational complexity of least
squares optimization methods is still significant [26]. Major
speed ups have been introduced to the automotive sector by
the use of fast least squares and the operation on spherical
range images in [7]. The robotics community exploited the
organized point cloud structures of modern range sensors
that facilitate the neighborhood search since 3d points can
be accessed through a 2d index matrix [2]. The highly
efficient normal estimation approach of [27] is based on
the cross product of two tangential vectors within the point
neighborhood. For the sake of robustness these tangential
vectors are smoothed using integral images. Similarly, [3]
computes integral images for smoothing the local depth
coordinates or the local covariance matrix yielding a very
fast yet accurate normal estimation algorithm.

However, scene discontinuities such as depth edges or

TABLE I
PROPERTIES OF SOME POPULAR NORMAL ESTIMATION PROCEDURES:

BASIC NORMAL ESTIMATION OF THE PCL LIBRARY [2], ITS

EDGE-AWARE EXTENSION [11], CROSS-PRODUCT BASED [22], AND

INTEGRAL IMAGE BASED NORMAL ESTIMATION [3].

Property [2] [11] [22] [3] this
accuracy on continuous surfaces high high high high high
acc. near depth discontinuities low high high high high
acc. near surface discontinuities low high low low high
computation speed low low med high high
coverage (normal estim. density) high high high low med
direct edge estimation without
previous normal computation

no no depth depth yes

surface discontinuities represent a significant source of error
for most of the discussed normal estimation algorithms. The
reason for this is the unconstrained usage of neighborhood
points for smoothing, even beyond surface borders, which
results in rounded normal directions around edges (see
Fig. 5). In [3], this issue is addressed by detecting depth
edges before normal computation and dynamic neighborhood
radius selection based on distance to the next edge. The
drawback of this conservative neighborhood selection is that
there is a significant portion of points around edges for which
no normal can be determined. Other, less efficient implemen-
tations select a more accurate neighborhood by checking
every neighborhood point against the query point for a
depth step [2], [22]. Another approach is the detection of
surface discontinuities after normal estimation by searching
for high curvature regions [2], [16]. Normals close to such
edge regions need to re-computed with correct neighborhood
support in a second pass. Direct, edge-aware neighborhood
selection is proposed in [11], [28] where the best set of
support points for the tangential plane is determined with a
MLESAC technique [29]. The remaining inlier points from
the neighborhood contribute weighted by distance to the
covariance matrix. Given that the normal is determined via
PCA eventually and considering this intricate support point
selection scheme, this method can be assumed to be less
efficient than integral image based approaches like [3], [27].

This paper introduces an efficient 3d edge estimation
procedure for both depth edges and surface discontinuities
in organized point clouds that, in contrast to the existing
approaches, can be computed on the point data directly
without previous normal estimation. We furthermore show
how this edge knowledge can be considered efficiently for
neighborhood selection with an averaging method [22] and
an optimization method [3]. Eventually, we present a simple
and highly efficient normal estimation algorithm based on
pre-computed data of the 3d edge detection method. Tab. I
compares the properties of some popular normal estimation
approaches in robotics with the proposed algorithm.

III. EFFICIENT 3D EDGE DETECTION

This section explains our algorithm for the fast compu-
tation of 3d edges which might either originate from depth
discontinuities, such as the transition from foreground objects
to background, or from surface discontinuities, which are



located at non-smooth borders of two smooth surface areas,
e.g. two adjacent planes of a box. The algorithm requires
that the input point cloud is provided in an organized matrix
structure as delivered by sensors like the Kinect.

A. Pre-Processing

At first, the organized point cloud of size W × H is
rearranged as three image matrices X,Y, Z representing the
x, y, and z coordinates of each point. Without loss of
generality let x denote the horizontal direction from left to
right, y the vertical direction from top to bottom and z the
depth coordinate from the camera towards the scene. Then
we compute the x-derivatives Xx and Zx of X and Z as
well as the y-derivatives Yy and Zy of Y and Z with a
normalized 3x3 Sobel kernel. These derivatives represent the
smoothed difference of neighboring pixels in x or y direction,
respectively. For further noise reduction within the noisy z-
dimension a Gaussian or a bilateral filter can be applied to
the depth derivatives Zx and Zy .

B. Depth Discontinuities

The presence of a depth discontinuity is determined for
each pixel (u, v) ∈ [1, . . . ,W ] × [1, . . . ,H] in a similar
way as for the Depth Change Indication Map in [3]. The
minimal depth changes that can be measured by a typical
depth sensing device increase quadratically with growing
distance [3]. Hence, a distance dependent depth discontinuity
threshold is computed

τ(u, v) = γ · Z(u, v)2 (1)

in order to create the depth discontinuity edge image

Ed(u, v) =

 1 , ‖Zx(u, v)‖ ≥ τ(u, v)
1 , ‖Zy(u, v)‖ ≥ τ(u, v)
0 , otherwise

(2)

which is 1 at a depth edge and 0 elsewhere.

C. Surface Discontinuities

For the computation of surface discontinuities we need to
find abrupt changes in local slope of depth measurements
along the x and y directions. However, taking the values
of Zx and Zy directly would not yield desirable results as
the typical sensor noise would generate high slope variation
between most neighboring pixels resulting in edge detections
all over the image. Hence, local slope needs to be averaged
in the vicinity of the query point. For example, in the x
direction the average slope has to be estimated left Z̄l

x(u, v)
and right Z̄r

x(u, v) of query point (u, v). An obvious way for
robust average slope estimation would be a linear regression
over the sampled surface points on the left and right side,
respectively. This approach, however, turned out to be com-
putationally too demanding. A more efficient solution is to
average the pixel-wise slope measurements Xx and Zx or
Yy and Zy along the search direction left and right or above
and below query pixel (u, v).

The number of slope measurements w̃s(u, v), s ∈
{l, r, a, b}, that become averaged left (l), right (r), above (a),
or below (b) the query pixel,

w̃s(u, v) = [m(ϕ∗) · Z(u, v) + n(ϕ∗)]
wmax
wmin

(3)

increases linearly with the depth Z(u, v) of the query pixel
in order to compensate for the increasing sensor noise at
distance (see Sec. III-B). Our experiments showed that a
linear mapping attained 1-2% better recall at similar pre-
cision compared to a fixed width or a quadratic mapping.
The linear mapping is tweaked to yield w̃s = 5 pixels at
0.5 m distance and ϕ∗ pixels (parameter of algorithm) at 2
m distance. Width w̃s is, however, truncated at a lower limit
wmin to ensure enough smoothing and at an upper limit wmax.
Moreover, w̃s is also limited by surrounding depth edges, e.g.

wl(u, v) = max
k=1,...,w̃l

k, s.t.
k∑

i=1

Ed(u− i, v)
!
= 0 (4)

in order to exclude measurements from a different surface
from the averaging. Please notice that increasing ws with
distance is only meant for reducing some noise artifacts of
the sensor, not for adjusting the level of detectable detail
since this happens fully automatically by the projective
nature of the sensor that may cover a length of 2 cm at close
distance with 10 pixels whereas 10 pixels may correspond
to 10 cm far away. It its obvious that attempting to detect
same levels of detail all over the image is infeasible with a
projective sensor like a depth camera.

To speed up the slope averaging operation further, the
respective values are not added up at each query but are
prepared in advance by using customized integral images.
For detecting vertical surface edges we prepare integral
images I[Xx] and I[Zx] in which a cell (u, v) stores the
sum of all pixel values left of it in the same row, i.e.

I[Xx](u, v) =

u∑
i=0

Xx(u− i, v) , (5)

I[Zx](u, v) =

u∑
i=0

Zx(u− i, v) . (6)

Similarly, we deal with horizontal lines using integral images
I[Yy] and I[Zy] that sum up the pixel values column-wise

I[Yy](u, v) =

v∑
i=0

Yy(u, v − i) , (7)

I[Zy](u, v) =

v∑
i=0

Zy(u, v − i) . (8)

Determining the average slope of any range of points
within a row or column just requires two look-ups in the
corresponding integral images. For the average differences
of Xx and Zx left and right of (u, v) in x direction we have

X̄l
x(u, v) = I[Xx](u− 1, v) − I[Xx](u− wl(u, v), v) , (9)

X̄r
x(u, v) = I[Xx](u + wr(u, v), v) − I[Xx](u + 1, v) , (10)

Z̄l
x(u, v) = I[Zx](u− 1, v) − I[Zx](u− wl(u, v), v) , (11)

Z̄r
x(u, v) = I[Zx](u + wr(u, v), v) − I[Zx](u + 1, v) , (12)



and for Yy and Zy above and below (u, v) in y direction

Ȳ a
y (u, v) = I[Yy](u, v − 1) − I[Yy](u, v − wa(u, v)) , (13)

Ȳ b
y (u, v) = I[Yy](u, v + wb(u, v)) − I[Yy](u, v + 1) , (14)

Z̄a
y (u, v) = I[Zy](u, v − 1) − I[Zy](u, v − wa(u, v)) , (15)

Z̄b
y(u, v) = I[Zy](u, v + wb(u, v)) − I[Zy](u, v + 1) . (16)

Following, the angle corresponding to a slope is computed
with a fast approximation of the atan2 function1 which
is always less than 0.3◦ off the correct value. Along the x
direction we receive the left φlx and right φrx slope angles in
the metric x, z coordinate system

φlx = atan2(−Z̄l
x(u, v),−X̄ l

x(u, v)) , (17)
φrx = atan2(Z̄r

x(u, v), X̄r
x(u, v)) , (18)

and along the y direction we get the upper φay and lower φby
slope angles in the metric y, z coordinate system

φay = atan2(−Z̄a
y (u, v),−Ȳ a

y (u, v)) , (19)

φby = atan2(Z̄b
y(u, v), Ȳ b

y (u, v)) . (20)

Finally, by evaluating the difference of neighboring slope
angles around (u, v) we can assert whether the query point
is located on a surface discontinuity. For such edge points
one of the following inequalities holds∣∣∣∣φlx − φrx∣∣− π∣∣ > θ , (21)∣∣∣∣φay − φby∣∣− π∣∣ > θ , (22)

where θ represents the minimum detectable angle between
the slopes of two separate surfaces. Please notice that we
do not compare the surfaces’ slopes directly because their
difference or ratio is not constant under observation from
different perspectives. The angle difference instead is always
constant from all perspectives. Usually, a 3d surface dis-
continuity generates several neighboring positive responses
on the angle criteria (21) and (22). To obtain sharp edges
of one pixel width we only label the pixel with maximum
angle difference within a row or column neighborhood of
consecutive potential edge pixels. The final edge image E
is then assembled of the depth edges Ed and the surface
discontinuities.

The computations for the integral image and surface edge
detection along the y-direction are further speed optimized
by accessing memory on the transpose of Yy and Zy , i.e.
in alignment with memory layout to fully exploit caching.
Moreover, the main loop on surface discontinuity detection
can be parallelized easily with OpenMP.

IV. EDGE-AWARE NORMAL ESTIMATION

Edge image E covering depth and surface discontinuities
now allows for the computation of very accurate normals
based exclusively on points of the corresponding surface.
In this section we present two ways how to pass on the
edge information for correct neighborhood selection to the
integral image based optimization approach of [3] as well
as to the averaging approach of [22] without introducing

1https://gist.github.com/volkansalma/2972237

significant overhead. Additionally, we present another edge-
aware normal estimation procedure which exploits the al-
ready computed integral images on point differences from
the edge detection algorithm.

A. Edge-Awareness by Point Cloud Modification

Integral image based normal estimation as proposed by [3]
computes a Depth Change Indication Map C indexing depth
edges in the first pass. We figured out that this procedure
treats undetermined (NaN) depth values similar to depth
edges in the following. Hence, we simply set all edge points
of E to NaN in the point cloud which are then represented as
edges in C. The second pass generates the Final Smoothing
Area Map B which obeys the distance to labeled edges
in C. B is used to estimate normals from an appropriate
neighborhood which is not crossing edges.

B. Edge-Aware Neighborhood Selection

Given a query point q and its coordinates (u, v) in the
ordered structure algorithms like [22] exploit the ordered
structure by computing normals from a local k × k neigh-
borhood Nk with point offsets (ni, nj) ∈ [−r, . . . , r] ×
[−r, . . . , r], k = 2r+ 1. In order to compute the normal of q
only with neighboring points that lie on the same surface we
have to ensure that the line connecting q and a neighboring
point is not intersected by an edge from E. However,
checking this condition explicitly for each neighboring point
is computationally very intense. We propose a significantly
more efficient approach, which divides Nk into 8 angular
sectors αl, l ∈ {1, . . . , 8} distributed around center q. In
the beginning, we compute the Euclidean distance in pixel
coordinates between center (u, v) and the closest edge pixel
of E for each sector αl by scanning E over Nk once
completely. This yields a closest edge distance mapping
d(αl) for each sector αl. For the sake of efficiency, the
sector mapping α(ni, nj) : [−r, . . . , r] × [−r, . . . , r] 7→ αl,
which maps pixel offsets (ni, nj) of neighboring points to a
sector αl, is precomputed for the chosen neighborhood size
k. Eventually, we can find the sub set S ⊆ Nk of neighboring
points (ni, nj) ∈ Nk that lie on the same surface as q by
verifying ‖(ni, nj)‖ < d(α(ni, nj)).

The actual normal estimation is realized via the cross
product of two vectors pointing from query point q to two
valid neighboring points pi, pj ∈ S similar to [23]. To
facilitate a robust estimation numerous such cross products
with consecutive neighbor points of S are averaged and
normalized to the normal nq at point q

nq =

|S|−1∑
i=1

(q − pi)× (q − pi+1) . (23)

C. Fast Edge-Aware Normal Estimation

After computing edge image E as described in Sec. III
we have integral images I[Xx], I[Zx], I[Yy], I[Zy] on metric
coordinate differences readily available. These can be used in
a simple way for computing two smoothed tangential vectors
at query point q. The smoothing ranges wl, wr, wa, wb are

https://gist.github.com/volkansalma/2972237


determined w.r.t. to camera distance as in (3) and clamped
by surface edges as in (4) but with Ed replaced by the final
edge image E. Then we obtain the average differences

X̄x(u, v) = I[Xx](u+ wr, v)− I[Xx](u− wl, v) , (24)

Z̄x(u, v) = I[Zx](u+ wr, v)− I[Zx](u− wl, v) , (25)

Ȳy(u, v) = I[Yy](u, v + wb)− I[Yy](u, v − wa) , (26)

Z̄y(u, v) = I[Zy](u, v + wb)− I[Zy](u, v − wa) , (27)

which directly yield the two smoothed tangential vectors

t1 =
[
X̄x, 0, Z̄x

]
, t2 =

[
0, Ȳy, Z̄y

]
. (28)

The normal is finally computed as the cross product

n = t2 × t1 . (29)

The re-use of existing data structures and efficient smoothing
based on integral images renders this normal estimation
approach highly efficient while respecting the presence of
depth and surface discontinuities.

V. EVALUATION

The evaluation assesses the quality and efficiency of the
proposed 3d edge detection algorithm and the different
approaches to edge-aware normal estimation. All quantitative
experiments were conducted on the basis of 100 simulated
scenes which were captured by a simulated RGB-D sensor.

A. Experimental Setup

For quantitative evaluation we recorded 100 different
scenes with a simulated Kinect sensor from the Gazebo
simulation environment. Every scene contained a ground
floor, walls, a table, and several kinds of smaller objects,
such as cans, cups, boxes, or cones. The number of smaller
objects was chosen randomly between 10 and 50 for each
scene and the placement was random as well resulting in very
cluttered and complex scenes as they might occur in reality.
All surfaces are color coded (green=plane, red=convex, yel-
low=concave, black=edge) in order make the data set also
applicable to surface classification. Fig. 5 displays some
exemplary scenes from this data set in the left column. The
simulated RGB-D sensor delivered point cloud and color
image data at 640×480 pixels resolution. Ground truth edges
and normals could be computed in advance on the noise-free
data of the simulated sensor. We multiplied the ground truth
points with zero-mean normal distributed noise with vary-
ing standard deviation σ ∈ {0.0005, 0.001, 0.002, 0.005}
throughout the experiments to obtain noisy point cloud data
pnoisy = p · N(0, σ) with increasing error at distance. All
experiments were run on a two core mobile Intel i7 M640
CPU with 2.8 GHz and 6 GB RAM.

B. 3d Edge Detection

The 3d edge detection method was evaluated using the
100 simulated scenes w.r.t. to recall, i.e. the ratio of cor-
rectly detected edge pixels to ground truth edge pixels, and
precision, defined by the ratio of correctly detected edge
pixels to the number of detected edge pixels. A grid of

TABLE II
RECALL AND PRECISION ON EDGE DETECTION AVERAGED OVER ALL

TESTED NOISE LEVELS AND FREE CONFIGURATION PARAMETERS.

no
filter

Gauss
3x3

Gauss
5x5

Gauss
7x7

bilateral
3x3

bilateral
5x5

bilateral
7x7

rec. 10 91.2 88.9 87.0 84.0 89.6 87.9 85.3
ϕ∗ 15 90.4 88.0 86.0 82.9 88.8 86.9 84.2

20 89.8 87.2 85.2 82.0 88.0 86.1 83.3
35 90.9 88.7 86.8 83.7 89.4 87.6 85.0

θ 45 90.6 88.2 86.2 83.1 88.9 87.1 84.4
60 89.9 87.3 85.3 82.0 88.1 86.2 83.4

prec. 10 84.7 86.7 85.8 80.3 86.3 86.5 83.5
ϕ∗ 15 85.4 87.4 86.1 80.6 87.4 87.0 83.8

20 85.6 87.6 86.2 81.2 87.6 87.1 84.0
35 82.4 84.3 83.5 77.7 84.0 84.3 81.3

θ 45 85.3 87.4 86.1 80.6 87.4 87.0 83.7
60 88.0 89.9 88.4 83.8 90.0 89.4 86.3

the following parameters was searched completely for the
optimal configuration of the algorithm:

• noise reduction (none, Gaussian filter, bilateral filter),
• noise reduction kernel size (3x3, 5x5, 7x7),
• line smoothing width at 2m distance, ϕ∗ ∈ {10, 15, 20},
• minimum detectable edge angle θ ∈ {35◦, 45◦, 60◦}.

Table II compares all configurations based on recall and
precision. The reported numbers are averaged over the five
considered noise levels and the free parameters. The bilateral
filter outperforms the Gaussian filter by a small margin of
up to 1% recall-wise at a similar level of precision, however,
at significantly higher computational costs. Using any noise
filter yields 2% better recall and 2% worse precision but at
heavily degrading performance under increasing noise. There
is a clear trend indicating that a 3x3 smoothing kernel is
preferable over larger kernels. Despite the little differences
smaller smoothing line widths ϕ∗ seem too be preferred
slightly. The performance increases with the minimum de-
tectable edge angle θ caused by a slow decrease in recall
combined with a fast increase in precision. Fig. 2 displays
some recall and precision graphs over the noise levels of
input data indicating that Gaussian filtering obtains the best
robustness at large noise levels. Based on closer inspection
of the individual results and on tests with a real Kinect
sensor we picked the following standard parameter set as the
optimal setting: Gaussian noise reduction with a 3x3 kernel,
ϕ∗ = 15, and θ = 45◦, which represents a good compromise
between robustness and accuracy.

Using this configuration, edge detection requires 27 ms
using two cores with OpenMP and 35.6 ms on a single core,
i.e. a processing rate of 37 Hz or 28 Hz, respectively. At a
realistic noise level of σ = 0.002 the standard configuration
achieves 88.1% recall and 88.0% precision. To put these
numbers in context, the procedures of [2], [3], which only
detect depth edges, yield 66.6% recall and 95.2% precision.
Fig. 5 provides some exemplary 3d edge detection results at
different noise levels.
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Fig. 2. Noise characteristic of precision and recall on 3d edge detection
for 3 different noise reduction methods and fixed ϕ∗ = 15, θ = 45.

C. Accurate Normal Estimation

Based on the previously discussed 3d edge detection
algorithm, a cross-product based normal estimation method
[22] and a depth edge-aware integral image based normal
estimation approach [3] have been extended by complete
edge-awareness. Fig. 3 compares the basic versions with the
extensions in regard to average angular error of the estimated
normals while varying the size of considered neighborhood.
It can be observed that the edge-aware extension improves
both methods substantially beyond half the original error
on average. Furthermore, while the angular error increases
with neighborhood size for the edge-free algorithms, it stays
almost constant when the edge-aware extension is employed.
This finding shows the positive effect on accuracy if normals
are not smoothed over edges by points from different sur-
faces. The graph also indicates a solid normal estimation
accuracy of less than 5◦ for the fast normal estimation
introduced in this work if the smoothing region is chosen
small enough. We tested all three flavors of the integral image
method [3], namely smoothed covariance matrix, average 3d
gradient, and average depth change. Measured over all noise
levels, average 3d gradient surpassed the other two variants
by far with respect to accuracy and robustness and is hence
reported in the graphs.

Fig. 4 is dedicated to a more precise robustness analysis of
the edge-aware normal estimation methods. The fast normal
estimation, although starting at a relatively high level of
angular error of 4.5◦ at low noise, is very robust and does not
increase above 7◦ at heavy noise. Cross product and integral
image based normal estimation are more sensitive to noise
and raise by at least 7◦ between no noise and heavy noise.

Tab. III summarizes and compares several performance
measures of the evaluated normal estimation algorithms at
a realistic noise level of σ = 0.002. It shows that every
methods has its strengths and weaknesses. The classic normal
estimation of the PCL library and the cross product approach
can estimate normals at virtually any point, however, achieve
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Fig. 3. Angular error at different neighborhood sizes measured on noise-
free scenes for fast normal estimation (Sec. IV-C), for edge-aware/non-edge-
aware normal estimation with cross product (Sec. IV-B/ [22]) or with integral
images (Sec. IV-A/ [3]), and for vanilla PCL normal estimation [2].
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normal estimation with integral images (Sec. IV-A), with cross product
(Sec. IV-B), and for the fast normal estimation (Sec. IV-C). The (maximum)
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the lowest accuracy while claiming high computational ef-
forts. In contrast, the extended version of integral image
based normal estimation attains the highest accuracy with
only 2.7◦ angular error at a low computation time of only
90 ms with one core, but at a very low coverage. The
latter drawback might be mitigated by combination with
an accurate and dense approach like the edge-aware cross
product normal estimation, which is, however, rather slow
when computed over the entire image. The most interesting
algorithms for practical usage are fast edge-aware normal
estimation and integral image based normal estimation which
yield very high computation rates around 20 Hz. Whereas
the latter method is slightly faster, fast edge-aware normal
estimation achieves higher coverage and better accuracy,
especially in the vicinity of surface discontinuities.



TABLE III
NORMAL ESTIMATION PERFORMANCE OF 6 DIFFERENT METHODS AT A

POINT CLOUD NOISE LEVEL OF σ = 0.002. THE EDGE DETECTION WAS

RUN WITH PARAMETERS 3X3 GAUSSIAN SMOOTHING, ϕ∗ = 15, θ = 45.
NEIGHBORHOOD SIZES ARE REPORTED IN BRACKETS.

angular
error
[◦]

good
normals

[%]

cover-
age
[%]

time
1 core
[ms]

time
2 cores

[ms]

integral+edge (400) 2.7 96.8 84.5 89.9 80.6
integral (100) 6.2 92.2 93.7 50.8 n/a
cross+edge (80) 6.3 95.8 97.0 654.8 348.5
cross (80) 9.0 89.7 99.9 424.6 229.9
fast edge-aware (61) 5.8 92.7 94.3 62.1 43.4
vanilla PCL (128) 6.6 92.3 100.0 4535.2 2049.1

VI. CONCLUSION

This paper has introduced a novel method for detecting
3d edges caused by depth or surface discontinuities which is
extremely fast to compute yet very accurate. Especially the
novel ability to detect edges at surface discontinuities makes
this algorithm suitable to guide the neighborhood selection
of established normal computation approaches in order to
improve their accuracy significantly. Additionally, we have
proposed a novel fast edge-aware normal estimation method
which re-uses data from edge detection and achieves a com-
petitive performance with respect to quality and speed. The
comprehensive evaluation compared numerous properties of
popular normal estimation algorithms and their edge-aware
extensions and is meant to provide guidance in selecting the
appropriate method for different tasks.

The proposed algorithms are publicly available wrapped
as a ROS package2. We intend to integrate the fast 3d
edge detection and normal estimation methods into the PCL
library in near future.
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σ = 0, comparison of cross product based normal estimation without and with edge-awareness

σ = 0, comparison of integral image based normal estimation without and with edge-awareness

σ = 0.002, comparison of integral image based normal estimation without and with edge-awareness

σ = 0.002, comparison of vanilla PCL, edge-aware cross product based, and fast edge-aware normal estimation

σ = 0.005, comparison of vanilla PCL and fast edge-aware normal estimation

Fig. 5. Exemplary 3d edge detection results (blue lines=depth edge, green lines=surface discontinuities) and classic normal estimation methods compared
with their edge-aware counterparts at various noise levels.
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