
  

 
 

Abstract—Tactile data and kinesthetic cues are two 

important sensing sources in robot object recognition and are 

complementary to each other. In this paper, we propose a novel 

algorithm named Iterative Closest Labeled Point (iCLAP) to 

recognize objects using both tactile and kinesthetic information. 

The iCLAP first assigns different local tactile features with 

distinct label numbers. The label numbers of the tactile features 

together with their associated 3D positions form a 4D point 

cloud of the object. In this manner, the two sensing modalities 

are merged to form a synthesized perception of the touched 

object. To recognize an object, the partial 4D point cloud 

obtained from a number of touches iteratively matches with all 

the reference cloud models to identify the best fit. An extensive 

evaluation study with 20 real objects shows that our proposed 

iCLAP approach outperforms those using either of the separate 

sensing modalities, with a substantial recognition rate 

improvement of up to 18%. 

I. INTRODUCTION 

The object shapes can be haptically assessed at two scales 
[1], i.e., local and global shapes. The former can be revealed 
by a single touch. It is analogous to the human cutaneous sense 
of touch, which is localized in the skin. The latter reflects the 
contribution of both cutaneous and kinesthetic inputs, e.g., 
contours that extend beyond the fingertip scale. In such case, 
intrinsic sensors, i.e., mechanoreceptors in joints, are also 
utilized to acquire the position and movement of the 
fingers/end-effectors in space to integrate local features to 
recognize the identity of the object. Here the kinesthetic cues 
are similar to human proprioception that refers to the 
awareness of the positions and movements of the body parts. 
Though the tactile features extracted from the local regions 
have been extensively studied in the recent robotics research 
[2]–[5], the use of kinesthetic cues to recognize the global 
object shapes is still largely unexplored. 

In this paper, we propose a novel method named Iterative 

Closest Labeled Point (iCLAP) to integrate tactile and 

kinesthetic cues fundamentally to achieve a better object 

recognition performance. As illustrated in Fig. 1, the 

proposed iCLAP algorithm utilizes both appearance features 

extracted from tactile images and contact points in space. 

With only tactile readings, a Bag-of-Words (BoW) 

framework is first applied to the training dataset to form a 

dictionary of tactile features. By searching for the nearest 
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word in the dictionary, each tactile feature is assigned a label 

number. With the positions of the object-tactile sensor 

interaction points in the 3D space, we can obtain a 4D data 

point cloud with the label number as the fourth dimension. 

The 4D point clouds of objects obtained during training are 

taken as reference models. The partial 4D point cloud 

obtained from testing iteratively matches with all the 

reference models and the identity of the best-fit reference 

model is assigned to the test object. To evaluate our proposed 

approach, 20 objects from either the lab environment or daily 

life were utilized in our experiments. The iCLAP algorithm 

was compared with two other methods using single sensing 

modalities in terms of classification of these objects: 1) BoW 

based object recognition with tactile data only [6]; 2) Iterative 

Closest Point (ICP) based method with kinesthetic data only 

[7]. Experiments show that our proposed iCLAP approach 

outperforms both methods. The experiments of classifying 20 

real objects show that the classification performance is 

improved by up to 18% by using iCLAP compared to 

methods based on single sensing sources and a high average 

recognition rate of 85.36% can be achieved. 

The remainder of this paper is organized as follows. The 

literature in the tactile shape recognition is reviewed in 

Section II. The iCLAP algorithm is introduced in detail in 

Section III, followed by an introduction of the data 

acquisition system in Section IV. The experiment results are 

provided and analyzed in Section V. In the last section the 

conclusions are drawn; possible applications and future 

research directions are also given. 
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Fig. 1. The distribution of the collected data from a pair of scissors. At each 
collecting data point, the visualized tactile reading is present in a rectangle 
block and the 3D location of the tactile sensor where the tactile reading is 
gathered appears in a red round dot with white edges at the block center. 



  

II. RELATED WORK 

The current methods of haptic shape recognition can be 

divided into three categories according to the inputs: methods 

based on 1) the distributions of contact points; 2) the pressure 

patterns in tactile arrays; 3) both contact points and tactile 

patterns. 

A. Contact points based recognition 

The methods based on contact points were widely used by 

early researchers due to the low resolution of tactile sensors 

and prevalence of single-contact force sensors. Allen et al. fit 

a super-quadric surface to sparse finger-object contact points 

and the parameters of the recovered super-quadrics were used 

for haptic object recognition [8]. In a similar manner, relying 

on the locations of the contact points and hand pose 

configurations, a polyhedral model was derived to recover the 

shape of an unknown object in [9]. More recently, Pezzementi 

et al. proposed a method to mosaic tactile measurements to 

construct an object representation [10]. Meier et al. [7] 

applied Kalman filters to generate 3D representations of 

unknown objects from contact point clouds collected by 

tactile sensors and classified the objects with the ICP 

algorithm. In [11], contact point clouds are combined with 

voxel representations to model the object shapes. By utilizing 

these methods, arbitrary contact shapes can be retrieved, 

however, it can be time consuming when investigating a large 

object surface as excessive contacts are required. 

B. Tactile patterns based recognition 

Thanks to the recent development of tactile array sensors 

[12], the methods based on tactile patterns become popular in 

recent years. To decode the local contact shapes, various 

methods have been proposed. In [13], [14], the covariance of 

the pressure patterns were utilized to distinguish geometric 

shapes and estimate the poses of objects. Tactile patterns can 

also be treated as sparse images, and thus image features can 

be extracted to represent the data. Schneider et al. [6] first 

adapted the Bag-of-Words framework in the tactile object 

recognition and took tactile images as features directly. In [2] 

and [15], various feature descriptors from computer vision 

were studied in  tactile image processing. Using a high 

resolution tactile imager named GelSight, Li et al. [16] 

employed binary descriptors to match features extracted from 

tactile readings and created tactile maps of objects. In our 

previous work [17], [18], a new Tactile-SIFT descriptor was 

proposed based on the Scale Invariant Feature Transform 

(SIFT) descriptor [19]. In addition to the above hand-drafted 

features, in [20] unsupervised hierarchical feature learning 

was applied to extract features from raw tactile data for 

grasping and object recognition tasks. In terms of recognizing 

the global object shape using tactile patterns, however, a 

limited number of approaches are available. One popular 

method is to generate a codebook of tactile features and use it 

to classify objects [4], [5], [14], [16]; a particular paradigm is 

the Bag-of-Words model. In this framework, only local tactile 

features are taken to generate a feature occurrence histogram 

to represent the object whereas in this type of methods the 

three-dimensional distribution information is not 

incorporated. 

C. Object recognition based on both sensing modalities 

For humans, the sense of touch consists of both kinesthetic 

and cutaneous (tactile) sensing [1]. Therefore, the fusion of 

the two sensing modalities could be beneficial for the object 

recognition tasks. In [21], the proprioceptive data (finger 

configurations/positions) and tactile features for a whole 

palpation sequence were concatenated into one description 

for object classification; the information of tactile features 

and contact points is combined but the information of the 

positions where specific tactile features were collected was 

lost. In recent work [22], an underactuated robot hand, with a 

row of TakkTile tactile sensors embedded in each link of 

robot fingers, was employed for object classification. The 

actuator positions and force sensor values form the feature 

space to classify object classes using random forests but there 

were no exploratory motions involved, with data acquired 

during a single and unplanned grasp. 

III. ITERATIVE CLOSEST LABELED POINT 

As previously mentioned, at each collecting data point, 

both the tactile reading and the 3D location of the tactile 

sensor are recorded simultaneously. The proposed Iterative 

Closest Labeled Point (iCLAP) algorithm combines both 

appearance features obtained from tactile images and spatial 

distributions of objects in space. The iCLAP algorithm is 

introduced in detail in this section and it consists of two steps, 

i.e., feature label creation and iterative search for closest 4D 

point cloud model. 

A. Feature label creation 

To begin with, a codebook of tactile features is formed 

from the training tactile readings and each tactile feature is 

assigned a label by “indexing” the codebook. As shown in Fig. 

2, in the training phase a codebook/dictionary is formed by 

clustering the feature descriptors extracted from the tactile 

images using k-means clustering. Here, k is the dictionary size, 

i.e., the number of clusters. The descriptors of training/test 

objects are then assigned to the nearest codewords/clusters in 

Euclidean distance and labeled with the codeword numbers 

pw =[1, 2, …, k]. 

  
Fig. 2. The creation of the dictionary of tactile features by k-means clustering. 

B. Iterative search for closest 4D point cloud model 

With the feature labels created from tactile readings and the 

movements of tactile sensors in 3D space, the object can be 

represented in a four-dimensional space. A single 4D point is 

represented by a tuple (px, py, pz, pw), in which px, py, pz and pw 



  

are the x, y, z coordinates in 3D space of tactile sensor and 

word label assigned to this location respectively. To calculate 

the mutual distance between 4D sparse data points P in the 

test set to the model (reference) point clouds Q in the training 

set, we extend the Iterative Closest Point (ICP) algorithm [23] 

to 4D space. The inputs of the iterative algorithm are the 4D 

model and test data point clouds, initial estimation of the 

transformation to align the test point cloud to the model point 

cloud, criteria for terminating the iterations. It can be divided 

into following iterative steps. 

1. Let data point pi={pix, piy, piz, piw} and model data point 

qi={qix, qiy, qiz, qiw} denote an associated set of the N 

matched point pairs. With the 4×4 rotation matrix R and 

4×1 translation vector ���, pi can be transformed into the 

model point cloud’s coordinate system: ��� = ��	 + ���. 
2. The second step is to find the nearest point in the model 

point cloud in 4D space for each transformed test data 

point ��� . To speed up this process, a k-d tree of the model 

point cloud is constructed [24], [25].  

3. An error metric �	���  is defined to evaluate the mean 

square root distance of the associated point pairs and it is 

minimized with the optimal rigid rotation matrix � and 

translation vector ���. (see definition of  �	���  in section 

III.C) 

4. The iCLAP is iterated until any of the termination 

conditions is reached: Error metric �	��� > preset 

tolerance; Number of iterations > preset maximum 

number of iterations nmax; the relative change in the error 

metrics of two consecutive iterations falls below a 

predefined threshold. 

C. Error metric �����  

The error metric �����  is defined as:  

�	�����, �� = ����	 + ��� − �	���
	��

 

      = �  ���!"""" − �	!�� + #��$"""" − �	$%� +���&"""" − �	&�� + ���'"""" − �	'��
�

	��
 

where R and ��� are the 4×4 rotation matrix and 4×1 translation 

vector respectively, and data point pi={pix, piy, piz, piw} and 

model data point qi={qix, qiy, qiz, qiw} are an associated set. 

The closed form solution for minimization of �����  is 

derived as following. 

The centroids of P and Q are defined as �̅ = �) ∑ �	)	��            �" = �+ ∑ �	+	��  

where n and m are the number of test data points and model 

data points respectively. In general case, n=N. Thus the point 

deviations from the centroids are obtained as �	, = �	 − �̅          �	, = �	 − �" 

The error metric can be rewritten as 

�	�����, �� = �����	, + �� + ��� − ��	, + �����
	��
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In order to minimize the error metric, the translation vector ��� 

is chosen to move the rotated data centroid to the model 

centroid ��� = �" − ��.  

Therefore, the error metric is simplified as 

�	�����, �� = �‖��	, − �	,‖��
	��

                                                
            = ��. �‖�	,‖� − 201�� � �	,�	,.� + �‖�	,‖��

	��
�

	��
�

	��
 

    = �‖�	,‖� − 201�� � �	,�	,.� + �‖�	,‖��
	��

�
	��

�
	��

 

Now let 2 = ∑ �	,�	,.�	�� . In an expanded form, we have 

2 =
34
45
6!! 6!$ 6!& 6!'6$! 6$$ 6$& 6$'6&! 6&$ 6&& 6&'6'! 6'$ 6'& 6''78

89, 
where 6�: = ∑ �	�, �	:, , ;, < ∈ >?, @, A, BC.�	��  To minimize 

the error metric �����  the trace tr(RH) has to be maximized. 

Let the columns of H and the rows of R be denoted hj and rj 

respectively, whereE ∈ >1, 2, 3,4C. The trace of RH can be 

expanded as 

01��2� = � 1I ∙ ℎI ≤ ��1I��ℎI�M
I��

M
I��

 

where the inequality is just a reformulation of the Cauchy –

Schwarz inequality. Since the rotation matrix R is orthogonal 

by definition for orthogonal transformation, its row vectors 

all have unit length. This implies 

01��2� ≤ � NℎI.ℎI = 01�O2.2�M
I��

 

where the square root is taken in the operator sense. Consider 

the singular value decomposition of 2 = P ∑ Q. . By 

choosing the rotation vector as � = QP. , the trace of RH 

becomes 01�QP.P ∑ Q.� = 01�Q RQS��                                 = 01#√QR.RQS�%                                 = 01�√2.2�  

which according to Eq. (9) is as large as possible. In this way, 

the error metric �	���  is minimized with found optimal 

rotation matrix � = QP.and translation vector ��� = �" − ��. 

The obtained distances between the test point cloud and 
the reference models in the training set are then normalized to 
the sum of their squares. In this way, the distances between the 
test point cloud and the reference models in the training set are 
obtained. By comparing the error metric �	��� a model with 
the minimum �	���  can be found and its identity is assigned 
to the test object. 
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IV. DATA ACQUISITION SYSTEM 

The experimental setup, illustrated in Fig. 3, consists of 

two parts, i.e., the tactile sensor and the positioning device. 

A. WTS tactile sensor 

A tactile sensor WTS 0614-34A from Weiss Robotics is 

used in our experiments. It has an array of 14×6 sensing 

elements with a size of 51mm × 24mm and a spatial 

resolution of 3.4mm × 3.4mm for each element. The sensing 

array is covered by elastic rubber foam to conduct the exerted 

force. As the sensor interacts with objects, the foam gets 

compressed and the force is transferred to the sensor; thus the 

pressure values change. The maximum scanning rate of the 

sensor is 270 frames/s but a rate of 5 frames/s was used in our 

experiments because in initial studies the chosen sampling 

rate was found to be sufficient for the tasks [3], [17]. 

  

Fig. 3. The experimental setup comprises a Phantom Omni device as a 

robotic arm and a tactile sensor attached to its stylus. 

B. Positioning device 

A Phantom Omni device with six degrees of freedom (DoF) 

from Sensable Technologies was used for positioning the 

tactile sensor and its stylus served as a robotic manipulator. It 

is based on a serial architecture that the stylus is linked to the 

housing by a single serial chain. The position of the 

end-effector of the stylus can be obtained and it has a nominal 

position resolution of around 0.055 mm. As the tactile sensor 

is attached to the stylus and its surface center is aligned with 

the end point of the stylus, the position of end-effector can be 

taken as the position of tactile sensor in the world coordinates. 

C. Data collection 

During the data acquisition, each object was explored five 

times. Each exploration procedure was initialized with an idle 

load, namely, no object-sensor interaction. As in [11], the 

stylus was controlled manually to explore the object while 

keeping sensor plane normal to the object surface; in this 

manner, the object surface was covered while a number of 

tactile observations and sensor movement data were collected. 

As a result, 8492 tactile readings with corresponding contact 

locations for 20 objects were collected. The objects in the 

experiments were taken from either the lab environment or 

daily life with two exceptions, i.e., 3D printed point array on a 

flatbed and character E on a hemisphere. All of the objects are 

illustrated and labeled in Fig. 4. It can be noticed that there are 

some objects with similar appearance or spatial distributions.  

For instance, the sizes of the plier 1 and plier 2 are quite close 

and they have a similar frame, but they have different local 

appearance, i.e., the shape of jaws. On the other hand, some 

objects have similar appearance but have different spatial 

distributions. For example, fixed wrenches 1 and 2 have 

similar local appearance, but they have different sizes and 

spatial distributions. These similarities will test the 

robustness of different algorithms. Fig. 5 shows the sampled 

tactile images of 7 example objects. As seen in the tactile 

images, prominent features can be observed for each object. 

V. RESULTS AND ANALYSIS 

A leave-one-out cross validation was carried out by using 

different dataset as test data to validate the results; the 

recognition rates shown as follows are the averages of cross 

validation results. The general goal is to achieve high 

recognition rate while minimize the needed amount of 

samples. 

 
   plier 1(470)      plier 2(434)   scissors 1(490)  scissors 2(469)  scissors 3(484)     fw 1(459)         fw 2(364)       fw 3(473)        fw 4(514)        wrench(524) 

 
       wc(390)          wheel(384)    Allen key(278) coffee mug(430)     saws(487)       tweezers(343)      plug(403)   soft ball(283)    point array(318) character E(495) 

 

Fig. 4. Objects used for the experiments and they are labeled from 1 to 20 marked at the bottom left of the picture of each object. The name and number of 

collected tactile readings are also listed under each object picture. Notation: fw and wc stand for fixed wrench and wooden cuboid respectively. 

 
               (a)                                  (b)                              (c)                              (d)                               (e)                               (f)                               (g) 

Fig. 5. Sampled tactile readings of (a) plier 1 (b) scissors 1 (c) fixed wrench 2 (d) wrench (e) Allen key (f) plug (g) 3D printed character E on a hemisphere. In 

these readings, prominent features can be observed for each object. The tactile images are interpolated for visualization whereas raw data were utilized in the 

processing. 

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Positioning device 

Tactile array 

Test object 



  

A. Recognition performances of BoW framework with 

different tactile features 

To select the tactile features, we first compared the 

recognition performances with tactile information only (BoW 

framework). In total, four different features are used and 

compared, i.e., the Tactile-SIFT descriptors proposed in our 

previous work [17] and three previous features in the 

literature, i.e., Zernike moments (the best performing feature 

used in [15]), normalized Hu’s moments [22], raw image 

moments (up to order 2) [23]. Based on [17], the dictionary 

size k was set to 50 through the experiments. As shown in Fig. 

6, the recognition performances of all the methods improve as 

the number of touches increase. On the other hand, our 

Tactile-SIFT descriptors and Zernike moments clearly 

outperform the other two descriptors through the experiments. 

Therefore, Tactile-SIFT descriptors and the Zernike moments 

are utilized in the following experiments. 

 
Fig. 6. The recognition rates with tactile information only (BoW) against 

different number of touches, using our Tactile-SIFT descriptors [17], Zernike 

moments [15], normalized Hu’s moments [22] and raw image moments [23] 

respectively. 

B. Recognition performances of iCLAP vs methods using 

single sensing modalities 

By using Tactile-SIFT descriptors as the tactile features, 

the recognition performances of BoW framework (tactile 

information only), ICP (kinesthetic cues only) and iCLAP 

algorithm against different number of object-sensor contacts, 

from 1 to 20, are illustrated in Fig. 7. In general, as the 

number of contacts increases, all of the performances of three 

approaches are improved. The classification results can be 

divided into three stages. When the tactile sensor contacts the 

test object for just a few times, i.e., in the case of less than 3 

touches, the tactile sensing can give better view of the object 

than the kinesthetic cues, since tactile images are more likely 

to capture “first glance” appearance features of the object. On 

the other side, our iCLAP algorithm is 14.76% more accurate 

than using only kinesthetic cues, while performing similarly 

to tactile images. As the number of contacts increase, the 

recognition rates of our proposed iCLAP algorithm increment 

dramatically and it performs much better than those with only 

one modality, showing that combining the information from 

two sensing modalities outperforms those using only one 

sensing modality. When the number of contacts is greater 

than 12, the recognition rates of all the three methods grow 

slightly but our proposed iCLAP algorithm still outperform 

the other two methods with single sensing modalities. With 

20 touches, iCLAP can achieve an average recognition rate of 

80.28%.  

Fig. 7. The recognition rates with kinesthetic cues only (ICP), tactile 

information only (BoW) and dual sensing modalities using our proposed 

iCLAP algorithm (iCLAP) against different number of touches, using 

Tactile-SITT descriptors as tactile features. 

We also compared the recognition performances of the 

three methods (ICP, BoW and iCLAP) by using Zernike 

moments as the tactile features, illustrated in Fig. 8. The 

recognition accuracy follows a similar pattern to the case 

using Tactile-SIFT descriptors. And it can be observed that 

the proposed iCLAP algorithm outperforms the methods 

using single modalities by up to 18.00% and can achieve a 

high average recognition rate of 85.36% with 20 touches. 

 
Fig. 8. The recognition rates with kinesthetic cues only (ICP), tactile 

information only (BoW) and dual sensing modalities using our proposed 

iCLAP algorithm (iCLAP) against different number of touches, using 

Zernike moments as tactile features. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of touches m

0

10

20

30

40

50

60

70

80

90

Tactile-SIFT

Zernike

Normalized Hu's Moments

Raw Moments

R
e

co
g

n
it

io
n

 r
a

te
 (

%
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of touches m

0

10

20

30

40

50

60

70

80

90

100

ICP

BoW with Zernike

iCLAP with Zernike



  

In Table 1, the recognition performance improvements of 

iCLAP are listed. Based on the observations of the 

recognition performances, it is reasonable to arrive at a 

conclusion that our proposed iCLAP algorithm benefits from 

both tactile and kinesthetic sensing channels and achieves a 

better perception of the interacted objects. 

TABLE I.  RECOGNITION PERFORMANCE IMPROVEMENT USING 

DIFFERENT DESCRITPORS 

Descriptors BoW iCLAP Improvement 

Tactile-SIFT 78.32% 80.28% 14.76% 

Zernike moment 73.40% 85.36% 18.00% 

Hu’s moment 46.40% ------ ------ 

Raw moment 26.60% ------ ------ 

Note: all the BoW and iCLAP recognition rates listed in the table are the best 

performance in each case; the improvements are the largest differences between the 

recognition rates of iCLAP and BoW or ICP observed throughout the experiments (m 

from 1 to 20). 

VI. CONCLUSION AND DISCUSSION 

The experimental results of classifying 20 real objects show 

that iCLAP can improve the recognition performance largely 

compared to the methods using only one sensing channel. The 

proposed iCLAP algorithm can be applied to several other 

fields, e.g., computer vision related applications. For instance, 

in scene classification, as the landscape observations are 

correlated with the locations in which they are collected, the 

proposed iCLAP combining the two sensing modalities is 

expected to enhance the classification performance. 

There are several directions to extend our work. As only the 

word label is utilized in the iCLAP to represent the tactile data, 

there is information loss to certain extent. Therefore, it will be 

studied how the word labels effects the convergence of the 

algorithm and it is also planned to include more clues of tactile 

patterns in the future designed algorithm, and compare these 

developed algorithms with other fusion methods. In this paper, 

the experimental data are manually collected. Therefore, the 

contact force between tactile sensors and explored objects was 

difficult to control. However, the force level might affect the 

tactile readings. To this end, it will be investigated how the 

contact force affects the recognition results and autonomous 

exploration of objects will be designed. In addition, it will also 

be studied to recognize objects with multiple tactile sensing 

pads. Furthermore, more objects of different types, e.g., the 

shape and size of object, soft object or moveable object, will 

be used to evaluate the algorithm. 
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