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Abstract— Teams of mobile robots can be deployed in search
and rescue missions to explore previously unknown environ-
ments. Methods for joint localization and mapping constitute
the basis for (semi-)autonomous cooperative action, in partic-
ular when navigating in GPS-denied areas. As communication
losses may occur, a decentralized solution is required. With
these challenges in mind, we designed a submap-based SLAM
system that relies on inertial measurements and stereo-vision
to create multi-robot dense 3D maps. For online pose and map
estimation, we integrate the results of keyframe-based local
reference filters through incremental graph SLAM. To the best
of our knowledge, we are the first to combine these two methods
to benefit from their particular advantages for 6D multi-robot
localization and mapping: Local reference filters on each robot
provide real-time, long-term stable state estimates that are
required for stabilization, control and fast obstacle avoidance,
whereas online graph optimization provides global multi-robot
pose and map estimates needed for cooperative planning. We
propose a novel graph topology for a decoupled integration of
local filter estimates from multiple robots into a SLAM graph
according to the filters’ uncertainty estimates and independence
assumptions and evaluated its benefits on two different robots
in indoor, outdoor and mixed scenarios. Further, we performed
two extended experiments in a multi-robot setup to evaluate
the full SLAM system, including visual robot detections and
submap matches as inter-robot loop closure constraints.

I. INTRODUCTION

Search and rescue (SAR) missions following up disaster
events often take place in environments that are hard or
dangerous to access for humans. Teams of mobile robots
can be deployed to raise the rescue workers’ situational
awareness while keeping them out of danger. These robots
have to operate in previously unknown semi- or unstructured
environments where external methods for localization like
(D)GPS are not always available. In order to operate in such
challenging environments, local reference filters can provide
real-time local state estimates on each system to allow for
fast obstacle avoidance as well as the stabilization of highly
dynamic systems. Our novel SLAM framework connects
these estimates for global joint localization and mapping,
which acts as the basis for coordinated cooperative actions
within a team of robots. We therefore designed a decen-
tralized solution and perform all computation online and on
board the individual systems in order to gain robustness w.r.t.
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Fig. 1. Top: Multi-Robot map and graph for an indoor scenario with robot
detections as inter-robot loop closure constraints. Bottom: Experimental
setup and camera image of P3DX as seen by P3AT.

communication losses and failures of individual robots. Our
robots are equipped with stereo cameras and we employ
semi-global stereo matching (SGM) [1] to gather dense
3D data under varying light conditions in both indoor and
outdoor environments. We follow a submapping approach to
create a dense multi-robot 3D map and apply graph SLAM
to both optimize the map as well as the 6D pose estimates for
all participating robots. In Figure 1, we present the joint 3D
map created by two rovers equipped with narrow- and wide-
angle stereo camera systems and provide a sketch of our
experimental setup. We exchange submaps between robots
and integrate marker-based visual robot detections as well as
submap matches to obtain intra- and inter-robot loop closure
constraints. The contributions of this work are twofold: First,
we propose a decoupled integration of keyframe-based local
reference filters and online multi-robot graph SLAM with in-
cremental optimization. To the best of our knowledge, we are
the first to combine these two methods to benefit from their
particular advantages for 6D multi-robot localization and
mapping: Local reference filters on each robot provide real-
time, long-term stable state estimates [2] that are required
for stabilization, control and fast obstacle avoidance, whereas
online graph optimization provides global multi-robot pose
and map estimates needed for cooperative planning. We
propose a novel graph topology for a decoupled integration
according to the filters’ uncertainty estimates and inde-
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pendence assumptions. Second, we integrate the filter and
SLAM components into our modular mapping architecture,
combining them with visual robot detections and submap
matching based on geometric features. This allows matches
between robots with different camera systems to generate
loop closure constraints in heterogeneous multi-robot teams.
They are all accompanied by Gaussian uncertainty estimates,
which we take into account during optimization.

We present two types of evaluations. First, we evaluate
the impact of our novel integration of local reference filter
estimates, showing an average improvement on localization
accuracy of 15 % in three experiments performed in indoor,
unstructured outdoor and mixed scenarios on two different
robots. Second, we conducted two extended multi-robot map-
ping experiments in an indoor scenario with unknown initial
robot poses. We evaluated the full SLAM system, including
visual robot detections and submap matches as inter-robot
loop closure constraints between two robots equipped with
different stereo camera systems. We achieved an improve-
ment for the joint localization accuracy compared to single-
robot SLAM with submap matching of on average 32 %.

II. RELATED WORK

Within the large body of related work on simultaneous
localization and mapping (SLAM), three fundamental tech-
niques can be identified: Extended Kalman Filters (EKF),
Rao-Blackwellized particle filters (RBPF), and graph opti-
mization. In EKFs, landmark-based maps are modeled as
multivariate Gaussians, typically implying a quadratic growth
of the computational effort with the number of landmarks [3].
RBPFs tracking a multi-modal distribution over robot trajec-
tories accompanied by grid maps are often employed for 2D
mapping [4]. As the number of particles required for stable
and robust estimation grows exponentially with the size of
the state space [5], RBPFs are computationally challenging
for 6D SLAM [6]. While RBPF approaches exist for multi-
robot 2D mapping, they pose additional restrictions, e.g.
limiting information exchange between robots to rendezvous
events [7] or requiring similar robot moving speeds to avoid
particle depletion [8]. RBPFs are thus not well suited for
multi-robot 6D SLAM. Graph SLAM gained popularity since
recent advances in sparse nonlinear incremental optimization
[9] allow its application for online localization and mapping.
A graph represents 6D poses, connected by measurements
with Gaussian uncertainties. On loop closures, non-linear
least-squares optimization is applied to reduce the overall
error. Its worst-case computational effort depends on the size
and complexity of the graph and thus typically grows with
the traveled distance. This challenge can be approached by
constraining the optimization to local regions [10] or remov-
ing nodes through marginalization [11]. We consider graph
optimization to be the most promising technique for 6D
multi-robot SLAM. Inter-robot measurements can easily be
integrated as constraints connecting multiple subgraphs while
keeping the complexity of the optimization manageable [12].

The creation of submaps is a technique to handle large
quantities of sensor data, e.g. dense 3D information, by

locally aggregating them into multiple maps of limited size
[13] [14] and adding their origins as nodes to the slam graph.
The sparse structure of the resulting graph allows for efficient
optimization steps while the submaps themselves can keep
more sensor information than key-frame based systems that
sparsely sample the incoming sensor data [15]. Submapping
is in particular suitable for multi-robot systems, as under
communication constraints, an exchange of submaps is more
viable than an exchange of the complete raw sensor data.

The integration of filter and graph SLAM methods allows
to fulfill both local real-time requirements as well as to
provide global multi-robot estimates. An adequate integration
of filter estimates instead of sequential odometry measure-
ments, however, requires an adaption of the graph topology,
as we discuss in this work. Leishman et al. [15] combine
a keyframe-based local reference filter with a pose graph
for global localization, representing all keyframes as nodes
in the graph. In contrast to their work, we decouple the
graph from internal filter states and thus can trigger the
creation of new local reference frames from the higher-level
mapping modules. This allows us to keep the graph size
independent of the number of keyframes, which can be orders
of magnitude larger than the number of submaps required
for mapping. Furthermore, Leishman et al. track only one
keyframe at a time, did not yet incorporate loop closure
constraints and solely consider single-robot setups. Williams
et al. [11] split a graph that contains all measurements into a
real-time filter for the most recent data and a slower smoother
for past states. Running these in parallel, they are able to
recover the solution of full batch optimization. This however
requires a tight coupling between filter and smoother, which
exchange state information in both directions. While both
work on the same types of sensor data, we propose to process
measurements at different levels of abstraction in our filter
and SLAM by solely adding aggregated pose information to
the graph. As Williams et al. [11] feed loop closure results
back into their filter, they cannot guarantee it to produce a
smooth trajectory, which however is required for stabilization
and control of highly dynamic systems.

We are aware of several multi-robot graph SLAM ap-
proaches [16] [14] [13] [17], however each of them has
its own limitations. They either assume unlimited commu-
nication [16], restrict the enforcement of loop closures [14],
require a master node to decide on inconsistencies [13] or
solely provide simulation results created under simplifying
assumptions [17]. Both Kim et al. [16] and Cunningham
et al. [17] connect pose graphs created by multiple robots
through nodes specifying frame-of-reference constraints, the
latter additionally introducing anti-factors to exchange con-
densed graphs between robots while avoiding double count-
ing of information under delayed communication. With our
proposed system, double counting cannot occur as each robot
constructs its graph separately, thereby adding each measure-
ment only once. As our combination of local reference filters
and submapping keeps the graph size small in the first place,
we do not expect major benefits from exchanging optimized
partial graphs.



III. MULTI-ROBOT MAPPING ARCHITECTURE

We present an overview of our software architecture as a
block diagram in Figure 2. It shows the components and data
flows within our localization and mapping framework as well
as their connections to a robot’s sensors and further software
modules. We employ ROS as a middleware to connect the
individual software components.

Fig. 2. Software architecture block diagram with four layers

For the experiments presented in this work, our sensor
setup solely consists of a pair of stereo cameras as well as an
inertial measurement unit (IMU). The local reference filter as
well as our graph-based SLAM system however can easily be
extended to include measurements from further sensors, e.g.
barometer-based height updates or GPS fixes where avail-
able. The perception layer contains dense stereo matching
[1], visual odometry computation [18] as well as marker-
based detection of other robots and estimation of their poses
[19]. For both visual odometry and robot detections, we
compute estimates for the measurement uncertainty and pass
them to the subsequent filter and SLAM components.

Our focus lies on the localization and mapping layer. It
consists of two major components. First, IMU and visual
odometry data are fused in a local reference filter [2], which
takes the respective measurement uncertainties into account.
Second, our SLAM framework, consisting of modules for
incremental SLAM graph creation and optimization, submap
creation and composition as well as submap matching. These
modules run in a decentralized fashion on-board all robots
within our multi-robot system and exchange measurement
and submap information whenever communication links be-
tween robots can be established. Thus, losses of communica-
tion are allowed to occur at any time, the only impact being
a delay of the integration of measurements until the link is
re-established. Furthermore, no initial knowledge about the
robots’ starting positions is required. Each robot constructs
and optimizes its own SLAM graph as we do not introduce
a shared global coordinate frame. However, each robot
includes the other robots’ pose estimates and submap data
within its own environment model as soon as connections
between them are created through measurements.

In the planning and control layer shown in Figure 2, we
illustrate exemplary uses of the local and global pose and
map estimates by further subsystems. The local reference

filter provides hard real-time local state estimates that can
directly be utilized for control, including the stabilization of
highly dynamic systems like quadrotors [20]. Together with
the stereo data, fast local obstacle avoidance can be realized
as well. We in particular do not feed back data from the
SLAM into the real-time filter in order to keep this system-
critical component decoupled from higher-level modules. As
our SLAM components run online but at a slower rate, their
output is suitable for global path and exploration planning.
In a multi-robot context, they provide pose estimates for all
robots in addition to a joint map, thus laying the basis for
coordinating cooperative actions.

IV. LOCAL REFERENCE FILTER

For hard real-time local state estimation, we employ an Ex-
tended Kalman Filter (EKF) with time-delay compensation
for visual odometry measurements [20] as a local reference
filter [2]. Internally, a fixed number of n = 5 keyframes
are used to improve its precision and allow for locally drift-
free estimation when the robot is standing or hovering in
place. Due to its implementation as a square root UD filter,
it can also run on low-end processing boards with single-
precision FPUs, as often used on lightweight micro aerial
vehicles. These might run the filter for fast local estimation
on-board, while global estimates can be computed by more
powerful systems. The local reference filter can be triggered
to switch its frame of reference at arbitrary points in time
without loosing keyframe information. By switching into a
robot’s current pose, the local pose uncertainty estimates are
reset to zero. In contrast to a full restart of the filter, other
state variables like velocities and past keyframes are kept and
transformed into the new frame of reference [2]. The benefits
of local reference filters are threefold. First, frame switches
allow unbounded covariances for unobservable states within
the filter to be reset in a consistent way. This is important to
guarantee long-term numerical stability. Second, unbounded
errors violate assumptions on small-angle approximations
that are performed during filter-internal linearizations and
thus can lead to inconsistencies. Third, local reference frames
anchored in our submaps allow for a better integration of
the filter uncertainty estimates into our SLAM graph, as we
describe in detail in Section VI-B.2. A full reference switch
however is not always practical as the control of flying robots
typically requires the navigation frame’s x/y-plane to be
orthogonal to the gravity vector. We thus keep the pitch and
roll estimates during a switch. From a filter perspective, this
is unproblematic as both angles are well observable, their
errors thereby being bounded.

V. SUBMAPPING CONCEPT

In order to create dense 3D maps, we generate pointcloud-
based submaps of limited size by locally integrating the
3D data resulting from dense stereo estimation along the
trajectory estimated by the local reference filter, similar to
our previous work [21]. On the creation of a new submap,
we first switch the filter into a new reference frame. We
then use this coordinate system as the origin of the novel



submap and represent it by a node in the SLAM graph, as
described in detail in Section VI. As we employ a keyframe-
based filter, see Section IV, drift within a submap can only
occur during movements. We keep the drift within a submap
small by triggering a new one when passing a threshold
on the robot’s integrated rotation of 100 ◦ or its driven
distance of 2.5 m/2.0 m for our narrow/wide angle cameras
respectively. Distance based thresholds have the advantage
to lead to submaps of similar size, which is desirable for
submap matching. In future work, we apply an additional
threshold to limit the local uncertainty, which is estimated by
the filter. Once a submap is completed, its 3D data is shared
with all robots within communication range. Application-
driven on-demand exchange or preprocessing of the submap
data in order to reduce the network load represent important
topics for future work, in particular w.r.t. to larger multi-
robot systems. We compose all available submaps based on
the latest global estimates of their origins, which we compute
during SLAM graph optimization. The resulting full multi-
robot 3D map can be used for visualization, navigation and
planning. In addition, we generate intra- as well as inter-
robot loop closure constraints for the SLAM graph through
submap matching, see Section VII-B. Systems with limited
computational resources might also employ sparser map
representations or omit the computation of 3D maps while
still taking advantage of the global pose estimates gained
from graph optimization.

VI. INCREMENTAL MULTI-ROBOT GRAPH SLAM

The SLAM problem can be formalized as a bipartite factor
graph that represents the relevant 6D poses as variable nodes
θi ∈ Θ and measurements as factor nodes fi, i.e. constraints
connecting subsets Θi of them [9]. The graph defines a
goal function f(Θ) =

∏
i fi(Θi) over its variable nodes, the

maximization of which coincides with a search for the most
likely assignment of poses under the given measurements
that constrain them. This can be formulated as a non-linear
least squares minimization problem

arg min
Θ

(− log f(Θ)) = arg min
Θ

1

2

∑
i

||hi(Θi)− zi||2Σi
(1)

with zi denoting measurements and Σi their Gaussian noise
as covariance matrices. The measurement functions hi are
typically non-linear in the context of 6D pose composition.

Graph SLAM systems can be divided into two parts. While
the back-end is concerned with the minimization of the
non-linear quadratic error function, the front-end deals with
the construction of the graph. This means solving the data
association problem and, by deciding on a graph topology,
asserting (in)dependencies between the variable nodes [22].

A. SLAM Back-End: Incremental Optimization

The computational effort of batch optimization makes
it unsuitable for online application. We thus employ the
incremental iSAM2 optimizer [9] to achieve fast updates on
average, limiting slower optimization steps to the rare events
of large loop closures. An open source implementation is

(a) Graph topology for sequential
odometry measurements

(b) Novel graph topology with local
reference frames (submap origins)

Fig. 3. Comparison of SLAM graph topologies

freely available as part of the GTSAM 3.2.0 library.1 For
our multi-robot experiments, we utilize the GTSAM imple-
mentation of M-Estimators, which replace the quadratic error
term in Equation 1 with a robust error function. Thereby, we
can mitigate the influence of potential errors and incorrect
data associations in our robot detection and submap matching
estimates. In particular, we employ the Cauchy function, as
it is suitable to suppress outliers with large errors, which
otherwise can corrupt the entire optimization result [23].

B. SLAM Front-End: Multi-Robot Graph Topology

Considering a multi-robot setup with R robots, we include
three different types of variable nodes: robot poses {xri } and
submap poses {sri } for each robot r ∈ {0, . . . , R−1} as well
as optionally poses of globally identifiable landmarks {li}.
As all dense 3D data is attached to the submaps, we do
not require a dense sampling of robot poses, but solely
include them where needed to connect measurement factors.
By keeping the size of the graph small, we allow for fast
optimization steps. We can compute a global estimate for
the pose of each robot r at any time by concatenating the
most recent SLAM estimate of its current submap sri with
the latest local filter estimate, which is given relative to
the submap’s origin. As measurements, we consider robot
detections {di} between pairs of robots, submap matches
{ci} between pairs of submaps as well as relative landmark
observations {ori }, all of which can lead to loop closure
constraints. In addition, the robot and submap poses are
connected via the filter estimates. In the following, we dis-
tinguish between two different graph topologies, as sketched
out in Figure 3. As we only consider measurement factors
connecting exactly two nodes, we collapsed them onto the
edges for a more succinct graphical representation.

1) Graph with Sequential Odometry Measurements: With
the graph topology depicted in Figure 3(a), as typically found
in SLAM literature, submaps are attached to a subset of
the robot poses, i.e. {sri } ∈ {xrj}. All of these poses are
connected sequentially via relative incremental robot ego
motion estimates {uri }. The placement of these constraints
solely between consecutive robot poses is based on the

1https://collab.cc.gatech.edu/borg/gtsam



assumption of their independence w.r.t. prior states. This ap-
proximation is reasonable for pure odometry measurements,
e.g. wheel odometry or sequential scan-matching. These
exhibit at most indirect dependencies through environment
characteristics, which are hard to quantify in any case.
When using local reference filters however, all estimates
and their Gaussian uncertainties are computed relative to a
local reference frame and may depend on each other through
filter-internal states, such as keyframes. In our previous
work [21], we approximated uri as delta measurements by
computing uri = xri+1 	 xri , which denotes the relative
transformation between two consecutive robot poses. We
employed Σur

i
= max

(
Σxr

i+1
− Σxr

i
, 10−10 · I6

)
as an

approximation of its covariance matrix. Σur
i

is guaranteed
to be non-negative and above an experimentally determined
threshold to ensure numerical stability during optimization.
This rough approximation however completely ignores the
aforementioned state dependencies. In the following, we
therefore propose an adaption of the graph topology to allow
a more suitable integration of the estimates computed by
local reference filters.

2) Graph with Local Reference Filter Estimates: In our
novel graph topology, as shown in Figure 3(b), we replace the
approximated sequential odometry measurements {uri } with
two types of constraints that are directly estimated by the fil-
ter: First, transformations between submaps {wr

i }, which re-
fer to switches of reference frames in the filter. Second, robot
pose estimates {vri }, which are computed by the filter relative
to their local reference frames (=̂ submap origins). Note that
due to the alignment of local reference frames to the gravity
vector, as explained in Section IV, the 6D submap origins
sri do not necessarily coincide anymore with the robot poses
xi. By directly integrating local reference filter estimates,
our novel graph topology better represents the underlying
probabilistic structure. Within a reference frame, it introduces
no additional independence assumptions. Overestimations of
the covariances however can still occur when a filter switches
its local reference frame and afterwards integrates a visual
odometry measurement that refers to a keyframe measured
within a previous frame. In order to avoid these cases,
the SLAM would require knowledge about the keyframes
themselves. This however would prevent a decoupling of the
SLAM from filter-internal states, which is important to keep
the graph compact while allowing the filter to use any kind of
internal state representation as well as the integration of high-
frequency measurements. We thereby achieve more design
freedom for the filter compared to a tightly coupled solution
like Concurrent Filtering and Smoothing [11]. Our novel
graph topology allows a straightforward addition of pose
estimates and delayed measurements at any point in time.
A structure suitable for incremental online optimization is
maintained without requiring additional methods to remove
constraints from the graph or to avoid double-counting of
information, such as anti-factors [17]. In Section VIII-B, we
compare both graph topologies in our experiments, showing
an improved localization accuracy for our novel approach.

VII. INTER-ROBOT MEASUREMENTS

Inter-robot measurements, comprising robot detections and
submap matches, represent direct connections between poses
or submaps of multiple robots. Additional links can be estab-
lished through landmark observations, as shown in Figure 3.

A. Robot Detections

We utilize the images from our stereo cameras to detect
planar visual markers that are attached to robots in our multi-
robot team, as shown in Figure 1. We employ AprilTag
markers, which have been shown to outperform similar
2D bar code style markers w.r.t. accuracy and detection
range [19]. Several open source implementations of AprilTag
detectors are freely available.2 These detect the marker in an
image and estimate a 6D transformation between the camera
and the marker’s origin. We however experienced that the
quality of these estimates highly depends on the distance
and angle of the observation. Thus, simply assuming a fixed
covariance is not adequate. In order to get more accurate
results, we analyzed the behavior of the detector, derived a
camera-dependent model for its errors and compute a worst-
case estimate for the uncertainty of each observation. We
plan a separate publication for an in-depth description as
it would go beyond the scope of this paper. In order to
add robot detections to the SLAM graph, it is necessary
to know the poses of both robots at the point in time for
which their relative transformation has been estimated. To
cope with interrupted or delayed communication, each robot
keeps a buffer of its own pose estimates to facilitate a lookup
in case it had been detected in the past. Its memory footprint
however is negligible compared to the 3D submap data.
In our experimental comparison of graph topologies, see
Section VIII-B, we utilized the same marker detector and
uncertainty estimation to observe static landmarks.

B. Submap Matches

In previous work [4], we have shown that arrangements
of obstacles described by their surface topology are valuable
features for indoor as well as unstructured outdoor envi-
ronments, since they are robust w.r.t. changes in viewpoint
and light conditions. We therefore compute pointcloud-based
local obstacle maps, considering terrain roughness, slope and
step height for obstacle classification as described in [4] and
select potential matches by considering the overlap of their
bounding boxes (min. 6 m2), arranged according to their
current pose estimates obtained from graph optimization.
We organize the matching candidates in a priority working
queue. They are ordered by the expected impact of a match,
for which the difference in variance estimates between two
submaps’ origins serves as a heuristic. The matching itself
is then executed as a low-priority background process that
can easily be parallelized. We match submaps by searching
for similarities within their geometric structure by applying
CSHOT [24] as a 3D feature descriptor that is rotational
invariant, robust to noise and clutter and includes texture

2http://april.eecs.umich.edu, http://people.csail.mit.edu/kaess/apriltags/



Fig. 4. Submap matching: The two highlighted submaps match and lead
to a loop closure constraint (yellow edge) in the graph.

information to improve the matching accuracy. The resulting
6D transformation estimate is refined by applying the Iter-
ative Closest Point (ICP) algorithm on the full pointcloud,
which provides accurate results, but requires close-enough
initial estimates. We filter matches between si and sj as
outliers that exceed the combined estimated submap pose
uncertainties in any dimension. In order to accurately inte-
grate the resulting loop closure constraints into the SLAM
graph, see Figure 4, we estimate the 6D variance considering
the submaps resolution and the alignment errors estimated
during the ICP step. We present further details on the submap
matching itself in a separate publication [21].

VIII. EVALUATION

A. Experimental Setup

We performed experiments on three different robotic plat-
forms: Our all-terrain Lightweight Rover Unit (LRU) with a
pan-tilt sensor head for outdoors and both a Pioneer 3-AT
(P3AT) and a Pioneer 3-DX (P3DX) for indoor experiments.
All robots are equipped with a Xsens MTi-10 IMU and a
stereo camera system (baseline: 9 cm), allowing us to gather
dense depth data both indoors and outdoors as it is robust to
the effects of bright sunlight. Our camera setup is:

• LRU: Guppy PRO F-125B, Narrow-angle: f = 5 mm
• P3AT: Guppy F-080B, Narrow-angle: f = 5 mm
• P3DX: Guppy PRO F-125B, Wide-angle: f = 1.28 mm

While we employ an on-board Spartan 6 LX75 FPGA
for dense stereo matching (1024 × 508 px at 14.6 Hz), all
other computation is performed on a quadcore CPU. In our
experiments, we shared all measurements, pose estimates and
submap pointclouds between the robots. In communication
settings with limited bandwidth, it would however be suffi-
cient to limit the communication to the typically sparser set
of estimates depicted in Figure 3(b) and transfer pointcloud
map data solely on demand. For our outdoor experiment,
we acquired ground truth position data through a Leica
total station and aligned its initial reference frame to our
map frame as described in [4]. For the mixed and indoor
experiments, we received ground truth trajectories from a
ceiling-mounted Advanced Realtime Tracking (ART) system.
As its tracking area is limited to approx. 3 m × 4 m, we
could solely evaluate the respective partial trajectories. Note
that for trajectory evaluation, we always use the sequentially
logged SLAM estimates at each particular point in time,
not an afterwards fully optimized trajectory. Hence, before

Fig. 5. Outdoor experiment: Photo of LRU and height-colored 3D map of
outdoor scenario and SLAM path (see also Table I).

Scenario indoor mixed outdoor
Robot P3AT P3AT LRU

Driven distance 69m 320m 106m
Ground truth available 25m 10m 106m

3D trajectory error µ [m] σ [m] µ [m] σ [m] µ [m] σ [m]
Filter only 0.327 0.109 1.324 0.886 0.402 0.192

Seq. odom. SLAM [VI-B.1] 0.177 0.060 0.121 0.082 0.153 0.083
Local ref. SLAM [VI-B.2] 0.146 0.054 0.096 0.060 0.142 0.079

TABLE I
COMPARISON OF SLAM GRAPH TOPOLOGIES

the first loop closure, the SLAM trajectory is equal to the
filter estimate. We chose this evaluation criterion, as for
autonomous robots, only the past and current estimates are
available at each particular point in time.

B. Comparison of SLAM Graph Topologies

First, we evaluated the impact on the localization accuracy
of our novel SLAM graph topology for local reference
filters, see Section VI-B.2. Therefore, we compare it to
the standard graph topology for sequential odometry that
we previously used as an approximation as described in
Section VI-B.1. We performed this evaluation in single-robot
setups on data gathered by two different robots in indoor,
mixed and unstructured outdoor environments similar to the
scenarios described in [21]. An impression of the outdoor
testbed is given in Figure 5. As we conducted this evaluation
prior to the full integration of our submap matching compo-
nents, we employed AprilTag markers as artificial landmarks
to generate loop closure constraints and ran both SLAM
implementations in parallel on the same input data and filter
estimates. A direct evaluation of the uncertainty estimates
represented by the two graph topologies is impossible due to
a lack of corresponding ground truth data. However, a better
approximation of the underlying probabilistic structure is
expected to lead to more accurate graph optimization results.
Therefore, we employ the SLAM trajectories as an indirect
measure for the accuracy of the covariance estimates and
(in)dependencies asserted by the graph topology. We summa-
rize the results in Table I, comparing the 3D trajectory errors
between both SLAM graph topologies. All three experiments
exhibit an improvement of the 3D localization accuracy, on
average of 15 %. The results thus indicate the benefit of
adapting the graph topology to the underlying structure of
local reference filter estimates. While a comparison to full
batch optimization and an evaluation of the consistency of
the proposed sub-optimal data fusion method are important
topics for future work, the consistency of the local reference
filter itself has already been investigated in [2]. For a



Fig. 7. Multi-robot experiment, top-down view of final 3D map (height-
based coloring) and graph. Ellipsoids show the submap origins (P3AT: blue,
P3DX: red) and are scaled to their respective position standard deviation
estimates. Orange edges in the graph represent robot detections (P3AT
detects P3DX1), yellow edges submap matches. See Table II for details.

simulated 24h quadrotor flight, its covariance estimates are
shown to be conservative for position, velocity and attitude.

Updates of the SLAM graph on new measurements (avg:
0.03 s, max: 0.12 s), which include the incremental graph
optimization itself (avg: 0.008 s, max: 0.08 s) as well as
the computation of all submap pose covariances through
marginalization, are fast enough for online operation. In
addition, our code had not yet been optimized w.r.t. its
runtime, thus we expect room for significant improvements.

C. Collaborative Localization and Mapping

For the evaluation of the full SLAM system, we performed
two extended multi-robot experiments with two rovers in our
indoor lab environment (approx. 100 m2 area), as shown in
Figure 1. It consists of a long hallway (top) and a large room
(bottom), in which the tracking system is set up. We could
not find any publicly available multi-robot dataset with stereo
images and inter-robot detections for additional evaluation.
For the first experiment, the robots have no initial knowledge
about their relative positions. In Figure 6, we present a time-
series of maps, in which robot detections serve as inter-robot
measurements. The first ones, at a range greater than 5 m, are
imprecise and lead to an error in yaw that is visible in the
top part of Figure 6(b). The integration of further detections
into the graph optimization however allows a more accurate
alignment, as can be seen in Figure 6(c). No artificial static
landmarks have been used in our multi-robot experiments.

For the second experiment, we integrated submap matches
as additional loop closure constraints. Both robots observe
most parts of the environment multiple times. In Figure 7, we
show a photo of our two robots and present the final map

Multi-Robot Single-Robot
P3AT P3DX1 P3AT P3DX1

Number of robot poses xri 72 72 0 0
Number of submaps sri 21 27 21 27

Number of per robot 4 3 2 7
submap matches ci inter-robot 4 0

Number of robot detections di 72 0 0 0
Total number of nodes θi 192 21 27

Total number of factors fi 274 30 36
Driven distance [m] 46.49 44.56 46.49 44.56

Ground truth available [m] 9.55 12.48 9.55 12.48
Mean 3D trajectory error µ [m] 0.167 0.210 0.215 0.360

TABLE II
COMPARISON OF MULTI-ROBOT AND SINGLE-ROBOT SLAM

(a) P3AT 3D position error (b) P3DX 3D position error

(c) P3AT yaw error (d) P3DX yaw error

Fig. 8. Pose errors for the multi-robot SLAM experiment presented in
Figure 7 and Table II. Plots show the partial trajectories for which ground
truth is available. All estimates refer to the sequentially logged data available
at each particular point in time, not an afterwards fully optimized trajectory.

and SLAM graph. In Table II and Figure 8, we compare
our multi-robot SLAM system to single-robot SLAM on the
same dataset. The estimates for the multi-robot setup are
on average by 32 % more accurate and thus indicate the
benefit of joint graph optimization compared to estimating a
single relative transformation between the robots’ coordinate
frames to connect their maps. Inter-robot submap matches
and robot detections add additional loop-closure constraints
compared to single-robot SLAM. The robots serve as virtual
“moving landmarks” to improve each other’s localization,
in particular when the quality of their intermediate local
pose estimates differs between consecutive robot detections.
Due to its wide-angle stereo setup, P3DX exhibits a larger
visual odometry error than P3AT [4], represented by greater
covariances in the graph, see Figure 7. In our experiment, the
robot detections thus primarily improve the localization for
P3DX, as can be observed in Figure 8. The quadratic error
minimization during graph optimization leads to a temporary
slight degradation of the SLAM position estimate for P3AT
in the middle part of our evaluation, see Figure 8(a). At this
point in time only few submaps have been matched due to a
small overlap of the robots’ trajectories. Additional matches
later on however significantly improve both robot’s estimates.
The final maps show a consistent representations of the
walls and doorways of our indoor scenario. It constitutes
a challenging environment for stereo vision with texture-less



(a) Separate maps of P3AT and P3DX before first inter-robot
measurement. Both are in their own coordinate frames.

(b) Joint map as computed by P3AT after
first robot detections. Angular error due to
imprecise first long-range detection.

(c) Corrected joint map after two series of
detections where P3AT observes P3DX.

Fig. 6. Multi-robot experiment with two robots (P3AT: blue, P3DX: red) and unknown starting positions. Separate maps computed by both robots before
(a) and after (b) the first connection as well as after two series of inter-robot detections (c). The ellipsoids show the submap origins and are scaled to their
respective position standard deviation estimates. Blue and red edges connect submaps and robot poses, orange edges represent robot detections.

walls, reflecting surfaces and regular patterns (e.g. radiators)
that lead to visual odometry and depth errors, which can be
observed as noise in our maps. Their representations do not
include any assumptions about structure in the environment,
i.e. no biases towards straight walls or even floors. We show
the mapping process for both multi-robot experiments in the
accompanying video.

IX. CONCLUSION AND FUTURE WORK

In this work, we have presented a multi-robot 6D SLAM
system that employs a novel graph topology to incorporate
the results of decoupled local reference filters according to
their uncertainty estimates. By aggregating sensor informa-
tion into submaps attached to local reference frames, we
keep the effort for graph optimization small and are able to
online generate dense 3D maps from stereo data. Further, we
include visual robot detections and submap matches as inter-
robot loop closure constraints and integrated all components
into our modular mapping architecture. We performed exper-
iments, both to evaluate the impact of our novel integration
of local reference filters on localization accuracy and to
evaluate the application of our full SLAM framework on
a multi-robot system, thereby combining the data of stereo
systems with different perspectives and angles of view. For
future work, we plan to evaluate our approach with a team
of flying and driving robots to further increase the diversity.
While we manually controlled the robots for this work, we
intend to employ our maps for collaborative autonomous
exploration in the future. Another open challenge is the
merging of submaps when no further improvement of their
relative transformation can be expected.
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