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Abstract— This paper investigates sound source mapping in
a real environment using a mobile robot. Our approach is
based on audio ray tracing which integrates occupancy grids
and sound source localization using a laser range finder and
a microphone array. Previous audio ray tracing approaches
rely on all observed rays and grids. As such observation errors
caused by sound reflection, sound occlusion, wall occlusion,
sounds at misdetected grids, etc. can significantly degrade the
ability to locate sound sources in a map. A three-layered
selective audio ray tracing mechanism is proposed in this work.
The first layer conducts frame-based unreliable ray rejection
(sensory rejection) considering sound reflection and wall oc-
clusion. The second layer introduces triangulation and audio
tracing to detect falsely detected sound sources, rejecting audio
rays associated to these misdetected sounds sources (short-term
rejection). A third layer is tasked with rejecting rays using
the whole history (long-term rejection) to disambiguate sound
occlusion. Experimental results under various situations are
presented, which proves the effectiveness of our method.

I. MOTIVATION AND BACKGROUND

The ability of a robot to build a map of its surroundings is
a fundamental characteristic required for autonomous naviga-
tion in unknown spaces. Most Simultaneous Localization And
Mapping (SLAM) systems which are implemented for indoor
environments are vision or LIDAR based [1]. Despite sub-
stantial developments with these sensing modalities, audio-
based mapping is still in its primitive phase, and remains an
open subject of research given the particularly challenging
conditions associated to environmental acoustic noise and
reflections. Because of its importance, e.g. for Human-Robot
Interaction, sound source mapping has recently become a
main challenge in the field of robot audition, and several
methods have been reported.The existing methods can be
mainly categorized into two approaches.

The first approach combines Sound Source Localization
(SSL) and robot’s odometry within localization strategies
such as triangulation [2], particle filters [3], FastSLAM [4],
Evidence Grids [5] or PSFS [6]. The approach is relatively
easy to implement as relies only on a microphone array
mounted on the robot. Its performance is relatively unaf-
fected by external factors such as room shape etc. although
it is contrained by two critical factors:

1) The robot needs to see all sound sources from different
angles so as to locate the sound sources precisely.
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2) Sound reflection is not taken in consideration, result-
ing in performance degradation in reverberant environ-
ments.

Issue 1 is particularly apparent when the robot drives directly
towards a sound source; the sound source is observed from
only one angle and the methods will eventually fail. This
situation is more likely to happen when the robot is driving
in a narrow corridor and there is one sound source at the
end of the corridor. Issue 2 becomes especially critical when
applying the methods in indoor environments.

The second approach relies on occupancy grids in addition
to SSL and odometry to develop a ray tracing approach
to detect sound sources [7]. Thanks to the fusion of SSL
with the distance scan data, locations of sound sources can
be obtained by one single position of the robot. Therefore,
sensing sound sources from different angles is no longer
needed, which solves the issue 1). This approach has mainly
the following assumptions:

3) An audio ray hit a sufficiently narrow area of occupied
grids so that the sound location is uniquely determined.

4) All sound sources are on occupied grids.
5) Sounds do not pass through occupied grids.

However, these assumptions are not always satisfied in
real-world applications. For instance, the assumption 3) is
problematic when there is wall occlusion. Especially when
localizing a single isolated sound source, the wall behind
the true sound source will get higher probability and be
mistakenly detected as a sound source [7]. The assumption 4)
is not met especially when using a planar laser range finder.
If there is any sound source that cannot be scanned by the
laser, this method will trace the location of the sound source
to the obstacle behind it and fail. The assumption 5) is also
not satisfied if there are acoustically transparent materials or
low walls which accept diffraction, which induces the wall
in front of the true sound source will mistakenly get higher
probability.

In this paper a mechanism for sound source mapping
suitable for real environments able to tackle the above issues
is investigated. Following on the ground work of our previous
approach [8], we use audio rays combined with occupancy
grids to solve issue 1). To solve other issues, this paper pro-
poses a three-layered selective audio ray tracing inspired by
the multi-store model. The first layer conducts frame-based
unreliable ray rejection (sensory rejection) considering sound
reflection and wall occlusion to solve issues 2) and 3). To
solve issue 4), the second layer introduces triangulation [2]
using all observed audio rays to detect sounds at misdetected
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grids and reject audio rays related to the misdetected sounds
source (short-term rejection). A third layer then rejects rays
using the whole history (long-term rejection) to disambiguate
the sound occlusion to solve issue 5).

II. PROPOSED METHOD

Fig. 1 shows the process flow of the proposed sound
source mapping. Same as our previous approach [8], we
use a laser range finder and a microphone array to compute
robot odometry, occupancy grids, and direction of sound
sources. The audio ray tracing block is an extension of
the conventional ray tracing [7] described in Section II-A.
Other three black blocks conduct the three-layered audio ray
selection. The sensory audio ray rejection block is conducted
every frame (Section II-B.1). When a new sound source gets
localized, the short-term audio ray rejection is conducted
(Section II-B.2). Finally, the long-term audio ray rejection
is conducted after the robot finishes exploration (Section II-
B.3). Below, we explain the algorithm of each block briefly.

A. Audio Ray Tracing Using SSL and Occupancy Grids

In our previous approach [8], we used MUltiple SIgnal
Classification (MUSIC [9]) for SSL and Hector SLAM [10]
for occupancy grid mapping.

Since this paper focuses on 2D sound source mapping,
MUSIC is used to estimate azimuth of sound sources in
the robot coordinate, denoted as ψr, where the superscript r
represents that the status is in the robot coordinate Cr. Same
as our previous work [8], the spatial spectrum is computed
frame-by-frame, denoted as P (ψr, f), where f is the frame
index. This paper defines the estimated direction as a set
of ψr having local maxima of P (ψr, f). To select reliable
local maxima, we use two different thresholds depends on if
there are a lot of occupied grids close to the robot or not.
We observed that if a robot is close to large obstacles, such
as a corner of walls, reverberation gets stronger, resulting in
higher spatial spectrum. Thus, we choose a higher threshold
Th for the situation in which the robot is close to a large
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obstacle and a lower threshold Tl otherwise. Hereinafter, the
estimated direction at the f -th frame is represented as ψr(f).

Same as our previous work [8], we use Hector SLAM
to estimate both 2D planar robot odometry and occupancy
grids in the f -th frame, namely 2D robot location pwr (f) =
[xwr (f), y

w
r (f)]

T , the robot orientation θwr (f), and the 2D
occupied grid location pwi,j = [xwi,j , y

w
i,j ]

T , where the super-
script w represents that the status is in the world coordinate
Cw, and i, j is the horizontal and vertical index of grids in
the occupancy grid mapping.

Fig. 2 shows the model of audio ray tracing. In the f -
th frame, SSL estimates ψr(f) in the robot coordinate Cr.
Then, an audio ray is casted from the robot in the direction
of ψw(f) = ψr(f) + θwr (f) in Cw with the maximum
range rmax, which is hereinafter described as Γw(f). The
conventional ray tracing [7] uses particle filtering to estimate
the robot location, so a set of audio rays casted from all
weighted particles is used to compute the probability of the
sound existence. This paper, on the other hand, estimates one
robot pose using Hector SLAM and can use only one audio
ray. Therefore, the sound probability is computed under
assumption that the probability has a normal distribution with
a mean in the direction of ψw(f) and a standard deviation
of δψ as shown in Fig. 3. The likelihood of traced occupied
grids is computed as follows:

li,j(f) = N
(
ψw(f)− arg(pwi,j − pwr (f))

δψ

∣∣∣∣ 0, 1) , (1)

where N (x|0, 1) is a 0 mean 1 sigma Gaussian distribution.
Here, Eq. 1 is computed only for a set of grids, satisfying

G(f) =
{
p ∈ pwi,j

∣∣ |ψw(f)− arg(p− pwr (f))| ≤ δψ
}
,
(2)

meaning the grids are within ψw(f)±δψ . If pwi,j /∈ G(f),
li,j(f) = 0. As ray tracing process continues, the sound
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source likelihood value of each grid (i, j) will be simply
summed up as follows:

Li,j(f) = Li,j(f − 1) + li,j(f) . (3)

Finally, to define the probability of each grid being a sound
source, these accumulated likelihood rescaled between 0 and
1 as below:

L̄i,j(f) = 1− exp(−αsLi,j(f)), (4)

where L̄i,j(f) is the probability of the (i, j) grid. αs is the
parameter to tune the exponential curve, which controls the
sensitivity of sound source mapping.

B. Three-layered Audio Ray Selection

1) Sensory Audio Ray Rejection: The first-layer selects
audio rays frame-by-frame considering the issues 2) and 3).
Fig. 4 shows examples of false positives in detecting sound
sources induced by the issues.

CASE1 is the wall occlusion, where audio rays are pro-
jected more than one wall even if there is one sound source.
To identify this case, pwi,j ∈ G(f) is checked if the grids are
linked together. If not fully linked, we compute the azimuth
occupancy rate of unlinked sets of grids as shown in CASE1
in Fig. 4, denoted as ψ̂k(f). Finally, the f -th audio ray Γw(f)
is rejected if satisfying the following condition:

∀k :
|ψ̂k(f)|
2δψ

< ε1 . (5)

In CASE2, the audio ray is projected in a large area of the
occupancy grids since the robot is close to the wall, which
is not desirable to locate the sound source. Thus, Γw(f) is
rejected if satisfying the following condition:√

var(Xw
i,j) + var(Y w

i,j) > ε2 , (6)

where Xw
i,j and Y w

i,j are sets xwi,j and ywi,j when pwi,j ∈ G(f).
CASE3 shows an example of false positive due to re-

flection. This situation can be eliminated by checking the
observability of the reflected rays. Same as our previous work
[8], we assume the reflection follows the image model [12].
Thus, we first compute the border line between visible and
invisible areas shown as a dotted line in CASE3 in Fig. 4 and
obtain the cross point of the border and the wall, described
as a star in the figure. The audio ray hitting the star, denoted
as a chained line in the figure, is the border line of rays if

Sound source 
on a occupied grid

Robot

False 
positive

Center of triangulation points

Sound source on 
an unoccupied grid

Audio rays used for triangulation
False 
negative
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the reflection is visible or not. If the most of reflected area is
not directly observable, it is difficult to estimate whether the
sound is direct or reflected. Therefore, we reject rays based
on the azimuth occupancy rate divided by the chained line
as follows:

|ψ̂+|
2δψ

< ε3 . (7)

2) Short-term Audio Ray Rejection: The second layer
detects sound sources which are not detected by the laser
range finder and rejects rays related to these sounds. As
mentioned in Section I, the audio ray tracing is suitable for
localizing sound sources attached to obstacles that can be
scanned by the laser range finder, which is hereinafter called
on-wall sound sources. However, the method will fail if there
are sound sources that cannot be scanned by the laser, which
is hereinafter called off-wall sound sources. The triangulation
[2] does not use the laser range finder and can detect off-
wall sound sources, but it needs the robot to navigate and
observe all sound sources from different angles. The second
layer introduces the triangulation [2] and integrate it with the
audio ray tracing to solve the issues.

As shown in Fig. 5, the audio ray tracing generates false
positives behind the off-wall sound source. In order to reject
these rays, firstly clusters of triangulation points are classified
into on-wall and off-wall sources by simply thresholding the
distance from each cluster center (red boxes in Fig. 5) to the
closest occupied grid, with a thresholding parameter εr. As it
is observed from empirical results that audio ray tracing has
better localization accuracy than triangulation for an on-wall
sound source, the localization result from audio ray tracing
is adopted. For off-wall sound sources, localization results
from triangulation are adopted, and falsely projected rays
need to be removed. Every time when a off-wall cluster is
detected, the rays having triangulation points of the detected
off-wall sound source are rejected.

3) Long-term Audio Ray Rejection: After the sound
source mapping, the third layer disambiguate false positives
in detecting sound sources in consideration of all sound
source location and the occupancy grids. As shown in Fig.
6, low height walls (or obstacles) or acoustically transparent
walls generate false positives. Here, we assume that N
sound sources have been detected and located at pwsn, where
1 ≤ n ≤ N . This type of false rays is eliminated after the
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robot navigation terminates as follows:

∀Γw(f),pwsn :

|arg(Γw(f))− arg(pwsn − pwr (f))| < εL1 &

‖pwsn − pwr (f)‖ > ‖pwΓ (f)− pwr (f)‖+ εL2 ,

where pwΓ (f) is the 2D location of the traced grid by Γw(f).
If there is a occluded sound source behind where Γw(f)
hits the obstacle grids (at least further away by εL1) and
the direction from robot pose to the occluded sound source
is sufficiently close (less than εL2), the rays are rejected.
After this rejection, grids in sound probability map will be
re-clustered and detected sound sources will be updated.

When the robot navigation terminates, k-means [13] al-
gorithm is used to cluster the grids of sound probability
occupancy map with the maximum number of clusters Nmax,
and the minimum distance between each cluster ∆min. Sound
source probability L̄i,j(f) associated to each cell (i, j) is
treated as the weight during clustering. After clustering, those
clusters whose maximum probability of contained grids is
higher than a predefined threshold will be determined as a
valid sound source.

C. Parameters Selection and Learning

The parameters in the proposed method can be
learned/tuned as described below. δψ and αs (described in
section II-A) can be learned by observing a sound source
with the practical hardware. Specifically, δψ represents a
microphone array’s SSL observation noise and can be es-
timated by observing a static sound source with the actual
microphone array and computing the standard deviation from
the SSL observations.
αs can be obtained by operating a mobile robot around

a sound source with a wide angle observation base line
(90-180 degree) in a less reverberant environment. In this
case, the robot should fully observe the sound source with
high certainty of that coming from a given sound source.
Therefore, αs can be obtained by setting the maximum
normalized accumulated likelihood L̄i,j(f) in Eq. 4 to a large
confidence value (0.95 0.99).
ε1, ε2 and ε3 (section II-B.1) determine how strictly we

want the proposed three layered audio ray rejection to be.
High values of ε1, ε3 and low value ε2 mean we will
reject most audio ray estimates. This however implies that
sometimes we might reject all audio rays. On the other hand,
being too flexible means we will accept most of the audio
rays and the proposed method becomes similar to the work
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proposed in [7]. This will lead to an increase in false positive
detection, particularly in reverberant environments.
εr (section II-B.2) represents the minimum distance of

the closest off-wall sound source to the wall. Empirical
observations indicate that in practical settings it can be safely
set to 0.2m-0.5m.
εL1 (section II-B.3) is also related to microphone array’s

observation noise, and therefore it can be set equal to δψ .
Lastly, εL2 (section II-B.3) depends on the width of the

wall and hence can be set to 0.2m-0.4m for most cases.

III. EXPERIMENTAL VALIDATION

In this section, validation results of our method is pre-
sented. The proposed system explained above was imple-
mented with a Turtlebot (see Fig. 7), located in a normal
room whose reverberation time was 0.2 seconds. The room
size is 7.0m × 4.0 m. We utilized Hokuyo UTM-30LX for
Hector SLAM.

For SSL, we utilized a Microcone manufactured by Dev-
Audio which has an 6-ch circular microphone array and 1-
ch microphone on the top. All sensors were mounted on
the robot as shown in Fig. 7. We computed the transfer
functions of the Microcone using a wave propagation model,
whose resolution was 5◦. The acoustic signal was sampled
with 16 kHz and 16 bits. The window and shift length
for frequency analysis were set to 512 and 160 samples,
respectively. For SSL, we utilized MUSIC[9] implemented
in the robot audition software, HARK[14]. White noise is
used for sound source mapping.

For validation, sound source localization accuracy using
the proposed method, ray tracing as proposed by [7] and
triangulation as per [2] are compared under various different
situations are presented. As all three methods have been
implemented by the authors for this exercise, the key pa-
rameters employed are collected in TABLE I. Throughout
the comparison given by Figs. 8, Figs. 10, 11, and 12, we
use the same notation. The green boxes represent locations
of detected sound sources using kmeans algorithm and the
magenta boxes represent actual ground truth locations of the
sound sources. The white dots in ray tracing represent the
obstacles grids that are not hit by rays. Red markers in the
triangulation method denote triangulated points.

Fig. 8 shows sound source mapping results using three
different methods with on-wall sound sources. Figs. 8(a)-(c)
shows the results with two on-wall sources. As can be seen
from the figure, both the ray tracing and the triangulation



(a) Ray tracing with two sources (b) Triangulation with two sources (c) Proposed method with two sources

(d) Ray tracing with three sources (e) Triangulation with three sources (f) Proposed method with three sources

(g) Ray tracing with four sources (h) Triangulation with four sources (i) Proposed method with four sources

Fig. 8. Sound Source Mapping with only on-wall sources

(a) SSL Mean RMS errors with STD
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Fig. 9. Mean RMS error with STD and successful detection rate after 5
times Monte Carlo runs for each situation

TABLE I
KEY PARAMETERS SETTINGS IN THE EXPERIMENTS

General parameters Values
rmax 3m
Nmax 5
∆min 0.5m

Ray tracing [7] Values
SSL SRP-PHAT
Lmin 0.01
Lmax 0.99
α 0.9

Lmax 400
εmax 31.0
εrange 1.0
εnorm 31.5

Proposed method Values
SSL MUSIC
δψ 10 degree
αs 1.0
ε1 0.7
ε2 0.15m
ε3 0.6
εr 0.5m
εL1 10 degree
εL2 0.3m

Triangulation [2] Values
# of obs. 10

Outlier rejection RANSAC

detected two sources (Fig. 8(a) and Fig. 8(b)), but the accu-
racy was not high due to the large projection of audio rays.
The proposed method in Fig. 8(c) localized two sources with
higher accuracy than conventional methods of ray tracing and
triangulation regarding the large projection in the sensory
audio ray rejection. Similar results are observed in 3 and 4
sound sources situations. In the case of four sound sources,
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Fig. 10. Sound Source Mapping with one isolated sound source and one sound source in a highly sound reflective corridor

the ray tracing missed one sound source. By reducing α in
the ray tracing, the fourth sound source can be detected, but
we keep the value since the low α degrade the accuracy of
SSL.

Then, in order to quantitatively evaluate our SSL accuracy,
we run 5 Monte Carlo runs for each experiment shown
above. Mean RMS errors and standard deviation (STD) of
SSL in sound source mapping along with successful sound
source detection rates after 5 times Monte Carlo runs are
shown in bar graph in Fig. 9. As can be seen from two bar
graphs, the proposed method can detect all sound sources
successfully in all runs and localization accuracies are better
than conventional ray tracing and triangulation methods for
all three cases. As the number of sound sources increase,
reverberation condition becomes more evidence and SSL
accuracy will reduce. Therefore mean RMS errors of four
sound source is larger than those of two and three sound
sources.

Next, we studied two challenging cases of SSL, which
are localization of an isolated sound source and SSL in
a highly reflective environment. Figs. 10(a)-(c) shows the
results for an isolated sound source which is a challenging
case as stated in [7]. As seen in Fig. 8(a), the ray tracing
assigned positive sound source likelihood value not only to
the sound source in the middle, but also to the wall behind it
as explained in [7]. This results in the centroid of the cluster
stayed at the middle and not accurately localized the source.
As seen in Fig. 8(b), the triangulation detected one cluster
corresponds to the true sound source. However, the accuracy
is not high due to the variability of the triangulation points.
As seen in Fig. 8(c), our method could detect one source with
better accuracy, which confirms that the three-layered audio

ray selection worked for an isolated sources considering
wall occlusion and isolated source classification based on
triangulation. Figs. 10(d)-(f) shows results for SSL in a
highly reflective corridor. The ray tracing method in 10(d)
and The triangulation method in 10(e) all detected a false
positive sound source due to reflection from the wall at the
bottom. Our proposed method, thanks to the CASE3 of the
proposed three-layered Audio Ray Selection II-B, most of
false positive audio rays reflected from the bottom wall are
successfully rejected.

The comparison with low height walls is shown in Fig. 11
when having one source (Figs. 11(a)-(c)) and two sources
(Figs. 11(d)-(f)). Two horizontal walls in the middle right
side of space are low height walls. The ray tracing in
Fig. 11(a) detected two clusters. One cluster in the middle
were due to the false rays hitting to the low hight walls,
caused by the issue 5) in Section I. The triangulation in
Fig. 11(b) got a lot of false triangulation points in the
beginning since the sound propagated through the low walls.
As a result, it mistakenly detected a sound source in the
bottom. The proposed method detected one sound source
close to the ground truth. Although many rays hit the wall
in the middle at the beginning, most of these rays were
eliminated by the sensory audio ray rejection, resulting in
the RMS error of 0.0412m.

Figs. 11(d)-(f) show the mapping result with two sound
sources. Here, we put the second source where the ray
tracing got false positives in Fig. 11(a) so as to challenge
the ambiguous situations. All three methods detected the two
sound sources except the triangulation detected one more
sound source in the beginning of robot trajectory due to
many SSL when the robot stayed at the start point. The



(a) Ray tracing with one source (b) Triangulation with one source (c) Proposed method with one source

(d) Ray tracing with two sources (e) Triangulation with two sources (f) Proposed method with two sources

Fig. 11. Sound Source Mapping (with low height walls in the middle)

(a) Triangulation (b) Proposed method after sensory rejection (c) Proposed method after all layers

Fig. 12. Sound Source Mapping with both on- and off-wall sources

proposed method in Fig. 11(f) successfully detected two
sources, which means that the long-term audio ray rejection
worked for disambiguating the auditory occlusion. Finally,
the proposed method estimated both sources with the RMS
error of 0.1042m.

Fig. 12 shows the performance of the proposed method
when both on-wall and off-wall sound sources exist. As seen
in Fig. 12(a), triangulation detects two sound sources in the
middle and bottom. However the sound source on top is not
detected since the robot observes this sound source from very
narrow angle and performance of triangulation becomes very
poor in this case. The proposed method after the sensory
audio ray rejection is shown in Fig. 12(b). It can be seen
that two on-wall sources are successfully detected. The final
localization result after the short-term and long-term audio
ray rejection is shown in Fig. 12(c). As seen in the figure,
most of false positives due to the off-wall sound source in
the middle are removed successfully, and all 3 sound sources
are successfully detected, whose RMS error was 0.1138m.

IV. CONCLUSIONS

In this paper sound source mapping for mobile robots in
real environments is investigated. Our approach is based on
ray tracing, and proposed three-layered audio ray selection
to robustify ray tracing toward finding sound sources in
real environments, considering the effect of anomalies such
as sound reflections, wall occlusions, etc. We evaluate the
mapping performance in practical environments and com-
pare it with conventional methods to confirme considerable
improvements in all tested scenarios. We did not consider the
influence (accuracy, time) of robot motion planning during
the sound source mapping process, which is left for future
work.
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