
Vision-Based Unmanned Aerial Vehicle Detection and Tracking for
Sense and Avoid Systems

Krishna Raj Sapkota1, Steven Roelofsen2,3, Artem Rozantsev1,
Vincent Lepetit1,4, Denis Gillet3, Pascal Fua1 and Alcherio Martinoli2

Abstract— We propose an approach for on-line detection of
small Unmanned Aerial Vehicles (UAVs) and estimation of their
relative positions and velocities in the 3D environment from a
single moving camera in the context of sense and avoid systems.
This problem is challenging both from a detection point of view,
as there are no markers on the targets available, and from a
tracking perspective, due to misdetection and false positives.
Furthermore, the methods need to be computationally light,
despite the complexity of computer vision algorithms, to be
used on UAVs with limited payload.

To address these issues we propose a multi-staged framework
that incorporates fast object detection using an AdaBoost-based
approach, coupled with an on-line visual-based tracking algo-
rithm and a recent sensor fusion and state estimation method.
Our framework allows for achieving real-time performance
with accurate object detection and tracking without any need of
markers and customized, high-performing hardware resources.

I. INTRODUCTION

The area of small UAVs has experienced a tremendous
growth in the recent years. UAVs have already been used
in various applications ranging from delivery of goods to
aerial photography. In the recent years, most of the research
community’s attention was centered on a few topics, including
self-localization [1], path planning [2] and navigation [3],
[4]. On the other hand, Sense and Avoid (SAA) neighboring
aircraft remained relatively out of focus, due to computational
complexity of most of the object detection algorithms or
sensor cost.

The ability to detect and estimate the relative position
of neighboring aircraft plays a crucial role in automated
flight, central to such tasks as mid-air collision avoidance
and formation flying [5]. Vision-based relative positioning
is of particular interest as cameras generally require less
power consumption and are more lightweight than active
sensor alternatives such as radars and lasers. It also has
potential application in non-collaborative flight scenarios or in
situations where collision warning based on Global Navigation
Satellite Systems are either unreliable or not commonly

This work has been financially supported by Honeywell, and has benefitted
of the administrative and technical coordination of the EPFL Transportation
Center.

1 K. Sapkota, A. Rozantsev and P. Fua are with the Computer Vision
Laboratory, School of Communication and Computer Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

2 S. Roelofsen and A. Martinoli are with the Distributed Intelligent
Systems and Algorithms Laboratory, School of Architecture, Civil and
Environmental Engineering, EPFL, Switzerland.

3 S. Roelofsen and D. Gillet are with the Coordination and Interaction
System Group, School of Engineering, EPFL, Switzerland.

4 V. Lepetit is with the Institute for Computer Graphics and Vision, TU
Graz, Austria.

Fig. 1. Picture of the experimental environment, as seen from the UAV
carrying the camera. The blue boxes visualize detections produced by the
computer vision algorithm. Best seen in color.

available on all aircraft. Marker-based visual solutions [5],
[6] would require every aircraft to be equipped with such
marker system and therefore lack of generality.

Vision-based target tracking poses several challenges.
Unlike other detection tasks a missed detection can be
hazardous. A high detection accuracy is therefore required.
UAVs travel at relatively high speeds and must be detected
quickly, particularly in collision avoidance scenarios. More-
over, neighboring aircraft can appear across a wide range of
distances and can be difficult to detect when far away.

Another challenge of vision-based target tracking, in par-
ticular for collision avoidance applications, is the multi-target
aspect of the problem as it is inherently combinatorial, thus
challenging from a computational point of view. Moreover,
the number of targets in the scene is unknown for SAA and
have to be estimated as well.

In this work, we developed a framework for both the
detection of UAVs and the estimation of their relative positions
and velocities, based just on single camera video stream. The
framework is composed of vision and multi-target state tracker
modules. The first one consists of an object tracker working in
conjunction with an object detector. The detector runs every
5-10 frames to first initialize and then later on to correct
the tracker. Visual tracking is used in between detections
to keep track of the object, the rationale being that it is
computationally cheaper than detection and is unlikely to fail
within a few frames. Based on the output of the vision module,
the multi-target state tracker module estimates positions and
velocities of flying objects in the 3-dimensional environment.
We assess the accuracy of the proposed framework in an
indoor setup (shown in Fig. 1), leveraging equipment that
allows for millimetric precision ground-truth. We compare
the results with and without the visual tracking algorithm



Fig. 2. Overview of different stages of our approach. Best seen in color.

enabled.
The paper is organized as follows: Section II presents

related work on the different topics leveraged in our frame-
work. Section III describes the different algorithms used in
our framework. Section IV depicts the experimental setup.
Results are presented in Section V.

II. RELATED WORK

Previous works on tracking of UAVs for SAA systems,
such as [7] rely on relatively simple detection techniques
that are capable of finding objects in the sky. In [8] a hidden
Markov model filter is used to track aircraft in the image.
Both works focus on image processing, without clearly stating
the tracking accuracy in position and velocity. Both works
also require computational power usually not available on
small UAVs.

We approach the object detection task with an AdaBoost
algorithm, similar to [9], [10], which has been demonstrated
to perform well across variety of detection tasks [11], [12],
[13] and has low computational complexity, which is required
for on-line performance. We further on improve detection
accuracy and robustness with the visual-based tracking
algorithm [14]. Unlike the other approaches [15], [13], [16],
this one allows for a dynamic adaptation to the changing
appearance of the object and is computationally effective.

For multi-target state tracking we use Random Finite Set
theory that extends the Bayesian framework to multiple
targets [17]. That theory has led to effective algorithms, both
in terms of tracking capability and computational power. For
this reason, the state estimation in this framework is performed
with a Gaussian-Mixture Probability Hypothesis Density filter
(GM-PHD) described in [18]. The GM-PHD filter is a multi-
target tracker that has been successfully applied to marker-
based single-camera multi-target tracking in previous work
[19]. In this paper, we apply the same methodology to the
more general problem of marker-less multi-target tracking.

III. PROPOSED FRAMEWORK

In this section, we first briefly describe our framework
and then more thoroughly discuss all its components. Fig. 2
depicts the overview of our method. The framework consists
of a vision module that incorporates detection together with
a visual-based tracking, which filters out false detections as
well as fills up missed ones. These detections are then sent
to the state tracker, which estimates the three dimensional
position and velocity of the targets using the measured 2D
locations in the image and the apparent width of the target.
The framework outputs the position and velocity of UAVs in
the scene.

A. Object Detection

For object detection we use the classical cascade of detec-
tors trained using HOG (Histogram of Oriented Gradients)
features. It consists of ensemble learners trained in a greedy
manner via the AdaBoost algorithm. Object detection works
by sliding a patch (detection window) all over the image at
different scales (to account for different object sizes) and
classifying the patch as containing or not containing the
object. Object detection is hence a binary classification task
but since it has to be carried out at all image locations and
at different scales, it is computationally expensive.

Cascade of detectors reduces the computational complexity
by exploiting the fact that usually images contain more non-
object patches than object patches. The former ones can thus
be rejected at an earlier stage with less complex detectors.
Hence ensemble learners earlier in the cascade are very simple
(with only few features) and can reject most non-object
patches so that more complex learners down the cascade
can focus on correctly classifying difficult patches.

Each feature (for HOG that would be one of the histogram
bins) forms a decision stump (weak learner)

hj(X) =

{
1, fj(X) < θj

0, otherwise
, (1)

where, X is the image patch, fj(X) is the jth feature of the
patch, θj is the decision threshold, and hj(X) is the weak
learner corresponding to the jth feature.

Each cascade is an ensemble of such weak learners and
can be represented as

D(X) =
N

Σ
j=1

αjhj(X), αj = log
(

1− εj
εj

)
, (2)

where N is the number of weak learners hj(·) and εj is
the classification error at the jth iteration of the AdaBoost
training.

Fig. 3 shows a cascade of ensemble learners. If an image
patch is rejected at any stage (classified as not containing
object) of the cascade, it is not processed further. Thus, only
image patches that make it all the way through the entire
cascade are labeled as containing object. Hence it is important
for the ensemble learners in the cascade to have very low
false negative rate as samples falsely labeled as negatives
are not further processed and hence such mistakes cannot be
later refined.

As it is often done in computer vision, we apply non-
maximum suppression, which effectively looks for the neigh-
borhood of every detection and prunes it if a detection with



Fig. 3. Cascade of detectors D1..Dm. Patches that are rejected at any
stage of the cascade are considered as negatives. On the other hand, patches
that make it all the way through the cascade are viewed as positives and are
further processed by the visual tracking system.

higher score is found. This allows us to significantly reduce
the number of repeating detections; however, it may, for
example, lead to accidentally removing the evidence for a
UAV partly occluded by another one. As our target application
is collision avoidance, the aforementioned behavior is not
critical, as in this case the UAV that is closer to the camera
will still be reliably detected, because it will likely have more
evidence, in comparison to that partly occluded.

B. Visual tracking

For visual-based object tracking we employ an online
boosting tracker [20]. Briefly, it learns an appearance model
of the target, given an initial image and a target bounding box.
In consecutive frames, patches around the current bounding
box are sampled and the target bounding box is moved to
the location with the highest response (see Fig. 4(a) and
Fig. 4(b)). The appearance model is then updated with the
patch from the new target location as a positive sample and
patches around the target as negative ones. For a more detailed
explanation of online boosting please refer to [14].

One of the limitations of such a technique is that the update
phase might introduce errors if the target is not correctly
localized, an issue that will make the tracker drift away from
the target over time. To mitigate such problem, we correct
the tracker on regular intervals (every 5-10 frames) using an
offline trained detector, introduced in the previous section.
Note that this correction does not reset the model learned
online, but rather it adds positive examples, provided with
the help of a more reliable detection system.

Another drawback of this technique is the sampling
approach, as it does not take into account the motion of
the observed object. Hence, we introduce an optimization
step that uses motion-guided sampling to reduce the search
space. Assuming that the velocity of the object does not
change much in consecutive frames, we employ a motion
model based on a Kalman filter to predict the location of the
object. We further compute the covariance of the prediction
and sample based on this covariance centered around the
predicted location. While effective, this approach may lead
to losing track of the UAV in case the camera orientation
changes sharply; however, in such situations the track will
be rapidly reinitialized with a new detection.

Such motion-guided sampling has several benefits with
respect to the original uniform sampling:
• significant reduction of search space;
• successful tracking of objects moving at high velocities;
• reduction in identity swaps for similarly looking objects;

As a side benefit, using motion-guided sampling, we were
able to achieve a tracking speed-up by a factor of two without
any degradation in performance, due to a ten times reduction
in the number of samples. Fig. 4(c) illustrates how the motion
model helps to significantly reduce the search space while
looking for objects in the next frame.

C. Visual Tracking Details

We have now introduced two methods for object detection
and tracking, respectively. In order to effectively use them
together we need to do data association between detections
and tracks. We employ the Hungarian algorithm [21] to solve
this problem. As discussed above, the detection algorithm is
running at 0.1− 0.2Hz, thus for the frames where detections
are not available, tracks are propagated according to the online
boosting model.

Apart from a computational speed up, other important
benefit of tracking is that it outputs a single detection per
object, which is one of the assumptions required for the
GM-PHD filter application, as described in Section III-D.

As our approach is based on machine learning it has the
limitation of being able to detect objects that look similar
to the ones that are present in the training set. However,
it is relatively easy to add another class of objects, which
allows the detector not only to localize the drone, but also
to distinguish between different types of UAVs, which might
be important for some applications.

D. Multi-Target State Tracking

In this section, we present our implementation of the GM-
PHD filter for multi-target state tracking of UAVs with a
single camera as a sensing device. The first part will be a
quick introduction about this filtering technique, For more
insight of the GM-PHD filter, please refer to [17] and [18] .
The second part will focus on the implementation.

1) Probability Hypothesis Density Filter: The main con-
cept behind the GM-PHD filter, and Probability Hypothesis
Density filters in general, is to estimate a map of the density,
called intensity, of targets present in the environment instead
of single, distinguishable tracks. This allows us to estimate
the state of all targets in a single state space X instead of
its power set F(X ) as it would be the case for the classical
multi-target problem. The second specificity of the GM-PHD
filter is that the targets are described using a mixture of
Gaussians. That is, the intensity vk at time k for state x is
given by

vk(x) =

Jk∑
i=1

w
(i)
k N (x;m

(i)
k , P

(i)
k ), (3)

with w
(i)
k the weight of the Gaussian i, m(i)

k its mean and
P

(i)
k its covariance. The assumption of using a mixture of



(a) Original frame (t0) (b) Uniform sampling (t0 + 1) (c) Motion model (t0 + 1)

Fig. 4. Sampling algorithms for finding the location of the object at t0 + 1 frame, based on its position at t0, which is marked with a red dot. (a) depicts
the original frame at step t0. (b) illustrates the conventional uniform sampling around the position of the object. (c) search space can be significantly
reduced using motion-model-based sampling. Best seen in color.

Gaussians allows reformulating the problem to use Kalman
filtering to predict and update each Gaussian.

The prediction step for the GM-PHD filter is computed as

vk|k−1(x) =

Jk∑
i=1

pS,kw
(i)
k N (x;m

(i)
k|k−1, P

(i)
k|k−1)

+ γk(x), (4)

with

m
(i)
k|k−1 = Fk−1m

(i)
k−1 (5)

P
(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T
k−1, (6)

where Fk−1 is the motion model from time k − 1 to k and
Qk−1 is the process noise during that interval. γk(x) is the
intensity of new targets appearing, described as a Mixture of
Gaussians. In this work, γk(x) is implemented as a single
Gaussian two meters in front of the camera. pS,k is the
probability that a target survives between time k − 1 and k.
The update step is

vk(x) =

Jk∑
i=1

(
1− pD,kw

(i)
k|k−1N (x;m

(i)
k|k−1, P

(i)
k|k−1)

)
+
∑
z∈Zk

Jk∑
i=1

w
(i)
k (z)N (x;m

(i)
k|k(z), P

(i)
k|k), (7)

with

w
(i)
k (z) =

pD,k(m
(i)
k|k−1)w

(i)
k|k−1l

(i)
k (z)

κ(z) +
∑Jk

i=1 pD,k(m
(i)
k|k−1)w

(i)
k|k−1l

(i)
k (z)

(8)

l
(i)
k (z) = N (z;H

(i)
k m

(i)
k|k−1, Rk +H

(i)
k P

(i)
k|k−1[H

(i)
k ]T ) (9)

m
(i)
k|k(z) = m

(i)
k|k−1 +K

(i)
k (z−H(i)

k m
(i)
k|k−1) (10)

P
(i)
k|k =

[
I −K(i)

k H
(i)
k

]
P

(i)
k|k−1 (11)

K
(i)
k = P

(i)
k|k−1[H

(i)
k ]T (H

(i)
k P

(i)
k|k−1[H

(i)
k ]T +Rk)−1, (12)

where κ(z) is the clutter level and Rk the sensor noise
covariance. pD,k is the probability that a target i is detected
and H(i)

k is the matrix that transforms the target’s state to a
measurement. Note that Equations 10, 11 and 12 are similar
to a Kalman filter update.

2) Implementation: In our framework, the computer vision
module returns the bounding boxes of detected objects. Due
to the fact that width and height of these bounding boxes
are heavily correlated, the measurement of a target is z =

0 20 40

H
or

iz
on

ta
l

[p
ix

el
]

0

500

No Visual Tracking

0 20 40

V
er

tic
al

[p
ix

el
]

0

500

Time [s]
0 20 40

W
id

th
[p

ix
el

]

0

100

200

300

0 20 40
0

500

Visual Tracking

0 20 40
0

500

Time [s]
0 20 40

0

100

200

300

Fig. 5. Position estimates obtained from the computer vision algorithm.
The data on the left is obtained from the cascade of detectors with non-
maximum suppression of 1, and the data on the right is from the visual
tracking algorithm with non-maximum suppression set to 3. Different colors
correspond to different measurement for the same timestep with this order:
blue, red, black, green, cyan. Best seen in color.

[xc, yc, wc]
T with the components being the detection center

in horizontal and vertical coordinate and the width of the
bounding box, respectively. A sample of the measurements
is shown in Fig. 5. The implementation of the camera sensor
model is similar to [19], which uses the standard camera
with distortion model, with the exception of the measurement
model for the apparent width w(i)

c of target i at time k. The
equations for our sensor model are

x(i)c = Fxx
(i)
d +X0 (13)

y(i)c = Fyy
(i)
d + Y0 (14)

w(i)
c =

FxWt (1 +K1sr)(
‖q(i)b,k‖+Kw‖q(i)b,k‖2

) (15)

[
x
(i)
d , y

(i)
d

]
= ρ [rx, ry] , ρ =

(
1 +K1sr +K2s

2
r

)
(16)

rx =
x
(i)
b,k

z
(i)
b,k

, ry =
y
(i)
b,k

z
(i)
b,k

, sr = r2x + r2y, (17)

with q
(i)
b,k =

[
x
(i)
b,k, y

(i)
b,k, z

(i)
b,k

]T
the position of the target

relative to the camera in the camera frame. K1, K2, Fx,
Fy , X0 and Y0 are the standard intrinsic camera parameters
and were determined using OpenCV. Wt is the size of the
target, and is assumed to be known. Kw is a parameter
related to the change of the apparent width as function of the
target’s distance to the camera and has been determined



0 20 40

X
 p

os
 [m

]
-1
0
1

No Visual Tracking

0 20 40

Y
 p

os
 [m

]

0
1
2
3

Time [s]
0 20 40

Z
 p

os
 [m

]

0

1

2

0 20 40

-1
0
1

Visual Tracking

0 20 40

0
1
2
3

Time [s]
0 20 40

0

1

2

0 20 40

X
 v

el
 [m

/s
]

-0.5

0

0.5

No Visual Tracking

0 20 40

Y
 v

el
 [m

/s
]

-0.5

0

0.5

Time [s]
0 20 40

Z
 v

el
 [m

/s
]

-0.4
-0.2

0
0.2

0 20 40

-0.5

0

0.5

Visual Tracking

0 20 40

-0.5

0

0.5

Time [s]
0 20 40

-0.4
-0.2

0
0.2

(a) Position estimates (b) Velocity estimates
Fig. 6. Results for our experiment with two quadrotors (blue and red track, respectively) in a cluttered environment. The solid, thinner lines are the true
trajectories of the quadrotors acquired by the MCS. The dots are the estimated positions from the GM-PHD filter. The red and blue colored dots are the
ones closest to the red and blue curves, respectively. The data association is obtained during the computation of the OSPA metric and not as a result of the
GM-PHD filter. The black dots are the estimates that were not associated with a quadrotor. Best seen in color.

empirically. This parameter was added to compensate a
discrepancy between the model and observed measurements
where the cascade of detectors would report targets larger
than reality when the quadrotors are far away. As the camera
sensor model is not linear, the GM-PHD filter is implemented
as an Extended Kalman PHD filter [18].

After updating, a pruning and merging step is performed
as described in [18] in the following manner: Gaussians with
a weight less than 10−5 are pruned and two Gaussians closer
than two times their covariances are merged. Finally, all
Gaussians that have a weight higher than 0.5 are reported as
being targets.

IV. IMPLEMENTATION

The experimental setup is composed of an AscTec Firefly
quadrotor carrying a camera and two AscTec Hummingbird
quadrotors flying in front as targets of the tracking framework.
The camera is equipped with a fish-eye lens with a field
of view of 185◦ (an example of a video frame from the
accompanying video1 can be seen in Fig. 1.). All quadrotors
flew autonomously using localization data acquired by an
external Motion Capture System (MCS) and sent through
WiFi to the vehicles. The MCS allows for tracking the pose
of the quadrotors with millimetric level accuracy and is used
as ground-truth to assess the performance of our framework.
The trajectories of the Hummingbird quadrotors were set as
follows: for one, an ellipsoid of 3×2 m and for the other one
an ∞-shape of 2×1 m. The quadrotors performed their loop
in 20 s. The Firefly was mostly in static flight, moving to
another position from time to time. All the data were recorded
on the Firefly to be post-processed by leveraging the rosbag
functionality of the Robotic Operating System (ROS).

In the post-processing phase, the data were played back
in real time and fed to the computer vision and tracking
algorithms. The computation was performed on a desktop
computer with an Intel Core i7, an hardware comparable

1The video and more information about the project can be found at
http://disal.epfl.ch/research/UAVCollisionAvoidance

to the high-end computation modules for quadrotors (e.g.,
AscTec Mastermind).

Section V presents the results of our framework with and
without visual-based tracking. Although both methods operate
on the same video stream, the parameters were set differently
for fair comparison. An important difference resides in the
neighborhood size of the non-maximum suppression step,
which is set to 3 for the case with visual-tracking and 1
in case without. This is because visual tracking is more
sensitive to false positives, as opposed to the multi-target
state tracking which is more sensitive to missed detections.
Other differences were in the parameters used in the multi-
target state tracker. With visual tracking, the parameters were
pD = 0.95, κ(z) = 3 · 10−9 and R = diag(200, 200, 1600)
and without they were pD = 0.5, κ(z) = 2.4 · 10−9 and
R = diag(200, 200, 3200).

V. RESULTS

In this section, we present the results of our tracking
framework. We compare two cases: the case for which the
visual tracking is enabled, and the case for which it is disabled.
The obtained trajectories for both cases are shown in Fig. 6(a).
Fig. 6(b) shows estimated velocities for both cases. Both
figures show the estimates as dots and the ground-truth as
solid lines. The dots are colored according to the ground-
truth they are closest to. On the one hand, the trajectories
obtained without visual tracking are not only less accurate
than those with visual tracking, but they do also suffer of
target disappearing. This is due to the cascade of detectors not
reliably detecting a target, and when one is not detected, the
multi-target state tracker immediately reacts by lowering the
weight of the estimate below the target existence threshold. On
the other hand, the visual tracking will search the image for
features that it learned previously. As a result, the algorithm
returns a measurement for each quadrotor at each frame. This
consistency allows the multi-target state tracker to correctly
track both quadrotors and get a smooth estimate of their
velocity.

http://disal.epfl.ch/research/UAVCollisionAvoidance


Time [s]
0 10 20 30 40

O
S

P
A

0

0.5

1

1.5

2

Fig. 7. Obtained OSPA [22] measurement for tracked position of the
quadrotors. Blue curve is the OSPA for the case with visual-tracking enabled,
red curve is for the case where it is disabled. Lower is better. The error is 2
at maximum. Best seen in color.

One limitation of the system comes from the interaction
between the visual tracker and the multi-target state tracker.
An example can be seen in Fig. 5 around 25 s where tracks are
created from false detections. This happens due to the fact that
when a track is being created by the visual tracking module,
it stays for about 20 frames. This leads to its interpretation as
a target by the state tracker, as depicted by Fig. 6. A possible
solution will be to merge visual tracking and multi-target
state tracking, which is one of our further research directions.

To assess the improvement that visual-based tracking
brings to the tracking framework, the Optimal Subpattern
Assignement (OSPA) [22] metric is used. The OSPA errors
are shown in Fig. 7 for both in the case where visual tracking
is enabled and in case it is disabled. Overall, adding visual
tracking improves the result, mostly due to the two targets
being consistently tracked. The OSPA metric goes up around
24 and 27 s of the experiment due to the visual tracking
algorithm keeping two separate tracks for a single target. This
is then interpreted as a two distinct targets by the multi-target
state tracker. Without visual tracking, the target’s appearance
flickers as they are not reliably detected solely with the
cascade of detectors.

VI. CONCLUSION

In this paper, we presented a framework for visual tracking
and position estimation of UAVs using a single camera. Our
framework relies on two computer vision algorithms that
extract the position and size of an aircraft from a video
frame. The detections are then given to a multi-target
tracker to estimate the aircraft’s position and velocity in
three dimensions. We performed an indoor experiment with
three quadrotors to prove the effectiveness of our method.

Future work includes testing the framework outdoors
where lighting conditions and cluttered environment might
be challenging. We plan to use the presented framework
with a collision avoidance algorithm to assess the safety of
the methods for a SAA scenario. To improve the tracking
capability, the information from the multi-target state tracker
could be fed back to the visual tracking to improve the motion
model. Finally, it would be beneficial to add the capability
to discriminate between different aircraft. This is a necessary

step for a fully functional system able to accurately track any
aircraft as it relies on the size of a target to estimate distance.

REFERENCES

[1] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-
time Onboard Visual-Inertial State Estimation and Self-Calibration of
MAVs in Unknown Environments,” in IEEE International Conference
on Robotics and Automation, 2012, pp. 957–964.

[2] M. Achtelik, M. Achtelik, S. Weiss, and R. Y. Siegwart, “Onboard
IMU and Monocular Vision Based Control for MAVs in Unknown
In- and Outdoor Environments,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 3056–3063.

[3] J. Zufferey, A. Beyeler, and D. Floreano, “Autonomous flight at
low altitude with vision-based collision avoidance and GPS-based
path following,” in IEEE International Conference on Robotics and
Automation, 2010, pp. 3329–3334.

[4] S. Yang, S. A. Scherer, K. Schauwecker, and A. Zell, “Autonomous
Landing of MAVs on an Arbitrarily Textured Landing Site Using
Onboard Monocular Vision,” Journal of Intelligent & Robotic Systems,
pp. 27–43, 2013.

[5] D. Dias, R. Ventura, P. Lima, and A. Martinoli, “On-board vision-
based 3D relative localization system for multiple quadrotors,” in
IEEE International Conference on Robotics and Automation, 2016, pp.
1181–1187.

[6] P. Conroy, D. Bareiss, M. Beall, and J. van den Berg, “3-D reciprocal
collision avoidance on physical quadrotor helicopters with on-board
sensing for relative positioning,” arXiv preprint arXiv:1411.3794, 2014.

[7] T. Zsedrovits, A. Zarandy, B. Vanek, T. Peni, J. Bokor, and T. Roska,
“Visual detection and implementation aspects of a uav see and avoid
system,” in IEEE/RSJ International Conference on Circuit Theory and
Design, 2011, pp. 472–475.

[8] L. Mejias, S. McNamara, J. Lai, and J. Ford, “Vision-based detection
and tracking of aerial targets for uav collision avoidance,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2010, pp.
87–92.

[9] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2001, pp. 511–518.

[10] R. Lienhart and J. Maydt, “An extended set of haar-like features
for rapid object detection,” in International Conference on Image
Processing, 2002, pp. 900–903.

[11] C. Zhang and Z. Zhang, “A survey of recent advances in face detection,”
Microsoft Research, Tech. Rep., 2010.

[12] R. Szeliski, Computer Vision: Algorithms and Applications. New
York, NY, USA: Springer-Verlag New York, Inc., 2010.

[13] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 7, pp. 1409–1422, 2012.

[14] G. Helmut and B. Horst, “On-line boosting and vision,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition,
2006, pp. 260–267.

[15] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, pp. 1806–1819, 2011.

[16] S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang, “Visual tracking
via locality sensitive histograms,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2427–2434.

[17] R. P. Mahler, Statistical multisource-multitarget information fusion.
Artech House, Inc., 2007.

[18] B.-N. Vo and W.-K. Ma, “The gaussian mixture probability hypothesis
density filter,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp.
4091–4104, 2006.

[19] S. Roelofsen, D. Gillet, and A. Martinoli, “Reciprocal collision
avoidance for quadrotors using on-board visual detection,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2015, pp.
4810–4817.

[20] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-
line boosting,” in Proceedings of the British Machine Vision Conference.
BMVA Press, 2006, pp. 6.1–6.10.

[21] H. W. Kuhn and B. Yaw, “The hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[22] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, 2008.


	Introduction
	Related Work
	Proposed Framework
	Object Detection
	Visual tracking
	Visual Tracking Details
	Multi-Target State Tracking
	Probability Hypothesis Density Filter
	Implementation


	Implementation
	Results
	Conclusion
	References

