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Abstract— An extensive, precise and robust recognition and
modeling of the environment is a key factor for next generations
of Advanced Driver Assistance Systems and development of
autonomous vehicles. In this paper, a real-time approach for
the perception of multiple lanes on highways is proposed.
Lane markings detected by camera systems and observations
of other traffic participants provide the input data for the
algorithm. The information is accumulated and fused using
GraphSLAM and the result constitutes the basis for a multi-
lane clothoid model. To allow incorporation of additional
information sources, input data is processed in a generic format.
Evaluation of the method is performed by comparing real
data, collected with an experimental vehicle on highways, to
a ground truth map. The results show that ego and adjacent
lanes are robustly detected with high quality up to a distance
of 120 m. In comparison to serial lane detection, an increase in
the detection range of the ego lane and a continuous perception
of neighboring lanes is achieved. The method can potentially be
utilized for the longitudinal and lateral control of self-driving
vehicles.

I. INTRODUCTION AND RELATED WORK
Nowadays, modern cars are equipped with Advanced

Driver Assistance Systems (ADAS) to increase the comfort
and safety of drivers and passengers. Systems like lane
departure warning, lane keeping assist, adaptive cruise con-
trol, emergency brake assist and blind spot monitoring help
drivers to keep the car within the lane and avoid collisions
with other traffic participants [1]. For the next generation of
ADAS, and especially regarding the prospect of autonomous
vehicles, comprehensive and extensive knowledge about the
environment is required. One fundamental part is a con-
tinuous and robust perception of the road. This includes
extension of both longitudinal and lateral detection range
with perception of all traffic lanes relevant for analysis of
the current driving situation.

For sensing an ego lane state-of-the-art ADAS rely on
camera systems to detect left and right markings [2]–[5].
Despite recent developments in vision-based lane detection
techniques [6]–[9] the performance of camera systems re-
mains limited to the camera’s aperture angle, variations in
illumination, quality of lane markings and weather condi-
tions. To detect other traffic participants serial vehicles utilize
camera, radar, ultrasonic and lidar sensors.

Recent research demonstrates that fusion of measurements
from diverse sensors ensures a more sophisticated represen-

§ These authors contributed equally to this work.
Alexey Abramov, Christopher Bayer, Claudio Heller, Claudia

Loy are with Continental Teves AG, Chassis & Safety Division,
Advanced Engineering, Guerickestrasse 7, DE-60488, Frankfurt am
Main, Germany. {alexey.abramov,christopher.bayer,
claudio.heller,claudia.loy}@continental-
corporation.com

tation of the environment [10]–[12]. This involves precise
and robust lane estimation which is essential for automated
driving at high speeds and automated lane changes. Common
multi-sensor fusion techniques combine camera sensors with
measurements of radar, lidar or both in order to compensate
drawbacks of each other [11], [13].

Existing real-time multi-lane detection systems rely on
optical sensors. Aly et al. [6] introduced a camera-based
approach which detects and models multiple lanes in still
images. However, this technique works well only on free
roads as it does not take other traffic participants into
account 1. In addition, lines with prominent contrast oriented
parallel to the road direction (e.g. street writing, shadows of
guardrails, curbs, etc.) can lead to false detections because
the real width of lane markings is not considered [14]. A
camera-based system proposed by Kang et al. [9] detects
up to six lanes on highways. Nevertheless, this method
also neglects information about other traffic participants and,
thereby, lanes covered by other cars cannot be detected.
Furthermore, it employs a second order polynomial with
constant curvature to model lane markings. Huang et al. [13]
detect multiple lanes using camera and lidar data, where
lidar is employed as a complementary sensor for eliminating
outliers 2. A high detection performance is achieved with
a setup of 5 cameras and 13 lidars. Nevertheless, typical
problems of optical sensors, such as perception of hidden or
poorly visible lane markings, remain unresolved.

In this paper, a novel real-time multi-lane perception
approach for highways is presented, which provides a con-
tinuous and robust estimation of ego and adjacent lanes up
to 120 m. The main advantage of the proposed technique
is detection of multiple lanes combining data from various
input sources. For this purpose a generic feature description
is introduced which allows processing and fusion of mea-
surements regardless of the sensor type. In the present study,
lane markings detected by two camera systems are fused with
tracked trajectories of other traffic participants. The fusion re-
sult is utilized for estimation of a multi-lane clothoid model,
which can serve as an input for the longitudinal and lateral
control of self-driving vehicles. The system performance is
evaluated by comparing real data collected on highways to
ground truth. This multi-lane perception approach operates
without prior knowledge about course of the road and num-

1Passing vehicles can cause diagonal lines in the Inverse Perspective
Mapping (IPM) that eventually lead to wrong lane markings.

2Objects that can generate wrong lane detections are detected by the lidar-
based obstacle detection. All 3D obstacle detections are projected onto the
camera image to suppress explicitly road line candidates detected in those
areas.
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Fig. 1. Architectural overview of the multi-lane perception method.
F1, ...FN are feature sets obtained from different input sources S1, ..., SN ,
Ffused represents a set of fused lane features.

ber of existing traffic lanes. One more important advantage
over existing methods is that the demonstrated application
relies on a production-oriented sensor setup and requires
neither digital map nor GPS localization [15].

A description of the lane estimation algorithm can be
found in section II and the evaluation methods and results
are presented in section III followed by the conclusion in
section IV.

II. FEATURE BASED LANE ESTIMATION

The principal ideas of the multi-lane perception methods
are described in the following. An overview of the main
modules is shown in fig. 1, where S1, ..., SN represent N
different input sources, which allow deriving information
about the road course (see sections II-B and II-C). The core
module is the lane feature fusion algorithm that accumulates
and fuses the feature sets F1, ...FN obtained from the input
sources. This method combines advantages of every input
data type and is explained in detail in sections II-D and II-E.
On top of the fusion result, a clothoid based multi-lane model
representing the road course is estimated (see section II-F).

Hence the lane feature fusion is free of geometric model
assumptions. To ensure a generic representation in the lane
feature fusion a uniform interface is utilized for the inputs
F1, ...FN and the output Ffused. The interface is specified
as a list of features

fi = [xi, yi, θi, ci,Σi], (1)

where xi and yi constitute the position of a feature fi and
θi constitutes its heading. The measurement uncertainty of
each feature is given by a confidence value ci ∈ [0, 1] and
a covariance matrix Σi ∈ R3×3 with respect to x, y and
θ. Note that this is a two-dimensional representation which
omits height information about the road course.

A. Experimental vehicle and sensor setup

The experimental vehicle used in the current study is
equipped with the following sensors for environmental per-
ception:

• Serial Mono Camera (SMC) mounted behind the wind-
shield above the rear-view mirror 3.

• High Resolution Camera (HRC) mounted close to the
SMC behind the windshield 4.

• Long Range Radar (LRR) mounted inside the front
bumper below the license plate 5.

• Short Range Radars (SRR) mounted inside the front and
rear bumper at each corner 6

The vehicle coordinate system (x, y, z) is a right-handed
coordinate system, its origin lies in the middle of the front
axle (height of the road), x is identical to the driving
direction, y points to the left and z points upwards.

B. Camera-based lane detection and feature extraction

The SMC is a serial automotive camera with a resolution
of 1176× 640 px and an aperture angle of 53°. It performs
multiple functions such as lane detection, traffic sign and
pedestrian recognition and detection of other vehicles. The
SMC lane detection is a combination of several image
processing operations followed by a Kalman filter used for
tracking [5]. The inner side of left and right lane markings
of the ego lane are represented by clothoids (see fig. 2
in the top). The algorithm has a detection range up to
90 m under ideal conditions (good visible markings and
appropriate weather and lighting).

The HRC is an experimental camera with a resolution of
2560 × 900 px and an aperture angle of 48°. In this work
it is used to increase the detection range of the ego lane
and, in addition, to extract lane markings from neighboring
lanes. The algorithm processing the HRC images is based
on the serial SMC lane detection and finds features at lane
markings taking their physical sizes into account (shown in
fig. 2 at the bottom). Note that no feature tracking or lane
modeling are performed based on the HRC images alone.
Detected features directly constitute the input for the lane
feature fusion. Under good conditions the HRC features can
be generated up to a longitudinal distance of 130 m.

Both cameras use online calibration algorithms to trans-
form the SMC ego lane and marking features from the HRC
to the vehicle coordinate system [16].

C. Traffic participant detection

In the present work, measured position and orientation of
other traffic participants are used as additional information
source to improve the road course estimation. Therefore, the
robust and precise tracking of other traffic participants in the
vicinity of the experimental vehicle is required. For this task,
a model based data fusion algorithm as presented in [17]
is applied. Each tracked object is represented by a Kalman
filter whose state vector holds the position and velocity of
the traffic participant in the vehicle coordinate system. LRR,
SRR and SMC sensors of the experimental vehicle provide

3Here the right camera of Stereo Multi Functional Camera (SMFC) 300
series by Continental is used.

4USB 3.0 camera UI-3580CP, IDS Imaging Development Systems GmbH.
5ARS 300, Continental, range 200 m.
6SRR, Continental, range 50 m.



Fig. 2. Perception of lane markings and moving objects (red boxes) by
the experimental vehicle. The ego lane estimated by the SMC is shown in
the top (lane clothoids in yellow, adoptive measurement windows in green),
while lane marking features detected by the HRC are shown at the bottom
(yellow points).

the input for the tracking module. At each time step the
tracked objects already in existence are updated with the
new sensor data, while new tracked objects are created if
applicable. For the lane feature fusion only tracked objects
driving in front of the experimental vehicle, that are verified
by at least one radar and one camera measurement, are used
to ensure high existence probabilities. Fig. 2 shows tracked
objects as red boxes projected onto the images of SMC and
HRC.

D. Lane feature fusion using GraphSLAM

The aim of the lane feature fusion algorithm is to ob-
tain a representation of the environment as a lane feature
set Ffused, resulting from different lane feature inputs
F1,F2, ...,FN . In general this problem can be described as
estimation of the posterior

p(xt,m|z1:t,u1:t), (2)

where xt is the current vehicle pose and m is a description
of the environment given various measurements z1:t. The
control vectors u1:t describe the movement of the vehicle
at the corresponding time. This is known as Simultaneous
Localization and Mapping (SLAM) problem which can be
solved, for example, by an extended Kalman filter or a
particle filter [18].

In this work, the GraphSLAM algorithm [19] is used,
which estimates the environment and not only the current
vehicle position xt, but the whole trajectory x0:t. This
also allows to express dependencies between measurements,
which will be shown in detail later.

In GraphSLAM, eq. 2 is described by a sparse graph. The
vehicle poses x0:t and the environment m are described as

vertices vi ∈ V. The measurements and control vectors
describe constraints represented as edges connecting the
corresponding vertices. The graph is formulated as the sum
of constraints

J(V) =
∑
zij

e(zij ,vi,vj)
TΩije(zij ,vi,vj), (3)

where e(zij ,vi,vj) is an error function [19]. This error func-
tion returns the discrepancy between the measurements zij
and the vertex pose difference ẑij(vi,vj). This discrepancy
is weighted by the measurement covariance in information
matrix form Ωij = Σ−1

ij . The minimization of this sum of
non-linear quadratic equations can be solved by the Gauss-
Newton algorithm. The resulting configuration of vertices
V∗ = arg minV J(V) equals the poses of the estimated
environment features and the vehicle poses.

E. Building the graph

The environment and the measured lane features are repre-
sented as nodes in the graph Gt. Since only the environment
in front of the ego vehicle is of interest, the corresponding
vehicle pose set is reduced to xt−τ :t with τ + 1 poses.

Thus, the graph Gt contains successive vehicle poses
xt−τ ,xt−τ+1, ...,xt and lane features f1, f2, ..., fn as ver-
tices vi = [x, y, θ]. Note that all poses of the graph vertices
are given with respect to the current vehicle pose coordinate
system. The measurement constraints defining the edges of
the graph result from the input lane features and the control
vectors, which are described in the following sections.

1) Adding odometry to the graph: The current control
vector ut = [ψ̇, ~v]T is added to the previous graph Gt−1. The
control vector is composed of the yawrate ψ̇ and the speed
~v of the vehicle and is used to calculate the pose difference
zxt−1,xt

= ∆x between the previous pose xt−1 and the cur-
rent pose xt with the corresponding information matrix Ω∆x.
At first, all vertices are transformed from xt−1 to the current
vehicle pose xt using ∆x. After this transformation all
vertices, arising from measurements that are more than 5 m
behind the ego vehicle, are removed from Gt. Subsequently,
past vehicle poses which are not connected to measurement
vertices anymore are also removed. The odometry edge is
inserted into the graph between two successive poses as the
constraint

Jodot = e(∆x,xt−1,xt)
TΩ∆xe(∆x,xt−1,xt), (4)

with the error function

e(∆x,xt−1,xt) = [∆x− ẑij(xt−1,xt)].

In the exemplary graph in fig. 3 the odometry constraint is
shown as dashed black edge.

2) Adding SMC clothoids to the graph: The the SMC
clothoids are sampled every two meters to compute poses
and information matrices of the features fsmct,i in the vehicle
coordinate system. These features are associated with all
existing lane features of the graph. If no feature within an
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Fig. 3. Example graph of measuring an object over two successive time
steps t− 1 and t and the feature f∗ obtained from the SMC and the HRC
with the odometry edge (dashed black), left and right object feature edges
(black) width edges (blue), smoothing edges (red), the SMC measurement
edge (green) and the HRC measurement edge (magenta).

association distance is found, a new vertex is added to the
graph. The constraint is described as

Jsmct,i = e(fsmct,i ,xt, f
∗)TΩsmce(fsmct,i ,xt, f

∗), (5)

where the measurement fsmct,i is the desired pose difference
between the vertex of the current vehicle pose xt and the
vertex of the new or associated feature f∗. The measurement
of an SMC feature associated to an existing feature is shown
in fig. 3 as a green edge.

3) Adding HRC features to the graph: Since features in
the HRC images are extracted directly at lane markings,
the corresponding features fhrct,i in vehicle coordinates are
directly associated with an existing feature or inserted as a
new vertex with the corresponding measurement constraint

Jhrct,i = e(fhrct,i ,xt, f
∗)TΩhrce(fhrct,i ,xt, f

∗), (6)

which is shown in fig. 3 as magenta colored edge.
4) Adding dynamic object features to the graph: The idea

is to use the positions and movement of other traffic partic-
ipants to derive information about the lanes. In most cases
drivers of other vehicles tend to drive near the middle of the
lane. Based on this assumption, lane features are generated
from tracked dynamic objects. Two features perpendicular to
the object heading are generated on the left and right side
of each dynamic object with a distance of w/2 representing
potential lane markings. The parameter w is an estimation of
the current lane width that is taken from the SMC clothoids
if available or assumed to be 3.5 m 7 otherwise.

The corresponding feature covariance equals the sum of
the object covariance and a covariance matrix representing

7Most common lane width on German highways.

the lateral standard deviation of traffic participants with
respect to the middle of a lane. The resulting features are
associated with existing features or added as a new vertex
with the measurement constraint

Jobjt,i,l/r = e(fobjt,i,l/r,xt, f
∗)TΩobje(fobjt,i,l/r,xt, f

∗), (7)

where fobjt,i,l/r is the left or right feature of the i-th tracked
object at timestamp t. An example of measurements of one
tracked object over two successive time steps is shown in
fig. 3.

A deficiency of this model is that left and right features
are decoupled, which means that an improvement of the
position of the left feature does not influence the right one
and vice versa. Therefore, the assumption on the lane width
is expressed as a constraint between the left and right feature:

Jwidtht,i = e(w, fobjt,i,l, f
obj
t,i,r)

TΩwidthe(w, fobjt,i,l, f
obj
t,i,r). (8)

The desired pose difference between the left and right feature
of the same object is defined as w = [0, w, 0o] with the
lane width w as lateral distance. The angle difference is
set to zero, since the heading of the features is supposed
to be equal. The information matrix Ωwidth corresponds
to the variance of the current lane width estimation. The
corresponding constraints are shown in fig. 3 as blue edges.

Furthermore, one additional dependency has to be con-
sidered: in the current model, two successive features on
the same side of a tracked object are decoupled, this means
fobjt−1,i,l has no direct influence on fobjt,i,l. If a feature fobjt−1,l is
corrected by other measurements, a large discrepancy to the
succeeding feature can occur, which needs to be minimized.
Therefore, a smoothing constraint

Jsmot,i,l = e(0, fobjt−1,l, f
obj
t,l )TΩsmoe(0, fobjt−1,l, f

obj
t,l ) (9)

is added between the two features. The lateral displace-
ment between successive features can then be reduced by
increasing Ωsmo

yy and Ωsmo
θθ . Note that Ωsmo

xx = 0, since the
longitudinal distance is not supposed to be altered. In fig. 3
this constraint is shown as red edge. If traffic participants
perform a lane change this constraint is strongly violated,
since at some point the feature of fobjt−1,l belongs to one
lane and the features of fobjt,l to the neighboring lane. Here
GraphSLAM provides the utility to multiply eq. 9 with a
switch variable 0 ≤ st,i,l/r ≤ 1. If this variable is set
to zero, the edge is disabled and if it equals one, it is
fully activated. As in [20] this method is used for false
loop closures during the optimization of GraphSLAM, where
Jst,i,l/r = Ωs(1 − st,i,l/r)2 is added as a further constraint.
This forces the edge to be enabled until the error of the edge
gets too large and deactivating the edge will become more
optimal.

5) Solving the graph: In summary, the graph Gt consists
of the constraints

J(v) =
∑
t

Jodot +
∑
t

∑
i

Jsmct,i +
∑
t

∑
i

Jhdct,i

+
∑
t

∑
i

(Jobjt,i,l/r +Jwidtht,i +st,i,l/rJ
smo
t,i,l/r +Jst,i,l/r), (10)



(a) (c)

(b) (d)

Fig. 4. Example of the fusion of SMC and HRC lane features (green) with
the features generated on the left and right side of a tracked object (black),
which performs a lane change to the right neighboring lane. (a) Features are
associated during the graph building (gray ellipse). (b) Resulting features
after solving GraphSLAM without any lane width Jwidth and smoothing
Jsmo edges and the fused features (gray). (c) Solution with lane width
edges (blue) between object features. Here the feature distances still equal
the lane width after solving the graph. (d) Result from solving the graph
with smoothing edges (red). During the optimization two smoothing edges
got disabled (dashed red) by the switch variables.

where t sums over all τ + 1 relevant time steps and i over
all sensor features at the corresponding time step.

A configuration of optimal vertex poses is obtained by
solving the graph. The result of the algorithm is represented
as a set of fused lane features Ffused which correspond di-
rectly to these optimal vertex poses. Note that the confidence
values c of the resulting fused features are updated whenever
measurement features are associated. The influence of the
smoothing and width constraints is illustrated in fig. 4. Note
that an ego lane change has no impact on these constraints,
since it only influences the odometry edges.

F. Multi-lane modeling

The resulting fused lane features are used to extract the
parameters of a mathematical model to represent ego lane
and neighboring lanes. Such a model should be able to handle
the curved roads and is supposed to be robust against mea-
surement noise, missing data and outliers. Various models
have been proposed to model the road and traffic lanes:
straight lines [21], parabolic curves [8], Euler spirals also
called clothoids [2], [5] and splines [3], [6], [7].

Although simple models, such as straight lines, are very
robust against noise, they cannot model real roads with de-
sired distance and accuracy. On the contrary, more complex
techniques, such as parabolic curves, clothoids or splines, can
accurately model complicated road shapes, but these models
are also more sensitive to uncertainties in the measured data
and require sophisticated methods for noise reduction and
filtering.

In the present work, the clothoid model is used for
modeling course of the road and traffic lanes, since this
model is used in the design and construction of highways.
Clothoids are defined by a linear change of curvature over the
arc length x. For small heading angles (up to 15°) clothoids
can be sufficiently precise approximated by a third order
polynomial [2]:

y(x) = y0 + θ0x+ c0x
2/2 + c1x

3/6, (11)

where y0 is the lateral offset of the clothoid, θ0 and c0 are
heading and curvature at x = 0 and c1 describes the change
of curvature.

The first step towards modeling traffic lanes is the estima-
tion of the road course. For this purpose a base clothoid is
computed by fitting the heading of the fused lane features
using the derivative of eq. 11. The parameters θbase0 , cbase0

and cbase1 of the base clothoid are estimated using Robust
Linear Least Squares regression [22]. This is an iterative
approach which detects and eliminates outliers from the
fitting procedure. The confidence values c of the features
serve as weights in the fit. Fig. 5 shows the estimated base
clothoid (orange) for a set of input features. The features
considered for modeling are depicted in dark blue, while
features classified as outliers are drawn in magenta.

Once the course of the road is known, the offsets of the
lane clothoids need to be determined. To obtain the offset of a
lane clothoid, it is necessary to know which of the fused lane
features belong to that lane. If there already was an estimated
lane model at the previous time step, that information is
used to group the features. New clothoids are created by
combining the offsets of clothoids from the previous time
step with the parameters of the current base clothoid:

y(x) = yt−1
0 + θbase0 x+ cbase0 x2/2 + cbase1 x3/6. (12)

Each feature is associated to the closest of these clothoids
resulting in several feature groups. Usually some features
(all features in the first algorithm loop) cannot be associated
using this clustering attempt, since no corresponding clothoid
from the previous time step exists. Therefore, remaining
features in the near range of the experimental vehicle are
projected onto the y-axis. If enough features’ projections are
in close proximity to each other, the mean lateral position
is computed and used as offset in eq. 12 instead of yt−1

0

to group the remaining features. In the last step, a Least
Squares fit is performed for each group of features, that
yields the offset of a lane clothoid. Thus the lane clothoids
of the current time step are composed of the fitted offsets in
conjunction with the course parameters of the base clothoid.
To obtain a stable and continuous description of the lanes, a
Kalman filter is used to filter each lane clothoid over time.
An example of the resulting lane clothoids projected onto
the SMC image is illustrated in yellow in the upper part of
fig. 6. The lower part shows a top view diagram of the same
clothoids plotted in green. Fig. 7 shows a scenario where
lane markers are missing on the right side of th ecurrent
lane. The lack of visual information is compensated by the
utilization of trajectories of other traffic participants resulting
in a stable lane estimation.8

III. EXPERIMENTAL EVALUATION

The performance of the lane feature fusion and subsequent
lane clothoid modeling are evaluated using real data collected
with the experimental vehicle on highways. For comparison

8A video sequence illustrating the results is available as supplementary
material.
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Fig. 6. Exemplary result of the modeled lane clothoids projected in yellow
onto the camera image (top). The same result is shown in green in the
top view diagram (bottom). The red curves represent the ground truth data
needed for comparison and evaluation of the result.

a ground truth map containing global positions of lane
markings of a highway route with multiple traffic lanes
and left and right curves is used. The ground truth map
is generated by driving on the highway on all traffic lanes
using a RT4000 GPS system together with the odometry of
the experimental vehicle and lane markings detected by the
serial camera. The RT4000 family products are advanced,
precision inertial and GPS Navigation systems for measuring
motion, position and orientation 9. The separate data sets
collected from each lanes are merged offline and the RT4000
GPS system is used again for localization in the ground

9Oxford Technical Solutions, RT4000 family systems, http://www.
oxts.com/products/rt4000-family/

Fig. 7. Estimated lane clothoids (yellow) projected onto the camera image
in a scenario with three drivable lanes, an emergency lane and several
vehicles. Despite missing markers on the right side of the currently driven
lane the presented method is able to obtain a stable result. Note that in this
scene a successful estimation of the current lane is only accomplished due
to the usage of the tracked trajectory of the truck driving in front of the ego
vehicle.

truth map. A snap-shot of the ground truth map (red) and
the modeled lane clothoids (green) is shown in the lower
part of fig. 6. Another snap-shot of estimated lane clothoids
and ground truth data plotted onto a map extract is shown
in fig. 9. To compare the estimated lanes to the ground
truth map, clothoids are sampled every 10 m and the lateral
deviation at each sampled distance to the ground truth map is
computed. This is done after every algorithm loop resulting
in a distribution of measurements at each sample distance.
For the evaluation the data collected during several drives
on the highway with average traffic density is analyzed
corresponding to a total driving distance of 24 km. As the
measure of performance the mean, standard deviation and
Root Mean Square Error (RMSE) of the distributions at
each sampled distance accumulated over the total data are
computed. The evaluation is conducted up to a maximum

http://www.oxts.com/products/rt4000-family/
http://www.oxts.com/products/rt4000-family/
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Fig. 8. RMSE of the difference between estimated lanes and ground truth
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distance of 120 m separately for ego and adjacent lanes as
they are expected to show different results.

Results of the evaluation are presented in table I and the
RMSE for ego (red) and adjacent lanes (blue) is plotted
in fig. 8. While mean lateral deviation between estimated
lanes and ground truth data is below one sigma for all
analyzed distances, one can see that their quality decreases
with distance. Due to data fusion over several time steps,
lane features near the ego vehicle have been measured more
often and have therefore higher accuracy. The results also
show that the ego lane is estimated with a better performance
than the adjacent lanes. One reason for this is that the SMC
only contributes features to the lane currently driven on.
At larger distances the estimation of the ego lane is at all
times dominated by the tracked object right in front of the
experimental vehicle and HRC data up to that object. The
adjacent lanes on the other hand are often estimated using
either tracked objects or HRC data depending on the current
traffic situation.

In summary the lane feature fusion and the subsequent
road modeling provide estimation of lanes on highways in
real-time (less than 100 ms). Using the SMC, the HRC and
tracked objects as input, an increase in the detection range of
the ego lane compared to the serial lane detection of the SMC
(up to 90 m) is achieved. At 120 m the ego lane is estimated
with an RMSE of 0.64 m. Due to the combination of HRC
data and tracked objects neighboring lanes are estimated at
all times. At a distance of 120 m the RMSE obtained for
neighboring lanes is less than 1 m.

It needs to be noted that evaluation on publicly available
datasets such as KITTI [23], DARPA Urban Challenge [24],
Caltech [25], ROMA [26] is not reasonable for the presented
method. None of the datasets contains all of the following
items that would be necessary for a meaningful comparison:
camera images, ground truth data of multi-lane roads, tracked
trajectories of other traffic participants and odometry of the

ego vehicle.

Fig. 9. Aerial view of a short extract of Germany’s A9 highway 11taken
from Google maps. The modeled lane clothoids (red) and ground truth data
(blue) are plotted onto the map and the current position of the experimental
vehicle is denoted by the black cross. Note that the vehicles visible in the
map are not correlated to the traffic participants used in the estimation of
the lane clothoids.

IV. CONCLUSION

In the present work, a real-time perception method for
highways estimating ego and neighbor lanes is presented.
In addition to the serial camera system of the vehicle,
a high resolution camera system and information deduced
from the tracking of other traffic participants serve as input
to the GraphSLAM based feature fusion algorithm. The
fusion result is utilized to model traffic lanes on a highways
represented as clothoids. No prior knowledge about the
road or lanes is needed in the feature fusion and lane
modeling procedure. Evaluation of the approach is conducted
by comparing the estimated lanes to a ground truth map of
a several kilometer long route on a highway. In comparison
to the serial lane detection, the method provides increased
detection range for the ego lane and detection of the neighbor
lanes at all times.

The presented method works especially well in scenarios
where many traffic participants are present. Hidden lane
markings are compensated by using tracked trajectories of
other vehicles in combination with camera data.

The results show that up to a distance of 120 m ahead
of the vehicle good estimates of ego and adjacent lanes are
obtained. Precision, stability and robustness of the derived
multi-lane model suffice to be used in the development and
testing of self-driving cars on highways. Up to now, several
hundred kilometers have been driven autonomously on high-
ways applying the presented methods in the experimental
vehicle.

Enhancements to the presented lane perception method
could be achieved by increasing the quality of the input data,
e.g. improving outlier suppression in the lane feature extrac-
tion from the HRC images at large distance. Furthermore,
the addition of new data sources such as vehicle-to-vehicle
communication could lead to an increase in performance and

11The A9 autobahn in Germany is declared to be a test track for self-
driving cars by Germany’s ministry of transport [27].



TABLE I
MEAN, SIGMA AND RMSE FOR EGO AND ADJACENT LANE.

distance ego lane adjacent lane
[m] µ [m] σ [m] RMSE [m] µ [m] σ [m] RMSE [m]

0 0.00 0.10 0.10 -0.04 0.20 0.21
20 -0.02 0.10 0.11 -0.07 0.20 0.21
40 -0.06 0.17 0.18 -0.11 0.25 0.27
60 -0.11 0.26 0.28 -0.17 0.32 0.37
80 -0.20 0.38 0.42 -0.24 0.44 0.50
100 -0.26 0.48 0.55 -0.29 0.59 0.66
120 -0.26 0.58 0.64 -0.47 0.87 0.99

robustness. The proposed method for multi-lane modeling
yields a continuous and robust lane description on highways
by initially estimating a base clothoid, that characterizes the
general road course. However, a drawback of this approach
is that highway exit and entrance ramps as well as highway
junctions can not be represented in full detail. Development
of a spline based lane model could pose a solution to this
issue, as splines provide a more flexible description of the
lanes and might therefore be able to cover more complex
scenarios.
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