
Autonomous Fault Detection for Performance Bugs in
Component-Based Robotic Systems

Johannes Wienke1 and Sebastian Wrede1

Abstract— We present a novel fault detection method for
application in component-based robotic systems. In contrast to
existing work, our method specifically addresses faults in the
software system of the robot using a data-driven methodology
which exploits the inter-process communication of the system.
This enables an application of the approach without expert
knowledge or availability of complex software models. We
specifically focus on performance bugs, which slowly degrade
the performance of the system and are thereby harder to detect
but also most valuable for automatic recovery. Using a data set
recorded on a RoboCup@Home platform we demonstrate the
performance and applicability of our method and analyze the
types of faults that can be detected by the method.

I. INTRODUCTION

Despite the existence of many advanced techniques for
preventing software failures in the first place (e.g. testing,
model-based engineering, simulation, development work-
flows, code reviews), robotic systems still contain bugs
and therefore sometimes fail to accomplish their intended
missions. Reasons for this are manifold, but specifically
include the complexity of current robotic systems as well as
the very open nature of interactions with the environment,
especially in case of human-robot interaction (HRI). Due to
this high complexity, high potential for implementation errors
exists and these errors might even not be easily detectable by
the aforementioned techniques, as some of these techniques
are usually hard or even impossible to apply due to the
interaction of the robot with the world. Thus, current robotics
systems frequently contain failures [1].

As a consequence, aside from classical engineering meth-
ods to ensure proper software quality, an important aspect
to improve the stability of current robotic systems is the
detection of faults, which inevitably happen at runtime.
Detecting such faults allows to react to them in a proper
way, potentially with a successful repair strategy [1], [2].
The need to detect and handle faults at runtime becomes
even more important in robotics with the recent advances
in physical human-robot interaction in industrial settings,
where any fault can result in serious injuries, even at the
development stage. Autonomous fault detection and isolation
(FDI) methods which promise to detect faults at runtime
are adopted in several technical disciplines that require
stable system operation, but so far only very limited usage
can be observed in robotics. Reasons include the constant
development in robotics, which prevents the use of static
and hard to maintain fault detection methods during the

1 Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld
University, Germany
{jwienke,swrede}@techfak.uni-bielefeld.de

constant system evolution, as well as the general availability
of suitable and general-purpose models. While considerable
research on specific areas like sensor or actuator faults exists
(cf. [3], [4]), failures in the control software have largely
been ignored so far, despite being equally important (cf.
[1]). Finally, especially in research, many different kinds of
robotic platforms are constantly being constructed. There-
fore, solutions for specific fault detection problems on one
platform are often hardly transferable to other platforms
without in-depth knowledge on the algorithms. Consequently,
more general-purpose methods are required to foster the
application of FDI techniques for non-expert users.

In the following we present a novel and general-purpose
method for fault detection in robotics which addresses
the aforementioned challenges. Our method specifically ad-
dresses the software control system of the robot and can be
applied without expert knowledge. It is a data-driven method
using machine-learning techniques which can be retrained for
novel systems with a reasonable amount of work.

II. TARGET SYSTEMS & ASSUMPTIONS

Our fault detection method specifically addresses im-
plementation errors in the robot’s control system. Since
requiring a complete model of the software system for the
fault detection method to function would contradict an easily
applicable method, we need a proxy to assess the state of
the system. For this purpose we assume the robot to be
implemented as a distributed system using a component-
based middlware which uses inter-process communication
like ROS [5] or our own middleware RSB [6], which should
be fulfilled for many research systems. Given this fact, we
assume that the inter-process communication of the system
components is a sufficient proxy to assess the state of
the system. This assumption has already been verified by
Golombek et al. [7], but not with a focus on individual
components. Our method extends on this and models these
components, which allows to better isolate faults.

In order to be applicable at runtime, the middleware
must support introspecting the communication of individual
components at runtime, ideally with a low runtime overhead,
which is possible for most modern middlewares. Addition-
ally, information about the existing components of the system
and their communication channels should be provided, if a
manual specification shall be prevented.

With respect to the kinds of faults we want to detect, we
specifically focus on performance-related issues, as defined
by Application Performance Management [8]. Such faults
do not immediately render the system unusable, e.g. through



crashing important components, but instead slowly degrade
its perceived or computational performance and often only
occur on special inputs. Hence, they are much harder to
detect and easily missed during short testing cycles in active
development work [9]. Also, these non-catastrophic issues
have a higher potential for being recovered at runtime
and therefore are the most valuable ones to detect with
FDI methods. Consequently, we need a way to continu-
ously assess the computational resource demands of system
components and therefore assume that target systems are
equipped with a monitoring system which uncovers the
process resource demands. Many of these systems exist for
server monitoring (e.g. munin1 or Nagios2), but they are
often operating at lower temporal resolutions than required
for fast robotics operations. Monajjemi et al. [10] provide
an example for a monitoring system specifically tailored to
robotics. This monitoring system, however, currently lacks
the ability to expose the acquired performance counters back
to the middleware, which would provide an easy integration
path for the fault detection approach at runtime. For this
reason and our own use of a different middleware, we have
implemented our own monitoring system, which provides
even more detailed performance counters from the Linux
proc filesystem for each component via the middleware.
Implementing a comparable solution for other systems is an
achievable task and should therefore not limit the applicabil-
ity of our proposed fault detection method.

Generally, we agree with and target the requirements on
monitoring systems introduced in Khalastchi et al. [11],
which state that these systems must be computationally light
to prevent modifications and further failures in the system,
must have a low false-positive rate and they should be able
to detect context failures. These are failures that manifest
in measurements which would be normal in a certain state,
but are faulty in another one. Comparable requirements have
also been proposed by Steinbauer and Wotawa [12] and we
agree with these.

Summing up, our method needs a distributed system,
where the component communication can be introspected at
runtime and where performance counters for each component
are provided at a reasonable resolution (e.g. 1 Hz).

III. METHOD

Our proposed fault detection method is based on the
idea that given the inter-process communication of a system
component, an expectation on the resource demand of that
component at each moment in time can be learned. If the
current resource demands of the component deviate from the
learned expected value, the component is assumed to be in
a faulty state.

We train a model for all components of the system based
on reference executions [13] which are classified by an expert
user to be successful and therefore are assumed to be free of
failures. This method does not prevent the training data from

1http://munin-monitoring.org/
2https://www.nagios.org/

COMPONENT MONITOR

Event Seq Counters

R
E
G

R
E
S
S
IO

N
1

. Tra
in

FP 0.
5%

Θ

2. Error Cov.

3. Threshold

EVENT BUS

Fig. 1. Structural overview of the training of our approach. Colored region
in the event and performance counter series indicate the different partitions
of the training data used in sequential training steps.

containing samples of a system containing errors in the first
place, but their manifestation as failures3 is less likely since
the expert user of the system should be capable to validate
the delivered service. This assumption is used by several
other publications in this area, e.g. Golombek et al. [7] and
Jiang et al. [15]. Moreover, suitable modeling methods are
able to deal with a certain amount of falsely labeled items
in the training data [16].

Given the training data generated this way we have to
deal with a one-class classification or novelty detection
problem, which we address with a residual-based fault detec-
tion approach (cf. Ding [17]). Figure 1 visualizes the basic
steps which are performed to generate a model for a sin-
gle component. After acquiring the relevant communication
events or messages4 for the target component as well as the
performance counter time series from the reference execu-
tions of the system (upper part of Figure 1), a regression
model is trained which predicts the various performance
counters based on encoded communication events (step 1
in Figure 1). In a second step, the error of this model is
calculated and an empirical covariance matrix is calculated
which characterizes the ability of the regression to predict the
different performance counters. Based on this covariance, the
Mahalanobis distances is used to compute a threshold on the
regression error which ensures a desired false-positive rate
on the training data (step 3 in Figure 1). In case a novel
observation results in an error higher than this threshold,
the component is classified as being in a faulty state at
that moment in time. The training of the regression and the
estimation of the threshold are performed in batch on the
training data.

The aims of this procedure are the following. First of all,
no special training data or system models are required to
build a fault detector for a component. Only a few reference
executions of the system are necessary, which ensures that it
is easy to apply the method in new or constantly changing

3A failure being the visible manifestation of an implementation error on
the delivered service of a system as defined by Laprie [14].

4For brevity, we will call any kind of acquired inter-process communica-
tion artifact an event even if it does not originate from a strictly event-based
middleware.



systems. As we train a fault detector for each component
of the system, fault isolation in terms of the affected com-
ponents for a fault is possible, which improves the ability
to handle and debug occurring faults. Finally, training the
fault detector for a specific false-positive rate provides a
configuration option which shall ensure that detection results
are not ignored due to excessive false positive rates.

In the following subsections we will outline the required
steps to build up and apply a fault detector for a component.

A. Feature Generation

We assume that for a system component c := {S} we
know the complete set of communication channels S :=
{s1, . . . sc} (e.g. topics for ROS) the component commu-
nicates on, where S := Si ∪ So denotes the union of the
component’s input channels Si and output channels So. For
each execution of the system, we acquire a timeseries with
the performance counters for that component, which is

P := {pt : t ∈ T} (1)

where pt ∈ Rn is the vector of performance counter at time t
and T is the set of timestamps for the measurements, which
is assumed to have equidistant spacing, 1 Hz in our case.
Additionally, for each communication channel sn ∈ S we
have acquired a time series with the communication events
that occurred, which is defined as

Es := {m(rt) : t ∈ Ts} (2)

where Ts is of no specified frequency due to the undeter-
mined nature of component communications, and

m(rt) : R 7→ Rn := et (3)

is an encoding function which converts each structured
communication events from the set of raw events R into
a vector. R depends on the communication middleware and
therefore the encoding function m(rt) needs to be defined
for each middleware. Since our method should be reusable
across different systems, we use a generic encoding function,
which can convert any RSB communication event to a
numeric representation, however, it would also be possible
to implement functions which are specifically tailored to a
certain robot system. Therefore we use the following RSB-
specific encoding function:

mrsb(rrsb) :=

Size of event cause vector
Size of event payload

Size of user info vector

 (4)

This function converts all countable user-defined entries in
an RSB event as well as the size of the binary payload into
a vector.

Since the event series Es are not synchronized with the
counters P , a synchronization is required. To create fault
detection results at a constant rate, we have decided to
reuse the timing T of the performance counters P for this
purpose and therefore the events need to be conformed to

Fig. 2. Visualization of the feature generation and synchronization approach
for a single scope s with two temporal windows w1 (red) and w2 (green).
Features are computed for the performance counters (blue) pt at time t.
Rectangular regions indicate the events inside the respective window and
the yellow event instance is the most recent one occurring before t.

this frequency. For each communication channel s ∈ S we
generate a new multi-dimensional feature time series

Fs := {fst : t ∈ T} (5)

where each fst is computed at the timestamps of the perfor-
mance counter time series and has the following structure:

fst :=



(
mean(Ew1

s,t )
count(Ew1

s,t )

)
...(

mean(Ewn
s,t )

count(Ewn
s,t )

)
elasts,t


(6)

where W := {w1 . . . wn} are several temporal windows of
length wi ∈ R. Inside each of these windows, Ewi

s,t are all
events on communication channel s which are inside the
window starting from timestamp t and going backwards in
time until t− wi, thereby fulfilling:

Ewi
s,t := {esµ ∈ Es : µ ∈ (t− wi, t]} (7)

mean computes the element-wise mean of all event instances
in Ewi

s,t and count the number of instances. Finally, elasts,t ,
indicates the most recent event in Es that occurred before
timestamp t. Figure 2 visualizes this approach. In order
to create the complete feature vector for a component, the
individual channel feature vectors fst are stacked to form:

F := {ft : t ∈ T} (8)

ft :=

f
s1
t
...
fsct

 (9)

Since it might happen that not all theoretically available
communication channels are actually used in a system, they
are ignored when stacking the complete feature vector.

This way of modeling the feature vector was chosen to
include information about the temporal structure of the com-
munication already inside the feature vector, which enables
us to use models that otherwise have no specific temporal
representation. We have used temporal windows of length
2.5 s and 6 s in our own experiments, which have been
empirically chosen to match expected communication fre-
quencies for major components in our system. elasts,t has been
added to the feature vector in order to provide information



in case communication on a scope is less frequent than the
longest temporal window. Finally, we explicitly include also
the outgoing communication channels So of a component in
order to have a proxy for the internal state of that component,
since not all components are stateless and purely input-
driven.

B. Regression

The described feature generation approach is applied to
the data collected during the reference executions of the
system, resulting in several encoded time series of features
and their associated performance counters. These series are
concatenated to form a single set of training inputs. This set
is split into 3 partitions (colored backgrounds in Figure 1).
Since the temporal structure is encoded in each feature
vector, random permutations with fixed size can be used
here. With the first partition of the training data we train a
regression model to predict the performance counters based
on the features, which we define as follows:

r(ft) : F 7→ P (10)

After scaling the features to zero mean and unit variance,
we have received the best performance in terms of detection
results as well as training speed with a multi task imple-
mentation of the Elastic Net regression method [18], which
is well suited for our case with potentially high feature
dimensionality and correlated regression targets.

C. Threshold Estimation

Based on the trained regression model, the classification
idea is to compare the predicted resource usage with the
actually consumed resources of the analyzed system compo-
nent and to define the component’s state as faulty in case the
deviation exceeds a threshold. As we are only training from
non-faulty examples, defining a suitable threshold cannot
be performed in terms of actual classification performance.
Therefore, we define the threshold so that a desired false-
positive rate on an independent partition of the training data
is reached.

In order to define this threshold, we need a suitable
distance metric. As we have observed that the regression
performance for certain performance counters is worse than
for others, we use the remaining partition of the training
data to first estimate a covariance matrix for the regression
errors (step 2 in Figure 1). Based on this covariance, we can
compute the threshold using the Mahalanobis distance

d(pt, p
′
t) : P × P 7→ R≥0 (11)

where p′t indicates the predicted counters. This procedure
ensures that performance counters, which are harder to
predict, have less impact on the classification than the ones
with higher certainty. We use a gradient descent method to
compute the final threshold Θ (step 3 in Figure 1), which
will always find the optimal threshold due to the strictly
monotonic nature of the error function.

D. Classification

For the online fault detection the procedure is then straight
forward. For the encoded features we first predict the ex-
pected performance counters, then compute the distance to
the measured counters and compare the results with the
threshold, resulting in the following decision function:

faulty(ft) := d(pt, r(ft)) > Θ (12)

IV. EVALUATION
In order to validate our approach we have evaluated it

on a previously published data set [19] for evaluating fault
detection approaches in component-based robotic systems.
Up to our knowledge, no suitable data set with the targeted
fault categories, event data, performance counters and accu-
rate ground truth existed before, which made it necessary to
recored a new one. In this data set, a mobile robot platform
performs a modified version of the restaurant task from the
RoboCup@Home competition 2015 [20]. Here, an operator
first guides the robot around a room, demonstrating locations
of drinks and tables and afterwards the robot detects guests,
takes their orders and serves the drinks using its manipulator.
During executing of the system different non-catastrophic
performance-related faults have been triggered. These faults
range from resource leaks and skippable computations up
to algorithmic errors and issues with the communication
middleware. They are scheduled in consecutive time slices
for each recording trial. Each slice contains one scheduled
fault that might affect multiple components. The data set
contains the complete event communication of the robot,
ground truth information about the induced faults and de-
tailed performance counters for each component. It consists
of 10 fault-free runs of the system and 33 runs with induces
faults. For further details, please refer to Wienke et al. [19].

We have trained a fault detection model for all components
of the system which communicate via RSB based on the
10 fault-free trials of the corpus. In order to compare
the performance of our model on the data set, we have
additionally implemented a One-Class-SVM (OCSVM) [21]
as a standard novelty detection method. The OCSVM detects
outliers based on the joint space of features and counters,
such that the feature vectors for the OCSVM are:

fOCSVMt :=

(
ft
pt

)
(13)

We used a ν-SVM-based model which has been parameter-
ized to achieve the same false-positive rate on the training
data as our own model via the ν parameter (0.5 %). Finally,
we compare our results to a random decision with 50 %
chance to classify a data point as being faulty as the absolute
baseline. From training we would not have any information
on the distribution of the two detection results and therefore
using a uniform distribution is the only reasonable decision.
For the evaluation, we have decided to use the Fβ score as
the target metric with β = 0.1 to reflect the fact that a fault
detection system with a high false-positive rate will most
likely be ignored soon (cf. [11]). With this metric, all com-
ponents in all test trials of the data set have been classified



TABLE I
EVALUATION RESULTS

F0.1 false-positive rate detection rate AUC

our model 0.521 0.011 0.446 0.650
OCSVM 0.185 0.053 0.229 0.626

random 0.133 0.503 1.000 0.500

at the 1 Hz rate and the resulting boolean time series have
been combined and the scores have been computed. Table I
shows the results.

Our model reaches by far the best F0.1 score and addition-
ally maintains a false-positive rate close to the intended one.
The OCSVM, in contrast, ends up with an approximately 10
times higher false-positive rate as specified for the training.
Finally, the detection rate indicates, for how many of the fault
instances included in the data set the fault detector indicated
a fault at least once within the 80 s of fault activity. Of course,
the random choice at the 1 Hz pace will very likely detect
each fault instance but at the cost of a very high false-positive
rate. The OCSVM, despite having a higher false positive rate,
still detects only half of the amount of fault instances that
our model detects.

In order to generalize these statement, we have also
computed ROC curves and calculated the area under the
curve (AUC) for the different models. Figure 3 visualizes the
curves, which are the micro-averages across all component
results. Also across parameter ranges, our model outperforms
the OCSVM. Summing up, our model detects more fault
instances while maintaining a lower false-positive rate and
generally has a better performance across parameters.

To analyze the general approach of using the generically
encoded event communication as well as the performance
counters to detect system faults, we have further calculated
the AUC metric for each kind of fault included in the data
set. For this purpose, for each fault type the individual time
slices containing this fault have been isolated for all affected
components and the AUC has been computed for all combi-
nations of faults and affected components. Figure 4 visualizes
the average AUC per fault for both classification approaches.
It is visible that most faults that directly influence one of
the performance counters (leaks and skippable computations)
can be detected well by the approach, whereas other faults

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

our model

OCSVM

random

Fig. 3. ROC curves as micro-averages across components.

po
ck

et
Sp

hi
nx

Le
ak

fa
ce

re
cS

ki
pp

ab
le

le
gd

et
ec

to
rS

ki
pp

ab
le

ob
je
ct

Bui
ld

er
Sk

ip
pa

bl
e

sp
re

ad
La

te
nc

y

bo
ns

ai
Pa

rti
ci
pa

nt
Le

ak

cl
oc

kS
hi

ft

cl
af

uS
le
ep

bo
ns

ai
Ta

lk
Ti
m

eo
ut

bt
lA

ng
le
Alg

o

ar
m

se
rv

er
Alg

o

0.0

0.2

0.4

0.6

0.8

1.0

our model

OCSVM

Fig. 4. The AUC scores for each fault kind contained in the evaluation data
set. Results have been averaged in case a fault affected multiple components.
For details about the individual faults please refer to Wienke et al. [19].

contained in the data set, which manifest themselves in
changed data inside the communication events or in the
timing of sparse events are less likely to be detected correctly
by the approach. One exception from this general assessment
is the spreadLatency bug, which adds periodic latencies
to the middleware communication of the whole system.
When further analyzing the performance for classifying
this fault type for the individual components it becomes
visible that the classification is especially successful in case
the components use a periodic communication pattern with
frequent events. Otherwise, the latencies are not visible to the
approach as simply no events have been communicated while
the communication was delayed. This further highlights that
challenging nature of the evaluation data set.

V. RELATED APPROACHES

Fault detection or more general novelty or anomaly de-
tection has a long tradition in several domains and many
techniques have been developed. Chandola et al. [16] and
Miljkovi [22] present good overviews about these techniques,
their categorization and application domains.

With respect to robotics, there has been ongoing research
on suitable fault detection approaches and different directions
exist. Pettersson [3] gives a good overview on early research
for fault detection in robotics and distinguishes between an-
alytical, data-driven and knowledge-based approaches. Some
of the data-driven approaches mentioned there are using
regression, however, often to learn pre-defined classes of
failure states. Also, no method specifically focuses on faults
in the control system.

A method that focuses on this part of robotic systems has
been presented in different development stages by Zaman et
al. [2], Weber and Wotawa [23], and Kleiner et al. [24]. The
fault detection mechanism is based on observers which either
check invariants in the communication or encode metrics as
Horn clauses. Observers are either manually designed, or
derived automatically from reference executions in case of
invariant checks. Due to the strict nature of the invariants,
imperfect training data will likely affect the detected invari-
ants and decrease the performance. Based on the observer
results, a diagnosis engine searches for contradictions of the
current state with a pre-defined model of the system, thereby
requiring a manual modeling of the system behavior.



Khalastchi et al. [11], in contrast, introduce an online fault
detection approach which is purely data-driven and based on
a sliding window approach to compare current measurements
against the previous ones. It does not specifically address
performance bugs and is mostly evaluated on sensor or
hardware faults. As this method only compares the current
data against a recent history, sudden changes in observed
variables will likely be misclassified as anomalies, even
if they are valid due to a change in the control system’s
state. Such changes can often be observed for performance
counters, e.g. for on-demand processing components.

A recent approach that uses the communication of the
system to assess its state is proposed by Jiang et al. [15].
Here, invariants in the communication are learned based
on templates and reference executions of the system. The
authors demonstrate the ability of the approach to detect
and correct violations which mostly originate from external
disturbances of the expected environment of a UAV (e.g.
increased wind speed). The approach does not specifically
address issues in the control software and detected failures
cannot be attributed to certain system components.

Finally, Golombek et al. [7] describe a fault detection
method which also utilizes the communication of the robot
to assess the system state and which is able to detect
performance-related faults. However, only the complete sys-
tem is inspected and no detailed information about the
affected components is provided.

Finding anomalies in the consumption of resources is also
an issue in domains like server administration or cluster
computing. Since the variations in resource demand are often
more stable than in robotics, many solutions here use time-
series processing methods without incorporating contexts
like event streams. One noteworthy exception is Knorn and
Leith [25], where in addition to a base model of the resource
usage, an additive event model exists that adds resource
consumption patterns for pre-trained events. These event
models need to be recorded beforehand, which prohibits the
easy application of the approach in the robotics domain, with
many state changes and events that need to be modeled.

Summing up, the combination of addressing faults in
the robot’s software system with isolation of individual
components based on a data-driven method, which does not
require complex modeling is a unique property of our method
and makes it applicable to a wide range of platforms. The
exploitation of communication events to predict resource
consumptions is a unique approach that has not been ad-
dressed in a suitable manner for the robotics domain.

VI. CONCLUSIONS & OUTLOOK

We have introduced a novel method to detect performance-
related faults in component-based robotic systems. The
method successfully uses the middleware communication
of each component to assess its state, which verifies our
initially stated hypothesis. With this method we were able
to outperform standard anomaly detection methods on a
challenging benchmark of a mobile robot system. We have
specifically taken care that the method is easily applicable to

a broad range of robotic systems without requiring in depth
expert knowledge and that it results in a low false-positive
rate to ensure that the system will be used by developers
and operators. Moreover, we have extended the scope of
existing data-driven methods to provide detection results for
individual components of a system, which allows more fine-
grained reactions and better debugging.

The performance of our approach definitely depends on the
structure of the distributed software system of the robot. We
assume our method to perform better in case the components
are of smaller size with higher data exchange via the middle-
ware. The benchmark system already contained several quite
complex components with only limited visibility of certain
inputs via the middleware (e.g. camera images) for which we
could achieve reasonable performances. Still, more research
on the effect the system structure has on the detection
performance is required. The evaluation has also shown that
the approach captures faults directly affecting performance
counters better than faults which are reflected in the event
data or sparse temporal patterns. To increase the performance
for such cases, existing methods like communication invari-
ants could be added to the system to form an ensemble-based
classification scheme.

An issue which we have not explicitly addressed yet is
the one of resource sharing between components, e.g. of
the CPU. In case of starvation, all components on the same
host are affected. While training from real executions of
the system is generally able to learn these influences in
case they occur also under normal circumstances, a faulty
starvation of shared resources will likely result in too many
components being reported as unhealthy. This is also an
issue in case a component ends up in a faulty state which
affects its behavior of producing events. As training from real
executions inevitably includes assumptions about the specific
data rates in the system, any deviation in the inputs will be
noticed by the downstream components’ fault detectors. We
plan to address this issue in two ways. On the one hand,
the existing model information about the component input
and output channels is sufficient to construct a component
dependency graph, which can be exploited to reason about
the upstream causes of a detected failure. On the other hand,
we are evaluating how to generate training data independent
of the real system execution, which captures the component
developer’s assumptions about suitable inputs and data rates
for the component. Usually, this will allow higher variations
then experienced in a single system, which in turn will
resolve the issue of false-positive detections for downstream
components. Also, this will prevent regenerating training
data for the whole system in case individual components
are changed. As generating such training data will involve a
further development step, we specifically try to facilitate this
process via software engineering methods.

In any case, the current method is already able to capture a
wide range of performance bugs with a reasonable overhead
for integrating it. We therefore hope that it will increase the
stability of current robotics systems and we will continuously
improve it and integrate it into our systems.



ACKNOWLEDGMENT

This work was funded as part of the Cluster of Excel-
lence Cognitive Interaction Technology ‘CITEC’ (EXC 277),
Bielefeld University and by the German Federal Ministry
of Education and Research (BMBF) within the Leading-
Edge Cluster Competition “it’s OWL” (intelligent technical
systems OstWestfalenLippe) and managed by the Project
Management Agency Karlsruhe (PTKA).

REFERENCES

[1] G. Steinbauer, “A survey about faults of robots used in
RoboCup,” in RoboCup 2012: Robot Soccer World Cup XVI,
Springer, 2013, pp. 344–355.

[2] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran,
“An integrated model-based diagnosis and repair architec-
ture for ROS-based robot systems,” in 2013 IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2013),
Piscataway, NJ: IEEE, 2013, pp. 482–489. DOI: 10.1109/
ICRA.2013.6630618.

[3] O. Pettersson, “Execution monitoring in robotics: A survey,”
Robotics and Autonomous Systems, vol. 53, no. 2, pp. 73–88,
2005. DOI: 10.1016/j.robot.2005.09.004.

[4] G. Steinbauer, M. Mörth, and F. Wotawa, “Real-time di-
agnosis and repair of faults of robot control software,” in
RoboCup 2005: Robot Soccer World Cup IX, A. Breden-
feld, A. Jacoff, I. Noda, and Y. Takahashi, Eds., Berlin,
Heidelberg: Springer, 2006, pp. 13–23. DOI: 10.1007/
11780519_2.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, R. Wheeler, and A. Y. Ng, “ROS: An open-source
Robot Operating System,” in ICRA workshop on open source
software, 2009, p. 5.

[6] J. Wienke and S. Wrede, “A middleware for collaborative
research in experimental robotics,” in IEEE/SICE Interna-
tional Symposium on System Integration (SII2011), (Kyoto,
Japan), IEEE, 2011, pp. 1183–1190. DOI: 10.1109/SII.
2011.6147617.

[7] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann,
“Online data-driven fault detection for robotic systems,” in
INTELLIGENT ROBOTS AND SYSTEMS, San Francisco:
IEEE, 2011, pp. 3011–3016. DOI: 10 . 1109 / IROS .
2011.6095034.

[8] M. J. Sydor, Apm best practices: Realizing application
performance management. Apress, 2010.

[9] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Un-
derstanding and detecting real-world performance bugs,” in
PROCEEDINGS OF THE 33RD ACM SIGPLAN CONFER-
ENCE ON PROGRAMMING LANGUAGE DESIGN AND
IMPLEMENTATION, J. Vitek, L. Haibo, and F. Tip, Eds.,
New York, NY, USA: ACM, 2012, p. 77. DOI: 10.1145/
2254064.2254075.

[10] V. Monajjemi, J. Wawerla, and R. Vaughan, “Drums: A
middleware-aware distributed robot monitoring system,” in
Computer and Robot Vision (CRV), 2014 Canadian Confer-
ence on, IEEE, Montreal, QC: IEEE, 2014, pp. 211–218.
DOI: 10.1109/CRV.2014.36.

[11] E. Khalastchi, M. Kalech, G. A. Kaminka, and R. Lin, “On-
line data-driven anomaly detection in autonomous robots,”
Knowledge and Information Systems, vol. 43, no. 3, pp. 657–
688, 2015. DOI: 10.1007/s10115-014-0754-y.

[12] G. Steinbauer and F. Wotawa, “Detecting and locating faults
in the control software of autonomous mobile robots,” in
International Joint Conference on AI, L. P. Kaelbling, Ed.,
2005, pp. 1742–1743.

[13] K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven
performance anomaly identification,” in Proceedings of the
eleventh international joint conference on Measurement and
modeling of computer systems, J. Douceur, A. Greenberg,
T. Bonald, and J. Nieh, Eds., New York, NY, USA: ACM,
2009, pp. 85–96. DOI: 10.1145/1555349.1555360.

[14] J.-C. Laprie, “Dependable computing and fault tolerance:
Concepts and terminology,” in The Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing, Los Alami-
tos, California: IEEE Computer Society, 1995. DOI: 10.
1109/FTCSH.1995.532603.

[15] H. Jiang, S. Elbaum, and C. Detweiler, “Inferring and mon-
itoring invariants in robotic systems,” Autonomous Robots,
2016. DOI: 10.1007/s10514-016-9576-y.

[16] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly de-
tection: A survey,” ACM COMPUTING SURVEYS, vol. 41,
no. 3, 15:1–15:58, 2009. DOI: 10 . 1145 / 1541880 .
1541882.

[17] S. X. Ding, Model-based fault diagnosis techniques: Design
schemes, algorithms and tools, 2nd ed., ser. Advances in
Industrial Control. Berlin: Springer, 2008. DOI: 10.1007/
978-3-540-76304-8.

[18] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society,
vol. 67, no. 2, pp. 301–320, 2005.

[19] J. Wienke, S. Meyer zu Borgsen, and S. Wrede, “A data set
for fault detection research on component-based robotic sys-
tems,” in Towards Autonomous Robotic Systems, L. Alboul,
D. Damian, and J. M. Aitken, Eds., Springer International
Publishing, 2016, pp. 339–350. DOI: 10.1007/978-3-
319-40379-3_35.

[20] L. van Beek, K. Chen, D. Holz, M. Matamoros, C. Ras-
con, M. Rudinac, J. R. des Solar, and S. Wachsmuth,
RoboCup@Home 2015: Rule and regulations, 2015.

[21] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-
Taylor, and J. C. Platt, “Support vector method for novelty
detection,” in Advances in Neural Information Processing
Systems 12 (NIPS 1999), S. A. Solla, T. K. Leen, and K.
Müller, Eds., MIT Press, 2000, pp. 582–588.

[22] D. Miljkovi, “Fault detection methods: A literature survey,”
in Proceedings of the 34th International Convention on
Information and Communication Technology, Electronics
and Microelectronics (MIPRO 2011), P. Biljanovic, Ed.,
Piscataway, NJ: IEEE, 2011, pp. 750–755.

[23] J. Weber and F. Wotawa, “Using AI techniques for fault lo-
calization in component-oriented software systems,” in MI-
CAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F.
Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, A. Gelbukh, and C. A. Reyes-
Garcia, Eds., Berlin, Heidelberg: Springer, 2006, pp. 1139–
1149. DOI: 10.1007/11925231_109.

[24] A. Kleiner, G. Steinbauer, and F. Wotawa, “Towards au-
tomated online diagnosis of robot navigation software,” in
SIMULATION, MODELING, AND PROGRAMMING FOR
AUTONOMOUS ROBOTS, S. Carpin, I. Noda, E. Pagello,
M. Reggiani, and O. von Stryk, Eds., Berlin, Heidelberg:
Springer, 2008, pp. 159–170. DOI: 10.1007/978-3-
540-89076-8_18.

[25] F. Knorn and D. J. Leith, “Adaptive kalman filtering for
anomaly detection in software appliances,” in IEEE INFO-
COM workshops 2008, Piscataway, NJ: IEEE, 2008, pp. 1–6.

DOI: 10.1109/INFOCOM.2008.4544581.


