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Abstract—1In this work, we investigate active flutter control
of a bridge section model equipped with arrays of flaps. We con-
sider three simple control algorithms based on an amplitude-
gain and a phase-shift for actuating the flaps and stabilizing the
section model. We have leveraged a linear analytical model of
the structural and aeroelastic forces during flutter in order
to find efficient control parameters. The proposed solution
was validated with wind tunnel experiments, where all the
algorithms showed capable of suppressing flutter, and the most
efficient one was using all of the flaps on the deck.

I. INTRODUCTION

Long-span bridges are particularly vulnerable to wind
loads, owing to their inherently low structural damping,
low natural frequencies, and adjacent fundamental torsional
and vertical mode frequencies. This leads to wind-induced
instabilities, causing potential damage to the whole structure.

Most solutions for this problem deployed on real bridges
consist of passive elements that reduce the aerodynamic
requirements on the cross-section [1]. However, a passive
solution cannot adapt to dynamic wind conditions. Active
solutions could potentially lead to a more favorable perfor-
mance/cost trade-off in the building and maintenance phases
as well as new opportunities for improving bridge aesthetics.

One possible active solution is to install multiple mobile
flaps along the bridge girder in order to alter its aerodynamic
profile, enabling stabilizing forces on the structure, a concept
illustrated in Fig. 1. Furthermore, the angular position of the
adjustable flaps is controlled as a function of the wind field
and/or the displacement of the structure whose dynamic state
can be measured with an underlying sensor network.

Several control strategies for moving flaps damping bridge
deck oscillations have been investigated. In particular, the
aeroelastic instability called flutter (causing self-induced
vibrations), has been investigated. However, only a handful
of research groups have provided experimental validation
of bridge flutter control. Kobayashi et al. [2] managed to
prevent flutter with actively controlled flaps installed above
the bridge deck. Kobayashi et al. [3] followed up their work
and also showed an efficient flutter control with flaps attached
directly to the bridge deck, as in Fig. 1. Moreover, Hansen
et al. [4, 5] also designed an active bridge deck capable
of stabilizing the bridge vibrations, with actively controlled
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Fig. 1. Conceptual figure of the multi-flap wind mitigation strategy.

flaps attached to the deck. More recently, Zhao et al. [6]
designed a controlled deck capable of suppressing flutter and
buffeting.

All of these research groups used bridge section models
endowed with a single flap on each side of the girder. We aim
to extend the investigation of active flutter control to bridge
section models endowed with multiple flaps on each side,
so that the potential of a physically distributed mitigation
system can be studied and validated experimentally.

Kobayashi et al. [3] analyzed theoretically flap control
using the bridge pitch, the deck heave and both Degrees
of Freedom (DOFs) as control input for a linear amplitude-
gain and phase-shift control law. However, they were only
analyzing the effect of actuating the flaps separately, not
simultaneously. Furthermore, the authors do not disclose
how they chose the specific control parameters. The control
algorithm that was found the most promising in theory
was implemented and tested with wind tunnel experiments.
Flutter suppression was achieved using only one of the flaps,
the one on the trailing edge. Hansen et al. [4] also chose a
linear amplitude-gain and phase-shift control law, using the
bridge pitch as input. They conducted a thorough theoretical
investigation of the controlled deck. The control parameters
were found by maximizing the energy contribution of the
flaps to the system. However, the obtained optimal control
parameters, were not tested with wind tunnel experiments.
Various amplitude-gain and phase-shift combinations were
tested for different wind speeds; however, neither with the
optimized parameters, nor for the flutter condition; thus,
vibration control below the flutter regime was validated



experimentally. Zhao et al [6] proposed a passive mechanical
controller concept (although realized with active control
emulating a passive one). The trailing and leading edges
were given the same control parameters, in order to achieve
a symmetric design, insensitive to the wind direction. They
designed a robust flutter controller for the passive mecha-
nism, that achieved an increase in flutter wind speed both in
theory and in practice.

All of the research groups leveraged the same analytical
framework: the aerodynamic model based on Theodorsen’s
circulatory function for thin airfoils [7] and its extension
with a modified version of the wing-aileron-tab configuration
(transformed to apply to a bridge deck with leading and
trailing flaps) developed by Theodorsen and Garrick [8]. The
theory is however only valid close to the flutter frequency,
where the system can be approximated as linear. Further-
more, the flaps are assumed to move at the same frequency
as the bridge deck, thus the amplitude-gain and phase-shift
control law is motivated in order to not violate the model
assumptions.

In this work, we investigate, theoretically and experimen-
tally, the amplitude-gain and phase-shift control law applied
to the SmartBridge, our active bridge section model endowed
with flap arrays. Although, the model is equipped with mul-
tiple flaps, we move all the flaps on both edges synchronized,
so that they move as a single unison flap on each side of the
deck. The experiments with synchronized flap movements
are used to validate our approach and will serve as a baseline
for future work involving fine-grained distributed control
strategies of individual flaps. Nevertheless, in this paper
we investigate a basic multi-flap coordination strategy by
comparing the effect of the bridge deck control using only
the leading edge flaps, only the trailing edge flaps, or all
flaps on both sides of the deck.

Similar to our work presented in [9], where the control
law of a single flap was optimized through a model-based
approach, we are also in this work leveraging an analytical
model to find appropriate control parameters. A model-based
approach is particularly useful in the case of flutter control,
as the effects of applying unfavorable control parameters
can be catastrophic, [4]. The control algorithms found via
the analytical investigation were validated through systematic
wind tunnel experiments, and all three implemented control
laws were capable of suppressing flutter, although with
different performances.

II. MATERIAL AND METHODS
A. Experimental set-up

Our experimental set-up consists of the SmartBridge that
is anchored to a suspension system as seen in Fig. 2. Note
that the decoupling system seen in the figure has not been
used for the work presented here. Instead, drag wires restrict
the deck motions in the horizontal DOF. The SmartBridge
is installed in a boundary layer wind tunnel, with channel
dimensions of 1.5x2x10 m, and with a maximal wind speed
set at 16 m/s. The parameters of the section model that are
used in the analytical study are given in Table I, and were

Fig. 2. A faithful CAD model of the SmartBridge anchored to the
suspension system. Some key elements of the set up are highlighted in
the figure: a) spring for the suspension system, b) DC motor for the pull-
up system, c) electromagnet for the pull-up system, d) support bar, e)
decoupling system, and f) active flap. Moreover, four laser sensors are
measuring the corner positions of the deck and are marked with L1-4.

either measured directly from the model, or estimated from
free vibration step responses using the pull-up system in Fig.
2. Further details of our experimental set-up and in particular
the active bridge section model are presented in [10].

B. Analytical model of canonical bridge deck

The analytical model of the bridge section model is based
on the heave and pitch DOFs, the two fundamental modes
involved in coupled flutter. The two-dimensional model of
the bridge deck and definitions of positive directions, are
visualized in Fig. 3. Under the assumption that the bridge
deck is symmetric (center of mass and elastic center overlap)

TABLE I
SECTION MODEL PARAMETERS

Parameter SmartBridge
Mass (m) [kg] 30.5
Mass moment inertia (1) [kgm?] 1.02
Width excl. flaps (B’) [mm] 500
Width incl. flaps (B) [mm] 740
Depth (D) [mm] 48
Length (L) [mm] 1800
Damping ratio pitch (o) 0.015
Damping ratio heave ((p,) 0.006
Circular natural frequency pitch (wq ) [rad/s] 14.75
Circular natural frequency heave (wp,) [rad/s] 11.85
Circular natural frequency flutter (wy) [rad/s] 12.95




the structural dynamics can be modeled as two uncoupled
damped harmonic oscillators in heave and pitch [11].

The model of the external lift and moment caused by the
aerodynamic forces on a canonical bridge section model can
be estimated with Theodorsen’s flutter derivatives [7].

The above described structural and aerodynamic models
can be expressed with the following equations
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where h and « are the heave and pitch positions, m is
the mass of the deck, I is the mass moment of inertia of
the deck, (; and (, are the damping ratios in the heave
and pitch DOFs, and wj and w, are the natural circular
frequencies in the heave and pitch DOFs. Furthermore, p is
the air density, B is the bridge deck width, U is the wind
speed, K = Bw/U is the reduced frequency, and H7, ..., H}
and A7, ..., A} are the non-dimensional flutter derivatives for
the deck. The flutter derivatives can be approximated with
the values of a flat plate and are calculated with Theodorsen’s
circulatory function: C'(K) = F(K)+iG(K) [7], according
to
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When the bridge deck is at the point of flutter, the heave and
pitch modes couple and oscillate with a constant amplitude at
the same circular frequency, known as the flutter frequency,
wy, and with a phase-shift, ¢, between the two DOFs. This
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Fig. 3. Definitions of positive directions in the heave and pitch DOFs.

implies that the system in Eqs. 1 and 2 can be rewritten for
the flutter condition as
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The above two equations are thus only valid for the region
of the flutter wind speed. Since the solution must be true for
any non-zero Y (t), the determinant of A has to be equal to
zero in both real and imaginary parts.

The flutter condition is defined as the highest value of the
reduced frequency, K, (i.e., the lowest wind speed U) where
the following condition is met

det(A4) = 0. (6)

C. Extended model for flap control

In order to consider the external lift and moment caused
by the flaps, the model can be extended with a modified
version of the wing-aileron-tab configuration (transformed
into bridge deck with leading and trailing flaps) developed
by Theodorsen and Garrick [8], an extension which implies
additional flutter derivatives. The model is however only
valid for the flutter condition and for flaps moving at the
flutter frequency. Furthermore, it is assumed that the upwind
elements do not influence the downwind elements and thus
the bridge deck, the leading and trailing flaps force compo-
nents can be superimposed.

In this paper, we investigate the amplitude-gain and phase-
shift control law using the bridge deck’s pitch as input, and
the leading and trailing edge flaps’ positions are calculated
accordingly:

o (t) = Ale_i‘ma(t) @)

a(t) = Ae ™t alt) 8)

where A; and A, are the amplitude-gains, and ¢; and ¢; are
the phase-shifts between the deck pitch and the leading and
trailing edge flaps, respectively. The aerodynamic model can
be extended to include the effects of the flaps by replacing
H3, H;, A5 and A3 in Eq. 2 by HY, Hg‘/, A§’ and A;’
respectively. Specifically for the amplitude-gain and phase-
shift control of the deck pitch, the modified flutter derivatives



are given by:
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where the additional flutter derivatives due to the flaps,
H,...,H§ and A, ..., A§, are given in the following equa-
tions:
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where the values for the Theodorsen constants [8],
T1,Ty,T7,Tg,T19 and T7; are given in Table II.

By doing a parameter sweep of the control parameters, i.e.,
the amplitude-gains and the phase-shifts, we can analyze the
effect that the control will have on the actively controlled
bridge deck. In Fig. 4, the estimated flutter wind speed

TABLE II
THEODORSEN CONSTANTS

Constant SmartBridge value
c=DB'/B 0.676
Ti(c) -0.0435
Tu(c) -0.3303
T7(c) 0.0106
Ts(c) 0.0899
Tio(c) 1.5654
T11(c) 0.6840
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Fig. 4. Parameter sweep of the phase-shifts and amplitude-gains of the for
the individual trailing and leading edge flaps.
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Fig. 5. The effect of the phase-shift parameter sweep when both flaps
are controlled; the amplitude value is set to 0.35 here. The plane represents
flutter wind speed of the bridge deck without control.

is presented for varying phase-shifts and amplitude-gains
when controlling each side of the deck separately, thus only
actuating flaps on one side of the deck at a time. The zero
amplitude represents the flutter wind speed of the bridge deck
without control, and is estimated to 11.0 m/s. It is observed
that the optimal phase-shifts of the trailing and leading flap
are dependent on the chosen amplitude-gains. Generally, the
optimal phase-shift values seem to decrease with higher
amplitude-gains. For the leading flap the optimal phase-shift
is 102°when the amplitude-gain is 0.2, while it is 66°when
the amplitude-gain is set to 1.19. Whereas for the trailing
flap the phase-shift is optimal at 252°for an amplitude-gain
of 0.2, while it is optimal at 222°when the gain is set to
0.42. Note that flutter does not even occur for a wide range
of angles, when increasing the amplitude-gains further, as
seen in Fig. 4 (for instance, for the leading flap control
for a gain of 1.6 and phases-shifts between 24°and 102°).
Furthermore, it is observed that increasing the amplitude-
gains always increase the effect of the controller, for better



or for worse. Moreover, the trailing edge flap is capable of
eliminating flutter at lower amplitude-gains than the leading
edge flap, if optimal phase-shift parameters are chosen. These
observations are also comparable to the theoretical analysis
of Hansen et al. [4].

Furthermore, we analyzed the effect of controlling both
flap arrays simultaneously, as can be seen in Fig. 5. Here,
we analyze the flutter wind speed for different phase-shifts
at a fixed amplitude-gain of 0.35 for all flaps. Observe that
the flutter wind speed was increased but never completely
eliminated when controlling the flaps separately at this
amplitude-gain, as seen in Fig. 4. However, when the flaps
on both sides are controlled simultaneously, their combined
effect manage to also completely eliminate flutter (which is
represented by the hole region on the surface). However, in
a real scenario, other types of aerodynamic instabilities can
occur at higher wind speeds that are not accounted for in our
model, as has previously been pointed out by [3].

III. WIND TUNNEL EXPERIMENTS

The performance of the control laws were validated with
wind tunnel experiments. The type of experiments per-
formed, number of runs as well as the implemented control
parameters can be found in Table III. An amplitude-gain of
two should, according to our analytical study, be capable
of eliminating flutter for a rather wide range of phase-shift
values. We chose the phase-shift values that were close to the
optimal (for the highest observable amplitude-gain) found in
theory for the individual flap control, as seen in Fig. 4.

As a reference point, we observed from the wind tunnel
experiments the deck without control fluttering at 12.5 m/s.
This value is comparable to the estimated wind speed from
the theoretical model, 11.0 m/s. The observed discrepancy is
likely due to roughly approximated model parameters (e.g.,
the theoretical flutter derivatives are valid for flat plates).

The performance of the control of the bridge deck using
all the flaps is visualized in Fig. 6. The control laws were
triggered when any of the displacement sensors (placed at the
corners of the deck) was oscillating with an amplitude above
40 mm. Note that the wind was turned off manually during
the experiment without control, otherwise the self-induced
vibrations of the flutter could damage the deck. It is also clear
from the figure that the control is capable of suppressing the
flutter (i.e., deter the development of self-induced vibrations).
Furthermore, the flutter remained suppressed as the wind
speed was increased to the upper bound of 16 m/s.

The performance of the different control algorithms, using
all flaps, using only leading edge flaps, and using only
trailing edge flaps, are presented in Fig. 7 and in Fig. 8. The
qualitative difference between the three laws are visualized
in Fig. 7, where it is clear that using all flaps for the control
is more efficient than using flaps on a single edge. However,
there does not seem to be a significant difference between
using only flaps on the leading edge or only on the trailing
edge.

Note that also the heave amplitude is more efficiently
suppressed when using all the flaps, although this DOF is not
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Fig. 7. The heave and pitch of the deck for the different control strategies.
Note that the control is triggered at approximately 5 seconds.

actively controlled. The qualitative analysis is also supported
by the performance comparison over all runs, including the
uncontrolled case, in Fig. 8. The performance metric was
defined as the damping ratio of the bridge pitch estimated
from the 5 seconds following the control being triggered (in
the case of no control, the point were the control would
have been triggered was identified from the displacement
sensor data). For the uncontrolled case the damping ratio
is negative due to the growing amplitude during flutter. It
is shown that the control strategy using all flaps is both
performing better and with a smaller variance, than the
other strategies. Again, no significant advantage for using
either leading or trailing edge flaps when only one side is
controlled can be seen, although, a strategy based on the
leading edge flap appears to be more repeatable (smaller
variance). Theoretically the trailing edge flap should be
more efficient (assuming at least close to optimal phase-
shift values), as seen in Fig. 4. This reverse relation could



TABLE III
WIND TUNNEL EXPERIMENTS

Flaps used in Control ~ Nr of experiments | Parameter  Value
None 1 (o)) 65
All flaps 10 ot 222
Leading edge flaps 10 A 2
Trailing edge flaps 10 Ay 2

be explained either by a non-optimal phase-shift value for
the trailing edge, and/or an inadequate analytical model. As
seen in Fig. 4, the phase-shift implemented in the control
has a significant impact, although there is no guarantee that
optimal parameters were used in the experiments. The model
assumption that upwind elements do not influence downwind
elements is quite improbable. Thus another explanation for
the unexpectedly good performance of the leading edge flap
could be that the altered flow over the deck and trailing flap
has non-considered positive effects on the system damping.

In summary, we can with certitude assess that all three
control laws lied within the “positive region” predicted by
the model and that controlling the bridge deck using flaps on
both sides is more effective (in terms of damping ratio) than
using only flaps on a single side. This is a rather intuitive
notion, however, an active flutter control of a bridge deck
using both trailing and leading edges has, to the best of the
authors’ knowledge, not been studied experimentally before.

IV. CONCLUSIONS

In this paper, we investigated active flutter control of a
bridge section model. The amplitude-gain and phase-shift
control based on the bridge deck’s pitch have been inves-
tigated in theory and with wind tunnel experiments. Three
different strategies were compared; using all flaps available
on both sides of the deck, and using only flaps on a single
side of the deck, either on the leading or trailing edge. All
of the proposed strategies proved capable, both theoretically
and experimentally, of suppressing flutter. Moreover, it was
shown that using all of the available flaps is the most
efficient and reliable strategy, in theory as well as in practice.
However, we did observe a discrepancy between theory and
real experiments regarding the performance using only the
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Fig. 8. Boxplot of the pitch damping ratios after 5 seconds of control for

the four control strategies.

trailing flaps and using only the leading flaps. In theory the
trailing flaps should perform better than the leading flaps,
while in practice they have a similar performance.

The analytical model was proven a useful tool in order to
locate the regions where the control phase-shifts should be
most efficient. However, the flutter wind speed prediction
could be improved, for instance by extracting the flutter
derivatives from the experimental set-up, instead of using
theoretical approximations for flat plates.

The next step will be to leverage the gained knowledge of
the model and control in the two dimensions, and implement
coordinated control strategies also in the third dimension,
thus controlling all of the eight flaps on the SmartBridge
individually.

REFERENCES

[1] A. Larsen, Aerodynamics of Large Bridges.
Francis, 1992.

[2] H. Kobayashi and H. Nagaoka, “Active control of flutter
of a suspension bridge,” Journal of Wind Engineering
and Industrial Aerodynamics, vol. 41, no. 1-3, pp. 143—
151, 1992.

[3] H. Kobayashi, R. Ogawa, and S. Taniguchi, “Active
flutter control of a bridge deck by ailerons,” in Second
World Conference on Structural Control, 1998, pp.
1841-1848.

[4] H. I. Hansen and P. Thoft-Christensen, “Active vibra-
tion control of long suspension bridges,” Ph.D. disser-
tation, Aalborg University, 1998.

[5] H. 1. Hansen, P. Thoft-Christensen, P. A. Mendes, and
F. A. Branco, “Wind-tunnel tests of a bridge model
with active vibration control,” Structural Engineering
International, vol. 10, no. 4, pp. 249-253, 2000.

[6] X. Zhao, K. Gouder, D. Limebeer, and J. Graham, “Ex-
perimental flutter and buffet suppression of a sectional
suspended-bridge,” in Proceedings of the 53rd IEEE
Conference on Decision and Control, December 2014.

[7] T. Theodorsen, “General theory of aerodynamic insta-
bility and the mechanism of flutter,” NACA Tech. Rep.
no. 496, 1935.

[8] T. Theodorsen and I. E. Garrick, “Nonstationary flow
about a wing-aileron-tab combination including aero-
dynamic balance,” NACA Tech. Rep. no. 736, 1942.

[9] M. Boberg, G. Feltrin, and A. Martinoli, “Model and
control of a flap system mitigating wind impact on
structures,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on, May 2014, pp. 264—
269.

[10] ——, “A novel bridge section model endowed with
actively controlled flap arrays mitigating wind impact,”
in Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, May 2015, pp. 1837-1842.

[11] E. Simiu and R. H. Scanlan, Wind Effects on Structures:
Fundamentals and Application to Design. New York:
John Wiley & Sons, 1996.

Taylor &



