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Abstract—In this paper we present a collision avoidance
system based on visual detection. Our hardware consists of
a Hummingbird quadrotor equipped with a large red marker
with two built-in fish-eye cameras. Fusion of the measurements
from the two cameras is done using a Gaussian-mixture
probability hypothesis density filter, which allows for tracking
several aircrafts at the same time. Our collision avoidance
algorithm is based on navigation functions designed to cope with
cameras characterized by limited field of view. Its mathematical
correctness has been proven in a former paper [1]. The collision
avoidance maneuver is performed without the vehicles explicitly
exchanging information via communication but instead relying
solely on on-board sensors. Our system has been validated in an
indoor space with four different collision scenarios. Trajectory
data was recorded with an external motion capture system and
demonstrate good robustness against sensing noise.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), and quadrotors in
particular, are becoming increasingly popular in academia,
industry and with individual aircraft hobbyists. Available
in various shapes and sizes, UAVs are used is numerous
applications including environmental monitoring, military
operations as well as entertainment and various indoor demon-
strations. However, even in the state-of-the-art applications
the UAVs are typically controlled under human supervision.
Recently, new application opportunities for UAVs in the area
of surveillance and package delivery have been attracted the
attention of both research and industrial communities. Such
applications challenges the former remote control paradigm
and push for additional autonomy of the vehicles, as it would
be neither competitive nor financially viable to have one
operator for each vehicle.

Fully autonomous aircraft are a challenge because of the
hazards that they may encounter and represent, especially in:
bad weather conditions and densely cluttered environments
populated by static (e.g., buildings) and mobile (e.g., other
vehicles, human beings, birds) obstacles. Achieving such
dependable flying autonomy is especially difficult for small
UAVs weighing no more than a few kilograms because of
the limited payload for sensing and computation.

One of the key challenges associated with UAVs is collision
avoidance with other aircraft. Both vehicles may or may
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Fig. 1. Picture of one of the AscTec quadrotor equipped with the marker. The
cameras (two large black dots) and the computational system are embedded
into the marker. The small white spheres are markers for the 3D motion
capture system.

not collaborate during the collision avoidance maneuver,
the second being true, for instance, for quadrotor toys
encountering birds. Thus the UAV has to rely on detection
and tracking of an obstacle with on-board resources to move
away from the threat. A natural solution is to mimic the
ability of human pilots and use vision as main sensing
modality [2]. In [3] and [4] a camera is used for collision
avoidance. The position of encounter on the image is directly
used to derive a control law for the collision avoidance.
While the proposed algorithm has been designed to take into
account the inherent characteristics of an on-board camera,
it is unclear whether it can cope with multiple targets. The
experiments have been done with only a single quadrotor
avoiding static obstacles monitored by a Motion Capture
System (MCS) and the visual processing carried out off-
board. In a successive contribution, the authors improved
their methods by optimizing the trajectories using a model
predictive control method [5]. Another solution with a vision
system has been proposed in [6], where the on-board camera
of an AR-Drone was used to estimate the other quadrotor’s
position using a specific marker. As avoidance algorithm
the authors used Optimal Reciprocal Collision Avoidance
(ORCA). The quadrotors were remotely piloted by humans
who attempted to make the quadrotors collide. The ORCA
algorithm was responsible to avoid the collision and generated
smooth and optimal trajectories in terms of discrepancy
with the desired vehicles’ velocities. However, no avoidance
guarantee was given. Oscillation were noticed by the authors
probably due to errors in the velocity measurement. Our
present work aims to address several of the points above,
namely designing a system capable to track and avoid multiple
aircraft with guarantees under unreliable velocity estimates.

Some background on collision avoidance algorithms and



tracking algorithms is given in Section II. The proposed
solution is presented in Section III. Experiment results are

presented in Section IV. A conclusion is given in Section V.

II. BACKGROUND
A. Tracking

The tracker needs not only to estimate the trajectory of an
encountered aircraft but also to give the correct number of
aircraft present in the surrounding area. Several multi-target
tracking algorithms have been designed over the years and
can be separated in three major categories: Joint Probabilistic
Data Association (JPDA) [7], Multiple Hypothesis Tracking
(MHT) [8] and Random Finite Set (RFS) trackers [9].

RFES theory is a source of new and effective tracking
techniques with a wide range of possible applications. A
brief introduction will now be presented. For more in depth
theoretical explanations, please refer to [9], [10].

RFS extends the notion of random variables to sets. Those
sets come from considering that at time k there are M (k)
targets present in the scene. Their states X 1, ..., Xg pr(k) € X
become Xg 41,1, -+, Xp41,M(k+1) at time k+1. X is the state
space. At time k the sensor generates N (k) measurements
Zk,1, - Zk,N(k) € £ with Z the measurement space. The
number of targets and measurements may not be the same
due to misdetections and clutter. The random sets are defined
as:

Xy = {Xk,l,n-,xlc,M(lc)}e}—(X) (D)
Zy = {Zk,lwnazk,N(k)}eJ—'.(Z) )

with F(X') and F(Z) being the respective collections of all
finite subsets of X' and Z. One can write the targets’ time
evolution using RFS. If X;_ is the multi-target state at time
k — 1, each x;,_1 € X _1 either continues to exist at time
k with probability pg i (xx—1) or disappears with probability
1 — ps.p(xk—1). If the target survives, it will transition from

state X3, 1 to X3, with probability density fi,—1(Xx|Xr—1)-

Using those definitions, one can build the set Sy ;1 (Xx—1)
that returns {x;} with probability ps ;(xx—1) and @ with
probability 1 — pg x(xx—1). Targets can also appear between
time k — 1 and k, which is described with the RFS I';.. In
this paper we ignore targets birth from other targets. The
time evolution of X}, is given by:

U Skie—1(¢

CEX)—1

Xiy1 =
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In a similar way a RFS model can be written for the
measurement set. At time k, a target x; € Xy can either
generate a measurement z;, with probability pp (xx) or
generate none with probability 1 — pp x(xy). Each target x
generates a RFS O (xy) that either returns a measurement

{zr} according to gi(zx|xy) if it is detected or & if not.

The sensor might also be corrupted with clutter, which is
described by the RFS K. The RFS Z;, given X} is given
by:

U Kg (C))

Zk = [ U @k(x)

x€EX

Similar to the single target case, the multi-target transition
and observation randomness can be captured with a multi-
target transition density fi,—1(Xx|Xk_1) and a multi-target
likelihood gy (Zk | Xk).

If p (| Z1.1) denotes the multi-target posterior density then
the optimal multi-target Bayes filter is given by:

Prjk—1(Xk|Z1:-1)
= /fk|k—1(Xle)pszl(X|Zl:k71)/ls(dX)7 )]

9k (Z1) Xk )Prjr—1 (Xk| Z1:6—1)
J 9k (Zi| X )prjp—1(X | Z1:k—1) ps (dX)

Computing Equations 5 and 6 requires the evaluation of
several integrals on F(X'), which is intractable.

To have a tractable algorithm, it is possible to propagate a
first order statistical moment instead of the full multi-target
posterior density. Such filter is called a Probability Hypothesis
Density (PHD) filter. The first order moment of a RFS X
with probability distribution P is a non-negative function v
on X called intensity such that for each region S C X,

/|XﬂS|P(dX):/Sv(x)dx (7

Equations 5 and 6 can be approximated using an intensity
measure, leading to the following equations:

Okt (x) = / P51 () oot (X101 () + 71 (),
®)

pr(Xk|Z1x) =

(6)

vp(x) = [1 = pp, k( x)| vk -1 (x)
PD.k(X) gk (Z |X>Uk|k71(x)
+z§ )+ Dk (C) gk (2|C) v -1 (¢)dC

with ~.(x) the intensity of targets appearing and k(z)
the intensity of clutter in the measurements. Even if this
formulation reduces the computational cost, Equations 8
and 9 do not admit a general closed form solution. By
approximating the intensity as the sum of Gaussians, the
Gaussian Mixture Probability Hypothesis Density (GM-PHD)
allows for a closed form solution in a similar form to the
Kalman filter. The intensity of the GM-PHD filter is of the
form:

(©))

zwuw (x;m”, P (10)
with Jj the number of Gaussians in the intensity at time k.
m,(:) is ¢ gaussian’s mean (in this case a vector composed
of the target’s position qff) [x,i )yl yk 2 (l 17

)) at time k and P( " is its covariance. w,(C
assomated with the Gaussian.

and velocity
is the weight

B. Avoidance

Several collision avoidance algorithms can be classified in
three different categories: direct control, Navigation Function
(NF) based and Velocity Obstacle (VO) based. Direct control
uses the sensor measurements as input of the controller in [4]
where the position on the image is directly used to compute



the desired vertical velocity and yaw rate. Another category
of algorithms are the ones based on NFs. NF algorithms use
an analytic function of which the gradient is the direction
to follow. The NF can be adapted to fixed-wing aircraft
[11], [12] or quadrotors [13]. Sensing limitations can also be
incorporated. Finally, there is also the VO-based algorithms,
where the other aircraft are represented as forbidden velocities
areas in the velocity space. Host aircraft velocity is then
computed as being both allowed and closest to desired
velocity. Such algorithms have successfully been applied
to quadrotor with a MCS [14] and vision as sensing modality
[6].

In this paper sensing is based on vision, which typically
has a limited field of view. Two types of algorithms have been
used with vision so far. The first is the control law from [3],
which is not multitarget. Another proposed solution is VO
based avoidance [6], for which they noticed oscillations due
to noise in the sensing. In [1] we proposed a new collision
avoidance method for fixed-wing aircraft based on NF. The
algorithm uses the NF when no other aircraft is near and
switches to a collision avoidance maneuver when an aircraft
gets too close to the host vehicle.

III. PROPOSED SOLUTION

Our solution consists of equipping a quadrotor with two
fisheye cameras. The images from the two cameras are
processed using color segmentation and fused using a GM-
PHD filter. The information about encountered quadrotors
is fed to the collision avoidance algorithm that sends the
commands further to the low-level control, as it is illustrated
in Figure 2. Our work is based on the following assumptions:

o They have the same hardware and use the same detection,
tracking, and avoidance algorithms.
o They carry the same marker.
o They fly at a similar height.
o They have at all times information about their own state,
namely position, velocity and orientation.
Throughout this paper we will use the following notation. The
quadrotor state is defined by its position q = [z,y, 2]7, its
velocity v = [#,7, 2] and its orientation with regard to the
world frame in the form of a rotation matrix Ry = Ry Ry R
with ¢ yaw, ¢ roll and @ pitch angles. The transformation
from the world to the body frame is noted Rp = RY;,. The
quadrotor has two cameras, each one with a Field Of View
(FOV) of a4 as shown in Figure 3. The two cameras give
the quadrotor a combined FOV of 2a. Each quadrotor is
circumscribed by a virtual safety cylinder of radius r that
should never be entered. We consider a collision occurs when
two quadrotors come closer than a distance 2r.

A. Platform

To test our algorithms, we use a Hummingbird quadrotor
from Ascending Technologies as baseline platform. The
quadrotor is augmented with a ARM-based CPU from
Gumstix and two fisheye (185° FOV) USB cameras at a
resolution of 320 by 240 pixels, all encapsulated in a red
marker with a diameter of 15 cm. Such marker allows

GM-PHD filter Avoidance Low Level
Control

Host State
Data

Fig. 2. Flowchart of the proposed solution. The two camera blocks capture
and process the image, including the color segmentation. The measurements
are fed into the GM-PHD filter which outputs target’s locations. The
avoidance block computes the desirable velocity and yaw rate to avoid
the collision. The low-level block computes the motor speeds required to
fulfil the commands of the avoidance algorithm. All blocks have access to
host’s state.

Area sensed
by Cam2

Fig. 3.
paper.

Ilustration of the important angles and distances appearing in this

to be seen from all sides to the expense of accuracy and
reliability compared to other marker types. The cameras are
rotated toward each side with an angle of 45° so that their
combined field of view is more than 220°. Figure 1 shows
one quadrotor during flight. The software is written within
the Robotic Operating System (ROS) framework. To interface
our software with the quadrotor, the asctec_mav_interface [15]
ROS package was used.

B. Computer Vision

There exist numerous computer vision algorithms to detect
objects, but only a few of them have been adapted for
detection of a generic aircraft and none with a low enough
computational complexity to be run on-board of small
quadrotors. In order to relax the computational requirements
of a on-board solution based on computer vision and at
the same time make the effort relevant for future enhanced
embedded computational capabilities, we have decided to
simplify the detection task by adding an easy-to-detect marker
on the vehicle in the form of a red sphere (see Figure 1).
While the detection task is now simplified, all the other
difficulties are maintained: estimation of the position and size
based on monocular vision, sensing affected by noise (clutter
and misdetections). Color segmentation is used to detect the
15 cm in diameter red marker. The algorithm returns the
position of the color blob’s center as well as the number of
pixels it covers. The color segmentation is performed on the
raw image obtained by the camera. No distortion correction



or smoothing is performed in order to save CPU time. As all
markers are identical, there is no possible identification of
the quadrotors..

C. Tracking

The GM-PHD filter has four fundamental steps. First, a
prediction step is done by applying the motion model on
previous intensity. Then the intensity is updated with the
newly acquired measurements. To keep the algorithm tractable,
the Gaussians are merged and pruned in the third step. Finally
the targets are inferred from the intensity map during the
extraction step. Each step is performed at the time one of the
cameras returns a measurement. We will now describe each
stage individually.

1) Prediction: During the prediction step, the intensity is
computed as:

(@)

(2) (2)
Vplr—1( ZPSk mk|k 1 Jwy N (x; Mk 1’Pk\k 1)

+7k( )- (11)

The appearance model is defined to cover the quadrotor’s sens-
ing region. Thus the appearance is defined i m the quadrotor S
body frame: m,(y)k = [q,(y )k, 0,0,0]” with q,y e = quﬂ{ , +a

The predicted mean and covariance are defined as:
(4) (])

M 1= Fr_imy” (12)
P,Sk 1 = Qr—1+ Fr_ PR (13)

with Fj,_ the transition model and Q5 _1 motion noise model.
Note that Equation 11 differs from [10] in that the survival
probability pgj is not constant but is a function of the
gaussian mean. This is an approximation necessary to cope
with the limited FOV of the sensors as the targets might
accumulate in non-sensed areas if care is not taken. In this
application pg , is defined as:

i 0.9
sl = {

0.2
2) Update: The update step for a set of measurements Zj,
is given by:

if |4;] < 110°

otherwise (14)

Jk
vk(X):Z(l—pD,k(mgl)k_l))wgl)k N (x; ml(:‘)k 1,Pl£|l,)¢ )
=1
Jk )
+ Z Zw,(j)(z) (x; m,(sl)k( ), PIS‘Z;) (15)
ZGZk i=1
with
(1) @ )
w(i)(z)— pDk(mkuc 1)wk|k 1 (2) 16)
R @ 0@
“(@'*§:i1PD$O”mk Dwi_1 b (2)
I (2) = Nz HY'm{),_,, R+ HY P [HOTT)
(17)
mih (@) = mi + K (2= HOmi, ) (18)
(i) (@) ] p
Pl = [1- K HS | PG (19)
Ky = PziTk N (H()P,f“)c JHIOT 4 Ry (20)

with x(z) the clutter level and Ry, the sensor noise covariance.
Because the targets are only detectable when in the FOV of
the cameras, the detection probability pp j of cameral € 1,2
is not constant and instead is equal to:

. O‘d

le’k(ml(cl\)k_l): { (0)-95 l)ft}:/é?‘;ﬂ;ei <¢; <1/)cl+ —_%
(21)
with ). is the heading of camera [ in the world frame and
oy, the field of view. This approach is similar as the one

found in [16]. H ,il) is the linearized sensor model:

8hk (Xk)

H(i) —
k OxXp.

(22)
()

Xe="M k-1

The camera model is defined as follows: First the location
of target ¢ is put in camera’s body frame:

Rey ( (4) q)

Then the position on the image [xé“,y;(f)]T

including camera’s distortion:

(1) _

Ay = (23)

is computed,

2 = —Fal) + X, (24)
y,<:> = ~Fyy; +Yo (25)
()
y
Ty = l(”)“ (26)
Lk
(3)
z
r, = —k 27)
O]
b,k
x((;) = [krry +2Piryr, + Py (sr + ri)} (28)
yc(;) = [kTrz +2Pryr, + Py (sr + 7‘3)} 29)
s =12 412 (30)
kD =1+ Kis, 4+ Kos? (31)

with K1, Ko, Py, P, I, F, Xy and Yj are parameters
of the camera. The intrinsic parameters of the camera are
measured using a dedicated ROS calibration package [17].
The sensor model for target’s pixel size sz(f) has been derived
empirically:

TF2S?
2 (1012 = Kalla@a
gy 11> + Ksllay 1

(32)

with S; the marker’s size and Kg a distortion parameter.
3) Selection: To keep the problem tractable, the number
of Gaussians needs to be limited. This involves two steps:
pruning and merging. First, only the Gaussians with a
weight more than a certain value are selected: I = {i =
.,Jk|w,(f) > T}. Then the Gaussians are merged as
follows. First the largest gaussian is selected, that is j =
argmax; Iw,(:’). Then all Gaussians that are close enough are
selected:

Li={ienm? = m?) (P’ —m{) <U} (33)



and are merged into a unique gaussian:

50 =3 G4
zGI
=) _
iy, l) Yoy (35)
i€l
p) _ w® (PO 4 ~(l) @)y (7D (@)
b= z)z ' (P my, =)y, —my! )T)
i€l
(36)

4) Extraction: Extracting the target from the RFS intensity
is performed by selection of the largest maximas of the
intensity function. For the GM-PHD filter, this reduces to
deciding on the Gaussians with weight larger than 0.5, as
explained in [10].

D. Collision Avoidance

While the avoidance algorithm proposed in [1] has been
initially designed for fixed-wing aircraft, it can be also
deployed on more agile rotor-based vehicles as they can
follow a fix-wing type dynamics. Proceeding along these
lines has an experimental interest as it is easy to carry out
experiments with quadrotors in limited indoor space and
allow us to easily consider multiple vehicle dynamics. The
algorithm proposed in [1] has also the advantage to not rely
on velocity estimates of other aircraft, which are poor due to
low camera resolution and marker characteristics. However,
such a decision has the drawback to not having being designed
to take advantage of the native agility of a quadrotor. The
design of a more competitive, custom solution for quadrotors
is beyond the scope of this paper and will be investigated in
the future.

The avoidance algorithm proposed in [1] has been designed
for unicycle type vehicle moving in the plane, so the
dynamical equation of the vehicle is:

Ty ccos
Yi | = |csing
¥t u

with u the turning rate command and c vehicle’s forward
speed command. Those commands are given by the following
equations:

(37

u=K (1 — max(ﬁajﬁd )) (e — )

FVmaa:

+ Z ﬂa] ﬁd d
ij

AVmax(ﬂaJ B, )

with K a constant gain, V), aircraft’s maximum forward
velocity and AV an allowed change in velocity. The 3, 84,
are responsible for the smooth transition between the navi-
gation and collision avoidance. They use the range d; and
bearing 1); information from target j with state g;:

(38)

(39)

¢ =Viaz

(40)
(41)

dj=lla; —all =7 —r;,
;= atan2 (y]_i) — ).

The term 34, is responsible for the transition when another
vehicle enters or leaves quadrotor’s sensing range and is given

by:
< R. — 0.4(R. — Ro)! — g, )

;] “42)
Rs — 0.4(Rs — R,) %l _ R,

Ba; =B

with R, quadrotor’s sensing range and Ra a range for with
host aircraft will only perform avoidance. In this paper (4,
differs slightly from what was proposed in [1] in order
to diminish the avoidance strength on the sides of the
quadrotor so as to obtain smoother trajectories. Nonetheless,
the guarantee of collision avoidance remains as the proof of
it is based on the region where 34,3,, = 1, which remains
the same as in [1]. The term ﬂaj is responsible for a smooth
transition when the encounter leaves or enters the border of
quadrotor’s FOV and is given by the following equation:

C(S—E

The 3(-) function is a smooth monotonically increasing
function between 0 and 1 :

(43)

0 ifa<0
Bla)=14 fla) if0<a<1 (44)
1 otherwise
fla) = 3a* - 2d° (45)

The navigation to a goal qg,
navigation function:

Vi) = llai — aa, |2 + K,8 (ql_%qd”> ez (46)

is given by the following

P
. . X
with K, some constant gain, e; = 9o, H?; ) cijl\l as,)ll -,

term that brings the quadrotor on its desired tra]ectory deﬁned
as a line between its starting point q,, and the goal point
dq4; - The desired heading v; is defined by the opposite
direction of NF’s gradient, that is, ¢; = atan2(y;, z;) with
w0, y]" = =V Vi(a).

Presented collision avoidance considers motion in the
horizontal plane but has no influence on the vertical axis,
which can be controlled independently. As we assume that
the quadrotors fly at a constant height, the vertical control is
done by a proportional velocity control:

z't = Kz (Zt — Z) (47)

with z; being the target height. It is desirable to keep the
height constant instead of also avoiding on the vertical plan as
the quadrotor create a strong downward airflow. This airflow
reduces the controllability of the quadrotor and should be
avoided. The desired velocity vy = [Z+, U, z't]T and desired
yaw rate z/}t are then sent to the low level control node.

E. Low-level Control

The low-level control node is responsible of translating the
desired velocity and yaw rate in commands understandable
by the quadrotor. The Hummingbird quadrotor is already
performing the attitude control, leaving us to compute the
desired thrust and attitude. The inputs are the thrust, roll



and pitch angles, and the yaw rate. The yaw rate from the
collision avoidance algorithm is directly fed to the quadrotor.

The velocity is controlled by acceleration. First, the control
acceleration a., needed to obtain the desired velocity, is
computed:

a. = K,(vi —v)+mgz + a; (48)

with mgz the gravity compensation and and a; quadrotor’s
target acceleration. This target acceleration is useful to bring
the quadrotor’s dynamics closer to a unicycle type vehicle as
used in [1] by adding a radial acceleration:

—siny
cos
0

a; = uc (49)

with v and ¢ given by Equations 38 and 39 respectively. The
control acceleration is used to compute the thrust and the
roll and pitch angles. To be consistent with the quadrotor
commands, the control acceleration first needs to be aligned
with quadrotor’s yaw angle

a, = Rgac. (50)

The thrust is then given by the vertical component of control
acceleration ap .. The thrust is also compensated for the
orientation of the quadrotor to ensure that its real vertical
acceleration corresponds to the control acceleration:

_ ap,z
~ cos(¢) cos(0)

The roll ¢. and pitch 6, commands are given by the control
acceleration direction

(S

(52)
(53)

P = arctan(ab,z, ab,y)

0.= arctan(ap, », apz)-

The thrust 7', roll angle ¢., pitch angle 6. and yaw rate are
then sent to the quadrotor using asctec_hl_interface package
[15].

IV. EXPERIMENTS
A. Experimental Setup

The experiments have been realized indoors. To replace
the GPS+IMU unit, we used a MCS from Motion Analysis
consisting of 20 Osprey cameras to determine the pose of
the quadrotor. The room’s useful volume is about 4 by 7
meters and 2.5 meters high. Each quadrotor gets its position
and orientation through WiFi. The WiFi is only used to send
to the quadrotor its pose and commands from the operator.
There is no communication from quadrotor to quadrotor.

B. Scenarios

Four scenarios were designed to validate the proposed
system. They are illustrated in Figure 5. In the first scenario,
called “Head-on”, a quadrotor starts at [0, —1.6, 1.2]m and
aims to go to [0,1.6,1.2]m, and vice-versa for the other
quadrotor. The second scenario, called “Cross”, is a cross-
ing scenario where one quadrotor starts at [0.8,1.6,1.2]m
and with the target position at [—0.8,—1.6,1.2]m. The

X [m]

Fig. 4. Tracking error of a single target obtained by systematically moving
a quadrotor in front of another quadrotor with a fix position. The black
circle shows the quadrotor position, the black arrow is the heading and the
dashed lines the region used for avoidance.

other quadrotor starts at [0.8, —1.6,1.2]m and aims to go
to [—0.8,1.6,1.2]m. In the third scenario, called “Side”,
one quadrotor starts at [0.9,—1.6,1.2]m and aims to
go to [—0.9,1.6,1.2)m. The other quadrotor starts at
[-0.9,—1.6,1.2)m and aims to go to [0.9,1.6,1.2]m. The
final scenario, named “Three”, involves three quadrotors
to show the capability of our system in handling multiple
encounters simultaneously. Two quadrotors have the same
start and goal positions as in the second scenario, and the third
quadrotor starts at [—1,0,1.2]m and the goal at [1,0,1.2]m.

The parameters for the tracking and collision avoidance
algorithms were the same for all scenarios. The birth model
for the GM-PHD filter is a sum of three Gaussians of weight
0.01 at positions [—1,0.2,0]m, [1,0.2,0}m and [0,1.2,0]m
(in quadrotor’s body frame). Their birth velocity is zero. The
variance on position is 32[m?] and 4[m?/s?] for velocity.
The motion model is given by:

13 AI3 :| A4Um[3 LSO"”IQ),
F = Q= A 2 54
k |: 03 IB Qk Ad%[g A2O'7nfg ( )
with 0, = 0.5 and the time delay A = 10ms. The
measurement noise is
16 0 O
R,=1] 0 16 0 (55)
0 0 64
The clutter level is different depending on the measurement
size sV
P
1 e (8
K(2) = { 320%240%200 it sp” <10 (56)
.01 .
TP+ 3407300 otherwise

as clutter has usually only a few pixels. The cameras are
pointing left and right from the x axis with an angle of 45°.
The cameras’ FOV qy is 127°. The half overall FOV «;
is 110° The merging parameter U = 2 and the Gaussians
are pruned if their weight are less than 7' = 1075, For the
collision avoidance algorithm the parameters are: r = 0.35m,
Viaz = 037, AV = 0.1%, Ry, = 1.2m, R, = 0.4m,
as =110°, K =0.5, K, =0.8.
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Fig. 5. Plots (a), (b), (d) and (e) show the results obtained during scenarios “Head-on”, “Cross”, “Side” and “Three” respectively. All solid lines corresponds
to real data and all dashed lines to simulated data. The trajectories of each quadrotor are depicted in a different color (blue, red, and green for the first,
second, and third quadrotor, respectively). Plot (c) shows the boxplots (red line is the median, the blue box represents first and last quantiles) of the minimal
distance between real quadrotors for 50 experiments for all four scenarios. The red dashed line represents the distance for which quadrotors would be
considered to have collided. The green dashed line represents the average performance of the simulation (realistic model) for 50 experiments. Plot (f) shows
the boxplots of the maximum deviation from desired trajectory for 50 experiments using real quadrotors for all four experiments. The green dashed line
represents the average performance of the simulation (realistic model) for 50 experiments.

C. Results

With the parameters’ values mentioned above, the system is
able to achieve around 10 Hz frame rate for each camera with
a 200 milliseconds delay split between capturing time and
processing time for each camera. Because we are using ROS,
there is a lag of 50 milliseconds between the computation of
the command and its execution by the quadrotor.

The sensing is very noisy, as illustrated in Figure 4. It
ranges from a RMS error of 0.25 meters at close range to
more than a meter at longer distances. This error is mostly
due to the noise on the marker size. Indeed the apparent
marker size ranges from a few pixels to a few hundred and
the marker edge is not smoothed, resulting in a small signal-
to-noise ratio. Nonetheless the sensing accuracy is enough in
the region used for the collision avoidance (dashed lines in
Figure 4).

Representative trajectories for the four scenarios are shown
in Figure 5 (solid lines). Fifty collision course runs (using
real quadrotors) have been performed for each scenario. The
quadrotors never collided during the 200 runs. Figure 5 shows,
overlapped to real robot data, also trajectories obtained with
a point-mass, microscopic simulator implemented in Matlab
and already leveraged in [1]. In order to shed further lights on
the various source of errors, in contrast to our previous work,
we have extended our simulator to include real world effects
in terms of sensing, actuation, and computation. In particular,
the simulation has been adapted to include a Gaussian noise

on the sensing of 0.25 meters RMS, a sensing lag of 200
milliseconds, a control lag of 50 milliseconds. Also the model
of the unicycle in the simulation has been adapted to include
inertia. The aircraft in the simulator has thus the dynamical
equation:

Tt ccos

Ye | _ csin

o W (57)
Wi —3(wt —u)

instead of Equation 37. A saturation on yaw acceleration
of 32‘1—2‘1 was also implemented. The obtained trajectories
are less smooth than what was presented in [1] for two
reasons. First, the sensing range Rgs is smaller compared
to the vehicle size than in [1] which results in sharper
trajectories. Second, our system is now affected by real-
world imperfections (noise, lag). This can drastically change
the trajectory of the quadrotors as for the “Side” scenario
the left quadrotor prefers to do a full 360° turn to avoid
the other quadrotor. The interplay of those real-world effects
can drastically modify obtained trajectories, as illustrated
in Figure 6. It appears to be mostly due to the lag (both
in sensing and control) as the 360° turn behavior does not
appear if the sensing noise is applied without any lag.

This sensibility to lag is inherent to the collision avoidance
algorithm. Indeed, when another quadrotor enters the collision
avoidance zone of the host quadrotor, the later will turn
until there is an equilibrium between the avoidance and
the navigation component. This equilibrium happens mostly
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Fig. 6. Illustration of the trajectories of the noise-free and lag-free model
(in dashed lines) and the realistic model that includes noise, lag, inertia and
saturation (solid lines) for the “Side” scenario.

because the angular transition function Baj tends to O (as
the bearing angle changes faster than the distance). But the
region in which 3, ranges between 0 and 1 corresponds only
to 20° in bearing. Since there is lag in sensing and control,
the quadrotor overshoots the yaw angle. At overshooting, the
quadrotor will switch behavior and go back to navigation. In
the “Side” scenario case, the overshoot brings the quadrotor
to a state where following the navigation function leads to a
360° turn.

The minimum horizontal distance between the aircraft
during the runs extracted from the MCS are shown in Figure
5. The average minimum distance obtained in simulation
is lower by approximately 20 centimeters for all scenarios.
This might be due to unmodeled phenomenons, such as the
airflow generated laterally by the quadrotors that tends to push
them away from each other. The distances are well above the
distance for which the quadrotors will be considered to have
collided. As a second metric, the maximum deviation of the
quadrotors from their desired course (virtual line between start
point and goal) over a run has also been recorded (Figure 5f).
Even if the simulations are quite close to the real trajectory
for three out of four scenarios, there is a significant difference
for the “Side” scenario resulting on a larger delta between the
two mean results on the metric of Figure 5f. This is because,
in both simulation and reality, the two behaviors illustrated in
Figure 6 are present but not with the same weight. In reality,
the most common case is where the quadrotor does a 360°
turn. In simulation, the smoother trajectory is more common.
The switching behavior is hard to capture, and has significant
effect on the metric.

V. CONCLUSION

In this paper, we proposed a collision avoidance system
for small UAVs. The system is composed of a small on-
board computation unit and two cameras embedded in a large
marker. Color segmentation is used for obstacle detection for
the time being but in the future a more general algorithm
can be used as long as sufficient computational resources are
available on-board. A GM-PHD filter is used for sensor fusion
and filtering. A previously published promising algorithm
based on navigation functions and able to natively take into
account limited FOV sensing was adapted for coping with
real-world effects and ported to reality. The solution has been

implemented on a real robotic system consisting of up to
three quadrotors and validated with four different scenarios,
including one with multiple targets to avoid. All computation
was done on-board, except the host position information that
was given by a MCS. A thorough analysis of the system
has been performed and showed that while the algorithm is
robust to sensing noise, it is quite sensitive to lag in sensing
and control.

The proposed system should be able to work with a
GPS/IMU unit instead of a MCS for outdoor flights. Future
work includes improving the collision avoidance algorithm
in order to generate smoother trajectories and being less
sensitive to sensing and control lag. To further systematically
validate the algorithms, we intend to test it in a high-fidelity
simulator under a variety of scenarios.
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