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Abstract— Soft robotics methods such as impedance control
and reflexive collision handling have proven to be a valuable tool
to robots acting in partially unknown and potentially unstruc-
tured environments. Mainly, the schemes were developed with
focus on classical electromechanically driven, torque controlled
robots. There, joint friction, mostly coming from high gear-
ing, is typically decoupled from link-side control via suitable
rigid or elastic joint torque feedback. Extending and applying
these algorithms to stiff hydraulically actuated robots poses
problems regarding the strong influence of friction on joint
torque estimation from pressure sensing, i.e. link-side friction
is typically significantly higher than in electromechanical soft
robots. In order to improve the performance of such systems,
we apply state-of-the-art fault detection and estimation methods
together with observer-based disturbance compensation control
to the humanoid robot Atlas. With this it is possible to achieve
higher tracking accuracy despite facing significant modeling
errors. Compliant end-effector behavior can also be ensured by
including an additional force/torque sensor into the generalized
momentum-based disturbance observer algorithm from [1].

I. INTRODUCTION AND STATE OF THE ART

Compliant manipulation and appropriate reflex reactions

to collisions have been an active research field over the last

decades, opening the door to safer and more autonomous

robot applications [2], [3], [4]. Human-friendly robot be-

havior has to be ensured not only for industrial robotic co-

workers, which are typically serial chain manipulators, but

also in future healthcare, rescue or even personal robotics

applications, where mobility is essential. At the same time,

compliance control and reflexive contact handling are sought

to be essential features in damage protection for systems as

the Boston Dynamics Atlas hydraulic robot [5], [6].

Essentially, softness is either achieved by an inherently

compliant structure [7], [8] and/or active compliance control

via high-fidelity joint torque feedback. One of the most

prominent control concepts to implement compliance is

impedance control. It was introduced in [9] and extended

to flexible joint robots e.g. in [10], [11]. However, up to

now the schemes were mainly applied to electromechanically

driven robots. For hydraulic humanoid robots, basic compli-

ance control schemes were implemented on the SARCOS
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humanoid, focussing on balancing and contact Jacobians

[12], on constraint handling via quadratic programming [13]

or with LQR feedback gain optimization [14]. The concept

of admittance control (position-based impedance control) has

been implemented on the Atlas robot in [15].

Activating reflex reactions as a response to potentially un-

wanted environmental contacts is another main pillar in safe

and sensitive robot interaction. This requires the ability to

discriminate internal from external torques based on accurate

dynamics models together with proprioceptive position and

torque measurements. Disturbance observers are a common

technique in robotics to handle either modeling inaccuracies

[16], [17] or to recognize unexpected events such as col-

lisions. [18] used a momentum-based disturbance observer

for collision detection, isolation, and estimation, including

validation with a 2-Degree-of-Freedom (DoF) simulation.

These results were extended to the flexible manipulator

case and experimentally validated with the DLR lightweight

robot arm III [1], using the concepts of total link energy

and generalized momentum. An analysis of different terms

in the error dynamics and an approach for velocity-based

variable collision thresholds were presented in [19]. An

estimation of the external end-effector wrenches based on

observed disturbance torques was used in [20] to enhance a

model predictive balancing controller on the humanoid robot

TORO.

In [21] the subsequent collision classification problem

was approached by applying state-of-the-art machine learn-

ing techniques to learning the collision torque profiles of

different collision types, including features based on colli-

sion frequencies, amplitudes or other physically motivated

aspects. A summary of collision handling can be found in

[2]. The focus of these works was on electromechanically

actuated robots equipped with link-side joint torque sensing.

A collision detection for the 6-DoF hydraulic robot arm

Maestro with low-pass filtered model error was evaluated

in [22], focussing on hydraulic friction effects. In [23] the

authors applied a disturbance observer for collision detection

that contains a bandpass filter, making use of specifically

identified collision frequencies, to a 3-DoF hydraulic robot

arm with joint torque sensors.

In contrast to their electromechanical counterpart, and due

to the fact that no high gearing with according friction losses

is required, commonly used hydraulic actuators do not have

link-side torque measurements. In fact, actuator forces can

be estimated via the chamber pressures. However, link-side

friction, e.g. induced by the chamber seals, can be rather high

indeed. This in turn makes direct high-fidelity joint torque
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control, and thus also any other soft-robotics control concept,

difficult to realize.

In the present work, we approach this problem by identi-

fying friction and the required dynamic parameters for our

model-based control concept with a two-step method. In the

first step, a friction model including Coulomb and viscous

friction is identified. In the second step, the results of the

first step are used to reduce the number of parameters for

the identification of the dynamics model.

In order to compensate for model errors when using

impedance control, a generalized momentum-based distur-

bance observer is used [24]. As a drawback compliance is

lost, since external forces cannot be systematically discrimi-

nated from the disturbance torques and are thus compensated

by the observer as well. To overcome this problem for

end-effector contacts we use a wrist force/torque sensor to

calculate the external joint torques and exclude them from the

disturbance torque calculation. Finally, an identified friction

model is part of the control scheme to further reduce the

observed disturbances.

The contributions of this paper are

1) the extension of momentum-based collision handling

by considering effects such as friction and wrist

force/torque measurements,

2) the experimental validation of disturbance observer-

enhanced collision detection and reaction schemes to

the hydraulic part of the 7-DoF Atlas robot arms,

3) simulative results of a disturbance observer compen-

sation concept based on wrist force/torque measure-

ment increasing the impedance controller precision and

keeping the end-effector compliance simultaneously,

and

4) a two-step friction and extended rigid body dynamics

identification method applied to a serial chain robot

with both hydraulic and electromechanic actuators.

The paper is organized as follows. Section II adapts our

identification and control concepts from [24] and compares

the results to the previous approach. Section III shows

experimental results for collision detection and reaction

with the Atlas robot. Furthermore, the concept of regaining

compliance when using disturbance compensation from [16]

for our controller implementation is explained. Section IV

concludes the paper.

II. MODELING AND IDENTIFICATION

In this section we shortly review the system modeling and

enhanced impedance controller approach (II-A), modifica-

tions to the momentum-based disturbance observer to include

wrist wrench measurements (II-B), compensation of model-

ing errors and collision handling (II-C), and an identification

scheme that iteratively estimates friction characteristics and

rigid body parameters (II-D).

A. System Model and Joint Impedance Controller

This work focuses on the 7R type serial chain arms of

the Boston Dynamics humanoid robot Atlas, see Fig. 9. The

arms employ a hybrid actuation concept where the first four

τf,θ τf,q

τext

q θ q

B MM

KJ

(a) (b)

τm τm τext

τf

Fig. 1: Relevant torques acting along the mechanical structure for the rigid
joint model (a) with link inertia M and the flexible joint model (b) with
motor inertia B and motor position θ.

joints (shz, shx, ely, elx) are hydraulic, and the wrist joints

(wry, wrx, wry2) are driven by electromechanical gear drives.

We assume the standard fixed-base rigid joint arm model

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm − τf + τext (1)

with generalized joint position q ∈ R
nj (nj being the number

of joints), positive definite and symmetric inertia matrix

M(q), centrifugal and Coriolis matrix C(q, q̇), gravity

torque vector g(q), actuator torques τm, friction torques τf
and external torques τext. The friction torque τf is composed

of the motor side friction τf,θ and the link side friction τf,q .

Both hydraulic and electromechanic actuators are considered

as ideal torque sources, generating a motor torque τm,

allowing a separation of the actuator dynamics from the rigid

body model.

For soft-robotics control of the system we chose the joint

impedance control torque τd to be

τd = K(qd − q) +D(q̇d − q̇) + ĝ(q)

+Ĉ(q, q̇)q̇ + M̂(qd)q̈d + κf τ̂f(q̇)− κετ̂ε(q, q̇, τm) ,
(2)

where qd, q̇d, q̈d are the desired position, velocity, and accel-

eration, respectively. The matrices K = diag{ki} and Dξ =
diag{dξ,i} denote diagonal positive definite stiffness and

modal damping and D the resulting positive definite damp-

ing matrix. ĝ and Ĉ are the gravity and centrifugal/Coriolis

estimates. The inertial feedforward term makes use of the

estimated inertia matrix M̂ as a function of the desired

position qd. The compensation terms τ̂f(q̇) (viscous and

Coulomb friction) and τ̂ε(q, q̇, τm) (estimated disturbance

from Sec. II-B) are activated via the scalars κf ∈ {0, 1} and

κε ∈ {0, 1}, respectively.

Combining (1) and (2) leads to the closed-loop dynamics

M(q)q̈ − M̂(qd)q̈d +D(q̇ − q̇d) +K(q − qd)

= τext + δ − κετ̂ε,
(3)

where δ denotes lumped dynamics and friction modeling

errors and errors caused by sensor drift, offsets and time

delays. We assume these effects to be additive.

B. Disturbance Observer

Before introducing our observer design, let us shortly

summarize the underlying problem of collision detection

with typical hydraulic robots. Figure 1 emphasizes the

friction torques that are relevant for rigid joint models in

comparison to the flexible joint case. The latter represents

e.g. electromechanically actuated robots with elastic joints

and torque sensing [11]. In the former case, the total friction

τf and external torques τext act on a single body that
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represents both motor and link inertia and sum up to a

total disturbance torque. Thus, except under certain modeling

assumptions they cannot be separated with standard propri-

oceptive sensing and according observer techniques. In the

latter case, motor and link-side dynamics are coupled via

the joint stiffness KJ. Typically, this originates either from

rather elastic gears such as Harmonic Drives in combination

with joint torque sensors (rather high inherent stiffness KJ),

or from deliberately placed spring elements as e.g. in the

Series Elastic Actuation (SEA [7]) case (rather low inherent

stiffness KJ). Since the link side friction τf,q is usually low

(it is mainly caused by low friction link-side bearings), it may

be neglected and the link-side observer essentially estimates

the true external joint torques [2]. Therefore, it is possible

to set up two observer schemes, one for the actuator side

estimating τf,θ [25], and one for the link side estimating τext.

Note that one can obviously set up an elastic joint model for

the hydraulic case as well. However, this would only have

a similar implication if an additional joint torque sensor for

decoupling would be inserted after link friction.

To be able to distinguish between internal and external

effects, we extend the momentum-based disturbance observer

from [26], [27], [2] to include measurements of external

wrenches Fext,EE=
(

fext,EE mext,EE

)T
that act on the

end-effector, i.e. “after” the sensor [20]. The extended resid-

ual for end-effector contacts is then defined as

τ̂ε=Ko



M̂(q)q̇−

t
∫

0

[τm−γ(q,q̇)+τ̂ε−α(q,q̇)]dt̃



, (4)

where Ko = diag{ko,i} > 0 is the observer gain matrix and

γ(q,q̇):=ĝ(q)+Ĉ(q,q̇)q̇−
˙̂
M(q)q̇=ĝ(q)−ĈT(q,q̇)q̇. (5)

Equality (5) follows directly from the skew-symmetry of
˙̂
M(q)− 2Ĉ(q, q̇) [1]. The vector α(q, q̇) is defined as

α(q, q̇) :=κf τ̂f(q̇)− κextτext,EE

=κf τ̂f(q̇)− κextJ
T(q)Fext,EE .

(6)

The contact wrench Fext,EE is typically measured with a

load-compensated force/torque sensor in the robot wrist. The

resulting external joint torques τext,EE are obtained by the

well known mapping via the end-effector Jacobian J(q).
Its feedback is activated via κext ∈ {0, 1}. Note that the

components of Fext,EE that are in the kernel of JT(q) are

absorbed by the structure of the robot and are not reflected

in τext,EE.

To distinguish directly measurable joint torques originat-

ing from external wrenches at the end-effector τext,EE from

joint torques caused by external wrenches at the structure

τext,links that cannot be measured by the wrist sensor, we

define the total external torque vector τext to be

τext := τext,EE + τext,links. (7)

The true disturbance joint torque τε for rigid joint models

consists of the joint torques from (7) plus the error term δ

in (3). As derived in [2] the observed disturbance torque,

κext

κf

γ(q, q̇)

p = M(q)q̇1
s

Ko

τ̂f

τext,EE

τm q q̇

κε

τ̂ε

−

−−

Fig. 2: Flowchart of the proposed observer structure.

also for this extended form, converges element-wise with

first order dynamics (presented in frequency domain)

τ̂ε,i =
ko,i

s+ ko,i
(τext,EE,i(1− κext) + τext,link,i + δi) (8)

where 1/ko,i is the time constant. Figure 2 depicts an

overview of the overall observer structure.

In the next section, we outline how this extended distur-

bance observer is used to compensate for model errors and

detect collisions simultaneously.

C. Compensation of Model Errors and Collision Detection

Assuming τext to have slower dynamics than

the observer (sufficiently large observer gain Ko).

One can approximate the disturbance torque as

τ̂ε ≈ (τext,EE(1− κext) + τext,link + δ). Therefore, one

obtains from equation (3)

M(q)q̈ − M̂(qd)q̈d +D(q̇ − q̇d) +K(q − qd)

= τext + δ − κε (τext,EE(1− κext) + τext,link + δ) .
(9)

The trajectory tracking performance can thus be improved

significantly by using the disturbance compensation with

κε = 1 in (2) and κext = 0 in (6), as this would eliminate

model inaccuracies δ. The obvious drawback would be the

loss of compliance w.r.t. external torques, since equation (9)

becomes

M(q)q̈−M̂(qd)q̈d +D(q̇− q̇d)+K(q− qd) = 0. (10)

Thus, the system no longer reacts to external forces in case

of precise disturbance estimates. This unwanted increase

in stiffness could be avoided for interaction with the end-

effector by exploiting wrist wrench sensing. Setting κε = 1
in (2) and κext = 1 in (6), the closed loop behavior (3)

becomes

M(q)q̈−M̂(qd)q̈d +D(q̇− q̇d)+K(q− qd)= τext,EE .
(11)

This scheme has similarities to the one proposed in [16]

and will be termed disturbance compensation (DC) with

external forces compliance (EFC) from now on. A qualitative

comparison for the different settings of κε and κext is shown

in the Table of Fig. 3.

In summary, it is possible to

1) detect end-effector contacts with the inertia compen-

sated wrench sensor,

2) detect contacts along the entire robot structure beyond

a tolerance band with the extended observer,
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κǫ = 0

κǫ = 1, κext = 0 κǫ = 1, κext = 1task
switching

collision threshold
exceeded

source of
collision
eliminated

source of
collision

eliminated

Property κε = 0 κε=1,κext=0 κε=κext=1
Increased accuracy × X X

End-effector compliance X × X

Link compliance X × ×

Closed-loop behavior (3) (10) (11)

Fig. 3: Context sensitive control and reaction scheme and comparison
between different setups of controller (2). Control mode κext = 1 is used
for tasks which need end-effector compliance, κext = 0 for tasks which
do not. When a collision is detected, the controller switches into compliant
mode (κε = 0).

3) render end-effector compliance while having stiff be-

havior for contacts along the robot structure.

The missing compliance for link collisions can still be

encountered by switching to compliance control as soon as

a link collision is detected.

Using the above observer, we implemented a simple colli-

sion detection scheme that is based on a constant disturbance

joint torque threshold ζ.

CollDet =

{

1, if τ̂ε > ζ (component wise)

0, otherwise
(12)

For (12) to work properly, one has to solve the trade-off

between robustness and convergence speed of the observer.

The first order observer dynamics in (8) with time constant

1/ko,i makes the collision detection robust against sensor

noise and peaks, as long as Ko is not chosen too large.

However, large Ko leads to faster convergence of τ̂ε to τext.

For collision reaction, in this work, we switch to gravity

compensation mode [2]:

τd =

{

ĝ(q), if CollDet = 1

τd from (2), otherwise .
(13)

Another possibility would be to implement the scheme

depicted in Fig. 3. It uses the three control modes in the

table in a context sensitive manner. For example, for grasping

objects end-effector compliance and high position accuracy

is needed, therefore κε = 1 and κext = 1 is used. For mov-

ing objects of unknown weight, end-effector compliance is

not wanted and therefore κext = 1 is used. Finally, if the

collision threshold is exceeded, the robot switches into full

compliant mode (κε = 0) to avoid damage.

Next, we outline our system identification and friction

modeling approach.

D. Rigid Body and Friction Identification

In our previous work [24] both, rigid body model and

friction were simultaneously identified as the parameter vec-

tor βI. The results still contained a relevant error regarding

model fitting and plausibility of the friction parameters

compared to single-joint experiments. Therefore, in this work

a sequential procedure was applied, where pre-identified

Coulomb and viscous friction parameters dv,p, µC,p were

included into the identification procedure in order to reduce

the parameter space from 59 to 45 unknowns1.

1) Identification Model and Approach: For identification

purposes the robot dynamics (1), including a suitable friction

model, can be written in regressor form as

τm = Φβ − τext, (14)

where the regressor matrix Φ contains distinct base and

friction parameter related columns Φ =
(

Φb Φf

)

. The

elements of the parameter vector β =
(

βb dv µc

)T
denote

the base, viscous friction and Coulomb friction parameter

vectors. The regressor matrix of the friction model can be

allocated as

Φf(q̇) =
(

diag{q̇} diag{sgn(q̇)}
)

. (15)

Assuming τext = 0 during identification procedure, the

influence of (15) can be incorporated by subtracting (15)

from both sides in (14). This leads to the friction-corrected

motor torque

τm,f = τm −Φf(q̇)(dv,µc)
T (16)

= Φβ −Φf(q̇)(dv,µc)
T = Φbβb. (17)

Identifying the numerical values of βb is done using a

Moore-Penrose pseudoinverse

β̂b =
(

FTΣ−1F
)

−1
FTΣ−1b (18)

filled with experimentally gained optimized Fourier-based

joint angle trajectories of duration tf [28]. The information

matrix F and the measurement vector b are defined as

F =











Φb (q(t1), q̇(t1), q̈(t1))
Φb (q(t2), q̇(t2), q̈(t2))

...

Φb(q(tf), q̇(tf), q̈(tf))











, b =











τm,f(t1)
τm,f(t2)

...

τm,f(tf)











,

(19)

where τm,f(ti) are friction-corrected torque measurements

using prior knowledge of friction parameters dv,p and µc,p.

The covariance matrix Σ is composed of actuator noise

variances. Torque measurements τm are determined based

on chamber pressures for the hydraulic joints and electric

currents for the electromechanic joints. Gear ratios and motor

constants are provided by the manufacturer. The joint angle

q is measured by position encoders. The resulting parameter

vector βII of the sequential method, which is used to parame-

terize (14), consists of the elements βII =
(

βb dv,p µc,p

)T
.

1The 70 dynamic parameters (10 per joint) are reduced to nb = 45 in
the minimal regressor form. Additionally, the model has 2nj = 14 friction
parameters (2 per joint) resulting in nβ = 59 parameters overall, see [24].
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Fig. 4: Viscous and Coulomb friction for the hydraulic joints of the left
arm. Each marker represents the mean value of one constant velocity single
joint experiment, see Fig. 5. Dynamics effects from Φb were removed and

calculated with dynamics parameters β̂b,I from the combined identification
approach [24] and with assumed fixed and upright upper body orientation.

q̇
4
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Fig. 5: Single joint friction experiment exemplified for joint 4 reveals
improved velocity tracking of the impedance controller compared to PD
position control with controller gains from [5], [6].

2) Single Joint Friction Identification: The identification

of joint friction parameters dv,p and µc,p is done by running

a set of different constant velocities q̇i in positive and

negative direction and measuring the resulting torque τm for

every joint. Mean velocity and torque are calculated using

intervals of constant speed. Figure 4 depicts the joint friction

characteristics for the hydraulic joints which show significant

Coulomb and viscous friction.

The identification results could be further improved by

using the impedance controller to execute the identifica-

tion trajectory, as it shows significantly improved velocity

tracking compared to an extensively tuned PD controller

implemented by the manufacturer, see Fig. 5. The identified

friction parameters are given in Table I.

3) Results of the Sequential Identification: A comparison

between the base parameter vector β̂I =
(

β̂b,I d̂v µ̂C

)T
,

where friction was identified as part of the combined least

squares optimization [24], and the base parameter vector

β̂II of the sequential method can be found in Fig. 6. Good

model consistency is indicated by low distance between

TABLE I: Mean square errors (MSE) for arm identification using different

base parameter vectors β̂I, β̂II and data from Fig. 6 and identified friction
parameters from single-joint experiments

joint MSE(τm − τI) MSE(τm − τII) µ̂C,p,i d̂v,p,i
[(Nm)2] [(Nm)2] [Nm] [Nms/rad]

1 (shz) 97.04 13.03 2.0 1.3
2 (shx) 52.64 20.78 6.7 0.9
3 (ely) 22.58 16.62 10.3 1.6
4 (elx) 25.22 18.66 6.1 2.7

5 (wry) 2.82 6.50 0.1 0.5
6 (wrx) 8.11 3.46 0.1 0.2

7 (wry2) 0.26 18.28 3.1 0.2

τ
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τ
4
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m
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Fig. 6: Measured (τm) and simulated torques of the left arm joints
comparing the sequential method τII with the combined method τI.

model and measurement. To avoid the problem of overfitting,

the trajectory of this experiment was different from the one

used for identification. When using the parameter vector

β̂II, significantly improved results could be achieved in the

hydraulic joints, indicated by the lower mean square error

between measured and modeled torques in Table I.

As already mentioned in [24], the electromechanic wrist

joints (wry, wrx, wry2) do not seem to be identifiable

for the Atlas system without working joint torque sensors.

Although friction was identified in single axis experiments,

the predicted torques have essentially no correlation with the

measured torques. Presumably, this is due to the current-

based torque measurement on actuator side, which decreases

the quality of the measured information significantly.

In the next section, the results for the experimental

collision handling performance with the Atlas system are

outlined.

III. COLLISION DETECTION

In the following experiments (Sec. III-A and III-B), we

used the collision handling (12) and (13) to detect collisions
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(a) Enabled (“Coll.Det” in Fig. 8) (b) Disabled (“Stiff” in Fig. 8)

Fig. 7: Result after the end-effector collision with and without detection and
reaction (snapshot at t ≈ 1.5 s of Fig. 8)
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Fig. 8: Absolute external force |fext,EE|, observed disturbance torque τ̂ε,1
and joint position q1 are depicted for the cinderblock collision experiment
(see also Fig. 7). For the “Stiff” and “Coll.Det” mode, ki = 300 Nm/rad
and for the “Compliant” mode ki = 100 Nm/rad were chosen.

with the Atlas robot with a disturbance joint torque threshold

ζ of 11 Nm for each joint. A lower threshold frequently leads

to false alarms due to remaining modeling errors (see Fig. 6)

and the large friction effects (see Fig. 4). Our model is not

able to reliably remove the static friction torque from the

observer (κf = 1 in (6)) due to the indeterminate friction

state for low velocities [22]. The friction compensation in

(2) currently leads to unwanted oscillations indicating closed-

loop stability problems originating in the velocity feedback,

as described in [6]. Therefore, this feature is disabled in the

experiments with κf = 0. However, it is possible to reliably

detect soft collisions at moderate velocity (100 mm/s) in ade-

quate time with the Atlas system. For the collision detection

and reaction experiments, the disturbance compensation in

(2) was disabled (κε = 0). The first joint was selected for

evaluation of the experiments, since the collision is detected

at this joint first. The other axes show qualitatively the same

behavior.

A. End-effector Collision

The first experiment lets the end-effector collide with a

styrofoam-protected cinderblock, see Fig. 7. The protection

aimed to protect the robot from damage and has no major in-

fluence on the collision detection. The measured data during

the three runs with different settings is depicted in Fig. 8.

Using a rather stiff joint impedance controller with joint-

wise ki = 300 Nm/rad (“Stiff”) and deactivated collision

handling leads to pushing the cinderblock away and tipping

it over till reaching the final goal position, see Fig. 7 (b)

q4

q6

q3

q1

q2

q5

q7

Fig. 9: Scene during the collision from Fig. 10 at t ≈ 5.5 s.
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Fig. 10: Joint position q1, model torque τmdl,1, estimated disturbance torque
τ̂ε,1 and motor-side joint torque τm,1 during link collision, see Fig. 9.

and Fig. 8. Reducing the joint stiffness to ki = 100 Nm/rad

(“Compliant”) leads to smaller resulting quasi-static contact

forces, while the positioning error increases, see Fig. 8.

Using the collision detection and reaction (“Col. Det.”),

the arm drifts away after the collision has been detected and

the contact force decays to zero, see Fig. 7 (a) and Fig. 8.

The collision in Fig. 8 is detected at t = 1.1 s, when the

disturbance torque line crosses the detection threshold ζ. At

this point in time, the maximum contact force of about 69 N

is already reached, which is caused by the relatively slow

dynamics of the observer (ko,i = 5 s−1). A larger gain would

allow an earlier detection with less reaction force. Using

retract reflexes would allow further reduction of contact

forces. In turn, larger observer gain causes vibrations when

being used as disturbance compensation. To overcome this

issue, two observers could be used in parallel: a slower one

for compensation and a faster one for collision detection.

B. Link Collision

The second experiment shows that collisions at the prox-

imal links and not only at the end-effector are detected as

well. The arm was pushed at the elbow with a cardboard

stick against the moving direction during a joint trajectory,

see Fig. 9 (in the depicted situation, the elbow was moving

to the right). The movement speed was ≈ 50 mm/s at the

collision location. Figure 10 depicts the measurement data.

The collision at link 4 starts at t ≈ 5.5 s, which one can

see from the high motor torque in joint 1. The detection

threshold is reached at t ≈ 5.6 s, leading to the halt in

gravity compensation mode.
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Fig. 11: Position error ∆x and measured Cartesian external force fx are
compared for two experiments with enabled (κε = 1) and disabled (κε = 0)
disturbance compensation. The end-effector was pushed manually and held
at a certain displacement.
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Fig. 12: Simulation results: An external force step of 50 N is applied normal
to the end-effector at t = 0.5 s and released at t = 3.5 s. Joint position
q1, external joint torque τext,1, and observed disturbance torque τ̂ε,1 are
plotted for disabled disturbance compensation DC (κε = 0), DC without
EFC (κext = 0) and DC with EFC (κext = 1).

C. Compliance Loss Compensation

1) Loss of Compliance with Disturbance Compensation:

The increased stiffness of the system, when using the

disturbance compensation (κε = 1) was experimentally

verified. For this, the robot end-effector was pushed with

and without activated disturbance compensation, see Fig. 11.

With enabled disturbance compensation the applied force

was about 93% larger than without disturbance compensation

(Fig. 11 a) while the arm was only pushed back 67% in

position (Fig. 11 b). This increased stiffness of about 187%

is limited by the cutoff value for the estimated disturbance

torque of 30 Nm for safety reasons, as the observer was tuned

to be near the (unknown) stability limit to ensure the fastest

possible convergence. However, with Ko as chosen above,

instabilities could not be observed during the experiments.

2) Regaining Compliance with Force/Torque Sensing:

Since the wrist wrench sensor of the real system was not

yet fully operational, the ability to eliminate external forces

from the disturbance observer via (11) was validated in

simulation. The continuous time forward dynamics derived

from (1) of the arm was implemented with viscous and

Coulomb friction and parameters from Table I. The observer

gain was chosen to be uniformly ko,i = 10 s−1, stiffness

ki = 150 Nm/rad and modal damping dξ,i = 0.3. The

Controller (2) was implemented with model errors and sensor

noise δ. The model errors were generated with uniformly dis-
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Fig. 13: Simulation results: The experiment of Fig. 12 was done multiple
times with different model errors. The normalized mean squared integrated
error is plotted over the maximum parameter noise level. The results for
κext = 0 and κext = 1 are shown in the top and the bottom plot
respectively.
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Fig. 14: Simulation results: The experiment from Fig. 12 was done multiple
times with different measurement errors. The normalized mean squared error
is depicted over the scaling factor applied to all measurement noise levels
from the simulation of Fig. 12.

tributed pseudo random numbers between ±10% as a scaling

factor to all masses, inertias, center of mass coordinates and

friction coefficients. The sensor noise was (component-wise)

uniformly distributed between ±3.4 · 10−4 rad for joint po-

sition, ±5.5 · 10−2 rad/s for velocity, ±2 · 10−4 m/s2 for

the gravity vector, ±7.3 · 10−2 Nm for the joint torque and

±2.3 N for the external forces, respectively. These values

were obtained from the measurement data of the hydraulic

joints during the starting phase of the experiment in Fig. 11.

For this setup, a step change of the external force acting

on the end-effector was performed with different observer

settings. The results are shown in Fig. 12. For κε = 0, i.e.

applying no disturbance compensation, compliant behavior is

achieved. Using the disturbance compensation without EFC

(κext = 0) leads to a very stiff response according to (10),

with τ̂ε,1 converging to τext,1. When selecting κext = 1,

the observer torque remains near zero, as it only observes

the model errors. In addition, the compliance is the same as

without disturbance compensation, i.e. as expected from (11).

Therefore, the simulation results imply, that this approach

allows to compensate for model errors, while correctly

reacting compliant to end-effector contacts at the same time.

3) Robustness of Disturbance Compensation with EFC

against Model Errors: Further simulations (as in Fig. 12)
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were performed to investigate the robustness of the above

method. First, the influence of model errors is investigated.

The model errors were introduced by scaling the masses, the

center of gravity positions of the links, the link inertias and

the friction parameters by uniformly distributed random fac-

tors. The normalized mean squared integrated error (MSIE)

MSIE =
1

njTf

nj
∑

i=1

∫ Tf

0

(

qi(t)− qrefi (t)
)2

dt (20)

is depicted over the maximum noise factor for limits from 1%

to 30% in Fig. 13 for the controller with and without EFC.

The norm ‖MSIE‖ = MSIE/max(MSIE) is calculated for

Fig. 13 and Fig. 14 separately. The compliant behavior of

the controller without disturbance compensation and without

model errors or measurement noise was selected as reference

qref . In order to gain comparable results, the model errors

were the same in both plots. It can be seen that the influence

of the model errors is similar for both cases and the results

with EFC remain close to the reference case. The order

of magnitude between the results with and without EFC

stays the same for all model error levels. Even with an

identification error of up to 30%, the controller can cope with

the resulting model errors for this quasi-static movement.

4) Robustness of Disturbance Compensation with EFC

against Sensor Noise: Figure 14 depicts the influence of

measurement noise on controller performance. The measure-

ment noise levels from above were scaled by factors of 1

to 30 and the MSIE is compared for the controller with

(κext = 1) and without EFC (κext = 0). It can be seen

that for noise levels amplified up to 10 times, the deviation

from the reference behavior does not change noticeably in

either case, i.e. the compliance rendering of the controller

remains the same despite increased noise.

For larger measurement noise the deviation from the

desired behavior becomes smaller for κext = 0 since the lim-

itation of the observer output prevents the compensation of

external forces for high measurement noise. This effect even

leads to a behavior closer to the desired one with κext = 0
instead of κext = 1 for very high measurement noise (at

least 25 times as high as observed in the experiments). In

term, Fig. 14 implies that the controller is able to cope with

measurement noise about 10 times higher than found in our

experimental setup. To cope with larger measurement noise,

one would have to use filtering or increase the output limit

of the observer.

IV. CONCLUSION

In this paper we designed and implemented a two-step

identification method and an adapted generalized momentum

observer for articulated robots. We applied both methods to

the arms of the humanoid robot Atlas. The two-step identifi-

cation significantly improves the identification results in the

presence of high friction in the examined scenario compared

to our previous work. The adapted observer enables precise

and compliant manipulation. In addition, friction models can

be incorporated to further improve the observer performance.

The proposed solution is able to detect collisions along the

entire robot structure. Overall, this provides key features to

safely operate in unknown environments and is a first step

towards the safe cooperation of (partly) hydraulically driven

humanoids with humans.
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[25] L. Le Tien, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Friction
observer and compensation for control of robots with joint torque
measurement,” in IROS, 2008.

[26] A. De Luca and R. Mattone, “Actuator failure detection and isolation
using generalized momenta,” in ICRA, 2003.

[27] A. De Luca and R. Mattone, “An adapt-and-detect actuator FDI
scheme for robot manipulators,” in ICRA, 2004.

[28] K.-J. Park, “Fourier-based optimal excitation trajectories for the dy-
namic identification of robots,” Robotica, 2006.

This is the author's version of an article that has been published in the IROS 2016 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/iros.2016.7759517

Copyright (c) 2016 IEEE. Personal use is permitted.
For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


