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Constrained Sampling of 2.5D Probabilistic Maps
for Augmented Inference
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Abstract— This work exploits modeling spatial correlation
in 2.5D data using Gaussian Processes (GPs), and produces
constrained sampling realizations on these models to improve
certainty in the predictions by means of integrating additional
sparse information. Data organized in 2.5D such as elevation
and thickness maps has been extensively studied in the fields of
robotics and geostatistics. These maps are typically represented
as a probabilistic 2D grid that stores an estimated value (height
or thickness) for each cell. With the increasing popularity and
deployment of robotic devices for infrastructure inspection,
2.5D data becomes a common interpretation of the condition of
the target being inspected. Modeling the spatial dependencies
and making inferences on new grid locations is a common
task that has been addressed using GPs, but inference results
on locations which are weakly correlated with the training
data are generally not sufficiently informative and distinctly
uncertain. The predictive capability of the proposed framework,
which is applicable to any 2.5D data, is demonstrated with field
inspection data from pipelines. Specifically, sparse and comple-
mentary measurements from alternative sensing modalities have
been incorporated into the model to predict in more detail local
thickness conditions where GP training data is limited. The
output of this work aims to probabilistically present variations
of the target in the case that both accuracy and reasonable
diversity are of significant interest.

I. INTRODUCTION
Two-and-a-half dimensional (2.5D) mapping has been

widely used in robotics and geostatistics to represent the
target in a compact but informative manner. A 2.5D map
is a 2D grid where each cell stores an estimated value. For
example, digital elevation maps store the height of the terrain
[1] and thickness maps reflect the remaining material in
pipe walls [2]. Other than containing the values of interest,
2.5D maps can also imply how these values are spatially
correlated. Studying the spatial correlation has the potential
of adding considerable value to analyzing the unorganized
measurements alone.

In the last decades, increasing numbers of robotic devices
and autonomous systems have been developed in the water
industry for the purpose of pipeline inspection to better un-
derstand the current condition of buried pipes [3]. However,
the way of efficiently and effectively exploiting the available
data needs to be given greater consideration due to the cost
and physical constraints of deploying these systems.

An example of the task to be addressed in this research
is illustrated in Figure 1. On a buried pipeline, excavations
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Fig. 1: An example of the targeted 2.5D data prediction task

are carried out on sites 1 and 2, and local inspections on
these sites give details of the pipe condition in the form of
2.5D remaining wall thickness maps. The targeted area is
far away from either inspected site and cannot be excavated,
so the task is to predict the pipe condition at the targeted
area with the greatest possible detail. There could be no
specific information on the targeted area, but sometimes
limited information is available from other sources. In the
case shown in Figure 1, for the whole area of interest, an
in-pipe robot B provides the average thickness value and an
intelligent soil monitoring system C provides the minimum
thickness value based on its knowledge on environmental
factors. The framework proposed in this research allows the
prediction of the targeted area in the form of a thickness
map based on inspection outcomes from sites 1 and 2, with
or without extra information provided by system B and/or C.

In our previous work, we have proposed a GP frame-
work for modeling 2.5D data and designed a covariance
function specifically for modeling spatial correlation in pipe
wall thickness data [2]. To extend our previous work, this
research paper reports the development of various mathe-
matical strategies for integrating different constraints in the
realizations. The proposed constrained simulation strategies,
as per the block diagram shown in Figure 2, is applicable to
any 2.5D data. The rest of this paper is arranged as follows.
Section II provides a review of related work regarding spatial
data modeling and realization, and the background of the
application. Section III discusses in detail the underlying
approach of modeling 2.5D data with GPs and the strategies
of integrating various constraints. The experimental setup
is described in Section IV. The experimental results are
presented in Section V with analysis and discussion. Section
VI concludes the paper.



Fig. 2: Block diagram of the developed framework

II. RELATED WORK

Modeling spatial dependencies for 2.5D data has been
extensively studied in the areas of robotics and geostatistics.
Mathematically, the problem can be described as a random
field, which is a collection of random variables of the form{

yx,x ∈ Rd
}

, where yx is the quantity measured at the
position x [4]. In some research domains, random fields
are also known as spatial processes that are defined for
modeling spatially arranged measurements and patterns [5],
[6]. Random fields can be statistically specified by mean
and covariance [4], [5]. When the mean is modeled as a
constant which is a common practice, depending on the
assumptions on the covariance, there are: stationary, isotropic
and anisotropic random fields [4], [5]. A more specific type
of random field being studied is Gaussian Random Fields
[7], which is also known as Gaussian Spatial Processes [5] or
Gaussian Processes [8], [9]. In this case the random variables
jointly have a multivariate Gaussian distribution [5]. GPs can
be generalized to any finite dimensions of random variables,
and the distribution over a finite subset of a GP is also a
multivariate Gaussian distribution.

In robotics, a typical solution in 2.5D terrain and surface
modeling is to employ GPs [10]–[12]. In all these works, the
utilization varies with the properties of the applications, the
structure of the model and the usage of the correlation infor-
mation. In our previous work, GPs and relevant probabilistic
tools have been exploited for thickness mapping and fusion
for applications on pipeline condition assessment [13], [14].

The modeling and realization process is an established ap-
proach in many research disciplines [15], [16]. In this study
we propose performing GP realization instead of inference,
because when the target locations are far away from the
locations containing training data, realization results become
a more suitable interpretation of the target to be predicted.
Moreover, in the case that the global location information of
either the training or the test data is unavailable, inference

becomes impossible and realization would be the only way
of predicting the condition of the area of interest.

Generating realizations of a GP is also known as simula-
tion or sampling; in the context of this paper, we use the three
terms: sampling, realization and simulation interchangeably.
A conventional sampling algorithm is Cholesky decompo-
sition, and there exist more efficient approaches for large-
scale tasks [5], [6]. In terms of incorporating constraints,
methods on sampling a multivariate Gaussian distribution
under constraints have been mathematically described in
literature. Common examples include simulating truncated
or conditional multivariate Gaussian distribution [16]–[18].
However, mean-constraint and a combination of different
types of constraints are rarely discussed or evaluated in the
applications of 2.5D data.

When assessing the condition of buried pipelines, a com-
mon approach to extrapolate the information obtained from
local inspections into uninspected regions involves inspecting
in detail a small amount of pipe segments (one or several),
summarizing the extreme values such as depth of pitting,
and carrying out an Extreme Value Analysis (EVA). This
data-driven statistical procedure does not require full under-
standing of the complicated mechanism behind corrosion.
However, it appears to the authors that the potential of
condition assessment is not fully exploited by analyzing only
extreme values, as modeling the spatial correlation in the
local assessment outcomes (in the form of 2.5D thickness
map) can potentially facilitate more reliable failure-related
analysis. For example, a large amount of probabilistically
distributed realizations as representation of an uninspected
area, in the form of wall thickness maps at the same
resolution of the local inspection outcome, are supposed to
be more suitable for subsequent structural analysis [2], [15].

III. APPROACH

This section provides the detailed methodology for mod-
eling spatially correlated 2.5D data using GPs, followed by a
description on different strategies for constrained sampling.

A. Gaussian processes

In this section GPs will be briefly introduced in the aspects
of problem identification, probabilistic modeling, parameter
estimation, inference and realization.

Consider n thickness-location pairs D defined as:

D = {(y1,x1) ,(y2,x2) , ...,(yn,xn)} , (1)

where xi ∈ X is the position in Rd from which the thickness
measurements yi ∈ Y was taken, and d = 2 in the case of
2.5D data. The data set D is assumed to be drawn from a
noisy process

yi = f (xi)+ εi, where εi ∼N (0,σ2
n ), (2)

where noise εi follows independent and identically dis-
tributed (i.i.d.) zero-mean Gaussian with variance σ2

n . GPs
learn the distribution p( fff |X ,D) from D and have the
capability of inferring p( fff |X∗,D) for arbitrary location X∗.



Having specified the mean and covariance functions, and
the hyper-parameter set θθθ (parameters for the mean func-
tion, the kernel and the noise), parameter estimation can
be achieved through maximizing the likelihood function as
described in equation 3.

logp(y|X) =−1
2
(y−mmm(X))>K−1

y (y−mmm(X))

−1
2

log|Ky|−
n
2

log2π,
(3)

where mmm and K are mean and covariance functions re-
spectively, and Ky = K(X ,X)+σ2

n I denotes the joint prior
distribution covariance of the function at positions X . The
variance of the noise σ2

n is another parameter to be learned.
Inference at query locations X∗ can be performed by

calculating the predicted mean µP and covariance ΣP.

µP = mmm(X∗)+K(X∗,X)K−1
y (y−mmm(X)) (4)

ΣP = K(X∗,X∗)−K(X∗,X)K−1
y K(X∗,X)> (5)

The matrix K(X∗,X) is obtained from the covariance func-
tion K and it indicates the cross-correlation between the
function at X∗ and the training inputs X .

The test data itself at query locations X∗ follows the mul-
tivariate Gaussian distribution N (mmm(X∗) ,K (X∗,X∗)+σ2

n I),
and the learned model can be simulated on this distribution.

B. Range-constrained simulation

In the case that the measurement of interest y is subject to
range constraint, the multivariate Gaussian distribution Y ∼
N (µY ,ΣY ) can be considered as conditioned on LB ≤ Y ≤
UB, where LB and UB are lower and upper bounds. The new
distribution is a truncated multivariate Gaussian distribution.
The inequalities for lower and upper bounds can be described
in an alternative way as MY ≤N for the ease of formulation,
by defining

M =

[
I
−I

]
, N =

[
UB
−LB

]
, (6)

where I is the identity matrix.
In terms of implementation, efficient ways of sampling

truncated Gaussian distribution have been discussed in [17].

C. Mean-constrained simulation

Mean constraint can be mathematically defined as Y ∼
N (µY ,ΣY ) conditioned on 1

n ∑
n
i=1 yi being fixed. The condi-

tion is equivalent to ∑
n
i=1 yi = c where c is a constant.

Consider an invertible n× n matrix B with the last row
being the vector

−→
1 = [1,1, · · · ,1], Ŷ = BY transforms Y

into a new coordinate and Ŷ ∼ N (µ̂Y , Σ̂Y ), where µ̂Y =
BµY , Σ̂Y = BΣY BT which can also be written in the form
of block matrices

µ̂Y =

[
µU
µD

]
, Σ̂Y =

[
ΣUU ΣUD
ΣDU ΣDD

]
(7)

After transformation, ŷn = c, and Z defined as
[ŷ1, · · · , ŷn−1]

T forms a conditional multivariate Gaussian
distribution (Z|ŷn = c))∼N (µZ ,ΣZ), where

µZ = µU +ΣUDΣDD
−1 (c−µD) (8)

ΣZ = ΣUU −ΣUDΣDD
−1

ΣDU (9)

Therefore mean-constrained sampling of Y can be
achieved indirectly through unconstrained sampling of Z.

D. Mean and range constrained simulation

Sampling Y constrained on both the mean and the range
can be performed indirectly through linearly constrained
sampling of Z.

As discussed previously, given the transformation Y =
B−1Ŷ , the range constraint MY ≤ N can be written as

MB−1
[

Z
c

]
≤ N (10)

Define MB−1 = G =
[

G1 G2
]

, the range constraint
on Y becomes the linear constraint on Z : G1Z ≤ N−G2c.

E. Minimum and range constrained Simulation

The minimum value itself introduces a condition and
also serves as a refined lower range limit. Consider Y ∼
N (µY ,ΣY ) conditioned on yn = g, where g is the minimum
value in Y . Define L = [y1, · · · ,yn−1]

T , and the conditional
Gaussian distribution (L|yn = g)∼N (µL,ΣL) can be derived
in a similar way as shown in equations (7), (8) and (9). The
new range constraint can be applied following the similar
way as shown in equation (10) with new lower bond value
g and one less dimension.

However, the above statement is based on yn = g which im-
plies the nth random variable is of the minimum value. Due to
the fact that the location associate with the minimum value is
actually unknown, samples generated subject to the minimum
and range constraints need to be drawn from a finite mixture
multivariate Gaussian distribution. The simulation process is
equivalent to sampling conditional distributions conditioned
on uniformly distributed locations of the minimum value.
Therefore mean and range constrained sampling of Y can be
achieved indirectly through range constrained sampling of a
finite variation of L.

F. Minimum, mean and range constrained simulation

Consider Y ∼N (µY ,ΣY ) conditioned on both yn = g and
∑

n
i=1 yi = c. Find an invertible n× n matrix B̃ with the last

row being the vector
−→
1 = [1,1, · · · ,1], and the second last

row being the vector [0, · · · ,0,1]. Ỹ = B̃Y transforms Y into a
new coordinate and Ỹ ∼N (µ̃Y , Σ̃Y ), where µ̃Y = B̃µY , Σ̃Y =
B̃ΣY B̃T . Define R = [ỹ1, · · · , ˜yn−2]

T , and the conditional dis-
tribution (R|ỹn = c, ˜yn−1 = g) ∼ N (µR,ΣR) can be derived
in a similar way as shown in equations (7), (8) and (9). The
range constraint can be applied following the similar way as
shown in equation (10). Consider the unknown locations of
the minimum value, mean-and-range-constrained sampling
of Y can be achieved indirectly through linearly constrained
sampling of a finite variation of R.



Fig. 3: The remaining wall thickness map of a pipe segment

G. Covariance function for pipe wall thickness modeling

The above-stated modeling and simulation framework is
applicable to any 2.5D data. Note that in a specific appli-
cation, a model selection is necessary as there is no single
mean and covariance function setup that fits all tasks. In our
previous work, an anisotropic composite covariance function
as described in equation 11 has been proposed and evaluated
to better model the wall thickness maps of buried pipes [2].

K(X ,X∗) = σ
2
1 σ

2
2 exp

(
− 2

l2
1

sin2
(

πdc

p

)
− da

l2

)
+σ

2
3 σ

2
4 exp

(
− 2

l2
3

sin2
(

πdc

p

))(
1+

da

2αl2
4

)−α

,

(11)

where da and dc are absolute values of axial and circumfer-
ential distances respectively. σi, li and p are parameters of
the model. Please refer to our previous work for more details
of the kernel function design [2].

IV. EXPERIMENTAL SETUP

The evaluation is conducted on the thickness maps of 12
pipe segments, each approximately 1 meter long (ID: S1
to S12). These thickness maps have a spatial resolution of
5cm×5cm as shown in Figure 3, such that each grid (cell)
contains the average thickness value of the area it covers.
More information on the ground-truth production can be
found in our previous work [2], [19].

Developing a robust objective metric to measure the
similarity between correlated 2.5D data (e.g. two thickness
maps) remains a challenge in the community. In this research,
following the convention, Root-Mean-Square Error (RMSE)
for 2.5D data has been employed to evaluate the goodness
of prediction. RMSE conveniently has the same unit as the
quantity being measured, but it does not explicitly compare
structural correlation. A smaller RMSE indicates smaller
point-to-point discrepancy in general, thus two identical
thickness maps have a reported RMSE of 0.

V. RESULTS AND DISCUSSION

A. Inference and realization

Figure 4 shows an example of the GP inference results
on thickness map S5 in the form of test output mean and
the associated uncertainty. The prediction is a flat surface
associated with relatively uniform uncertainty values. Due to

Fig. 4: (a) the ground-truth of thickness map S5, S1 and S10,
(b) GP inference results as test output mean on S5, and (c)
the associated uncertainty

the lack of spatially close training data, the inference result
may not be a suitable target for further analysis. In worse
cases, the unavailability of the global location information
makes GP inference unfeasible. Unfortunately, in some ap-
plications, neither local training data nor accurate location
information can be obtained cost-efficiently. Therefore, in-
stead of performing inference, in these situations, studying
the realizations generated from a GP model becomes more
applicable.

In this experiment, a large amount of realizations (i.e. a
bag of realizations) are generated from the learned GP model
to collectively represent any thickness map of the size of
S5. Figure 5 presents five randomly selected realizations and
their RMSE.

Studying each instance in the bag of realizations in-
volves enormous effort, therefore selecting representative
realizations makes the analysis process more efficient. For
example, if the standard deviation of the thickness values in
a realization is set to reflect the quality of the pipe segment,
typical thickness maps representing different conditions can
be selected from all realizations for the subsequent structural
analysis. Figure 6 shows three typical realizations of S5 in
terms of variations of thickness values.

Without any additional information, the bag of realizations
is supposed to represent any thickness map of the size of S5,
but not only the specific thickness map S5. Therefore it is
expected that S5 being closely matched with one thickness
map in the bag of realizations. Figure 7 provides the most
and least similar thickness maps to the reference S5.

B. Quantitative evaluation of realization results

This section presents the realization results evaluated with
leave-one-out cross-validation. Given the twelve thickness
maps, for each iteration, one map is retained for testing



Fig. 5: Five randomly selected realizations of S5

Fig. 6: Three typical (in terms of variations of thickness val-
ues) realizations of S5. From the left to the right: realizations
with small, median and large thickness variations

while the eleven remaining maps are utilized in training.
Then the learned Gaussian Process model is simulated in
accord with the dimension of the test data and constraints (if
any) derived from the test data, to generate a certain number
of realizations which are then compared against the ground-
truth of the test data.

Table I shows the evaluation results using RMSE as the
evaluation metric, based on the average RMSE values on
a hundred thousand realizations in each training-realization-
comparison cycle. In 8 out of 12 cases and also in aver-
age, truncated sampling results outperform the unconstrained
sampling. Due to the fact that the remaining pipe wall thick-
ness is a non-negative value no greater than the nominal wall
thickness, the lower and upper bounds constraints should
always be applied in this application, thus the results from
truncated sampling are set as the benchmark for subsequent
experiments.

In Table I, RMSE of mean-constrained-and-truncated re-
alizations shows superior results over truncated-only re-
alizations in all tests. In Table II, RMSE of minimum-
constrained-and-truncated realizations shows improved re-
sults over truncated-only realizations in 8 out of 12 tests
and also in average. The results demonstrate that introducing
accurate constraints enables the GP model to produce real-
izations which are more similar to the reference. However,
using RMSE as the evaluation metric, the improvement by
introducing the minimum value as a constraint is not as
much as by incorporating the mean value as a constraint.
The reason is that without knowing the location of the
minimum value, realizations having the wrong minimum
point locations may result in relatively larger point-to-point
discrepancies, i.e. higher RMSE values.

Fig. 7: The most (left) and least (right) similar realizations
of S5, in terms of RMSE

Applying a combination of all constraints gives the results
shown in the last column in Table II. It further outperforms
the minimum-constrained-and-truncated realizations in all
tests, as expected. However, as explained above, due to the
unknown location of the minimum, in 11 out of 12 tests
considering all constraints does not show RMSE reduction
over mean-constrained-and-truncated sampling. However, in
these cases the performance of incorporating all available
constraints is close to mean-constrained-and-truncated sam-
pling, except for in one case (S3).

TABLE I: Cross-validation of realization results (Part I)

Test Map ID Unconstrained Simul. Truncated Mean-cstr. and
Simul. Truncated Simul.

Avg. RMSE (mm) Avg. RMSE (mm) Avg. RMSE (mm)
S1 2.82 2.63 2.40
S2 5.32 5.03 4.05
S3 3.26 3.22 2.56
S4 3.14 3.33 2.26
S5 2.96 2.70 2.46
S6 3.77 4.06 2.11
S7 4.07 3.80 3.24
S8 3.43 3.22 2.95
S9 4.18 4.38 4.02

S10 3.42 3.47 3.21
S11 3.54 3.39 3.19
S12 3.05 2.82 2.63
Avg. 3.58 3.50 2.92

TABLE II: Cross-validation of realization results (Part II)

Test Map ID Minimum-cstr. and Mean, Minimum-cstr. and
Truncated Simul. Truncated Simul.

Avg. RMSE (mm) Avg. RMSE (mm)
S1 2.55 2.44
S2 4.67 4.57
S3 5.05 3.99
S4 2.29 2.25
S5 2.60 2.46
S6 2.29 2.12
S7 3.40 3.25
S8 3.42 2.95
S9 4.67 3.25

S10 3.63 3.27
S11 3.31 3.20
S12 2.79 2.62
Avg. 3.39 3.03

As typical examples, two reference thickness maps S3,
S9 and their closest (in terms of RMSE) realizations un-



Fig. 8: Ground-truth data and their closest realizations under
different sampling strategies for pipe segments S3 and S9

der different constrained sampling strategies is presented
in Figure 8. For S3 which has small sections of obvious
wall thinness, it can be visually verified that realizations
without considering the minimum value tends to result in
the lack of thickness variation. For S9, which in general is
evenly thin on the upper half section and thick on the lower
half section, the best prediction from mean-constrained-and-
truncated simulation can be regarded as modest compared
to the best prediction after introducing minimum value
constraint.

The above results and discussion indicate that introducing
constraints guides the sampling process towards generating
realizations which satisfy all the actual constraints. However,
realizations satisfying all constraints may also vary largely
from each other. This is what is required in this particular
application because without having access to the ground-
truth, all realizations which capture the spatial correlation
and satisfy all constraints are regarded as best-possible
predictions of the target.

VI. CONCLUSION

This paper presents an application of GPs to capture the
spatial correlation of 2.5D data, and to sample the learned
model aiming at generating predictions of the target areas. To
further refine the prediction results when limited and sparse
information of the target areas is available, constrained sam-
pling incorporating three different types of constraints (range,
average and minimum) and their combinations are discussed
and corresponding mathematical strategies are presented. The
proposed framework is broadly applicable to any 2.5D data.
Using condition assessment of buried pipes as the specific
application, the spatial correlation of local pipe thickness
maps is modeled with GP. Based on the learned model, we
proposed to use GP realizations to extrapolate the conditions
of the same pipe cohort. The prediction performance is then
evaluated using RMSE as the metric and experimental results
show that with more constraints introduced, realizations of

this model as best-possible predictions of the target move
from general to specific.
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