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Self-localization from Images with Small Overlap

Tanaka Kaniji

Abstract— With the recent success of visual features from
deep convolutional neural networks (DCNN) in visual robot &If-
localization, it has become important and practical to addess
more general self-localization scenarios. In this paper, &
address the scenario of self-localization from images witemall
overlap. We explicitly introduce a localization difficulty index
as a decreasing function of view overlap between query and
relevant database images and investigate performance vers
difficulty for challenging cross-view self-localization asks. We
then reformulate the self-localization as a scalable bagfo
visual-features (BoVF) scene retrieval and present an effient
solution called PCA-NBNN, aiming to facilitate fast and yet
discriminative correspondence between partially overlaping
images. The proposed approach adopts recent findings in
discriminativity preserving encoding of DCNN features ushg
principal component analysis (PCA) and cross-domain scene
matching using naive Bayes nearest neighbor distance metri
(NBNN). We experimentally demonstrate that the proposed
PCA-NBNN framework frequently achieves comparable resuls
to previous DCNN features and that the BoVF model is
significantly more efficient. We further address an importart
alternative scenario of “self-localization from images wih NO
overlap” and report the result.

I. INTRODUCTION

With the recent success of visual features from dee
convolutional neural networks (DCNN) in visual robot self-
localization, it has become important and practical to agsr
more general self-localization scenarios. Self-locgilira
aims to use a robot's visual image as a query input ar
to search over a database of pre-mapped images to loc
a relevant database image that is viewed from the neare¢g..
neighbor viewpoint to the query image’s viewpoint. Recgntl
it has been found that the intermediate responses of '
DCNN can be viewed as a discriminative feature for imag i
matching. In [1], the DCNN descriptor is exploited for the
image retrieval task where DCNN descriptors are translate

to short vectors by PCA dimension reduction. In [2], DCNN mnk; 80% - 100% (hard)
descriptors are applied to visual robot self-localizatiasks
and produce impressive results. Fig. 1. Self-localization with different levels of locadition difficulty index

: 3 A1~ DI). The LDI of a self-localization task is a decreasingiétion of view
In this paper, we address the prOblem of self-localizatio erlap between the query and relevant database imagerpakperiments,

from images with small view overlap. This is a chal-we employ SIFT matching with VFC verification (colored linegsnents)
lenging scenario with important applications includindf-se to evaluate the amount of view overlap. All the pairs in theadet are

At ; ; _ . evaluated and sorted according in ascending order of LOikRathe sorted
localization using far features [3]’ ObJeCt co-segmentall list (normalized by the list's length) [%] can be viewed asradiction of

[4], sparse feature maps [5], and the lost robot problemiatve difficulty of the corresponding self-localizatidask. Displayed in
[6], To date, the majority of the existing work on self- figures are samples from self-localization tasks with fatfecent levels of

localization, including those with DCNN features, rely on@"ks [
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problem is largely unsolved.

To address the above issue, we explicitly introduce a
localization difficulty index as a decreasing function oéwi
overlap between the query and relevant database image
(Fig.[D), and investigate the performance versus difficulty of
challenging cross-view self-localization tasks. We azitel
a dataset of view images with ground truth viewpoints, and
evaluated amount of view overlap for each relevant image
pair by employing techniques of common visual pattern
discovery [7]. We experimentally determined that DCNN
features fail in the case of small overlap owing to a large
number of Ol_mler feat_ures and OCC|USanS. We further jﬂmreFig. 2. Experimental environments. Red, yellow, and gréees! viewpoint
the challenging and important scenario of “self-locai@at paths on which dataset #1, #2, and #3 were collected.
from images with NO overlap” and report the result.

We then reformulate the self-localization as a scalablﬁz]' [15], [16]. [12] introduces a robust VPR framework
bag-of-visual-features (BoVF) scene retrieval [8] andspre  cajled SeqSLAM for cross-season navigation tasks sefhrate
an efficient solution called PCA-NBNN, aiming to facilitate py months or years and opposite seasons. More recently, in
fast, yet discriminative correspondence between partialf2) the authors demonstrated that DCNN features outper-
overlapping images. The basic idea is to encode local paksrm the majority of the existing global features in typical
level DCNN features of a scene image into a BoVF documeRipR tasks.
model and then apply an effective document retrieval tech- |, s study, the proposed approach is built on some of our
nique for efficient indexing and search. Our encoding Modelreyious techniques including compact binary landmarks of
gdopts recent findings in dlscr|m|n§1t|\{|ty preserving efco deep network in ICRA10 [17], compact projection in IROS11
ing of DCNN features. [1] whe_re pr|nc_|pal component a”a|118], NBNN scene descriptor in IROS15 [9], and bag-of-
ysis (PCA) compression provides efficient short codes thahts in ICRA15 [10]. However, the current study focuses
provide state-of-the-art accuracy on a number of recagmiti 5, the yse of DCNN features in visual robot localization.
tasks. We also adopt a naive Bayes nearest neighbor distancg,cn features have received considerable attention in
metric (NBNN), inspired by our previous IROS15 paper, thaje past years. However, effective use of DCNN descriptors
has proven to be effective in an alternative application gf, the context of robot localization has not thus far been
cross-domain scene maiching based on SIFT features [dficiently explored and a main topic of on-going research
In experiments, we confirm that the proposed_frameworg]_ In particular, the issue of view overlap as localizatio
frequently achieves comparable results_ to previous DCN ifficulty index and the use of the PCA-NBNN model to
features even though the BoVF model is significantly morgqqress partially overlapping views have not been addiesse
efficient. in existing studies.

A. Relation to Other Work I

The main contribution of this paper is in investigating
the use of DCNN features in challenging cross-view self-
localization scenarios and presenting an efficient re¢imgni  For clarity of presentation, we first describe the experimen
approach based on a BoVF scene model. The BoVF subs)ﬁgl system by which a dataset is collected in our university
tem employed ifllI=A] is inspired by a bag-of-parts model campus (Figl?) and used as a benchmark for performance
in the authors’ previous ICRA15 paper [10]. comparison in the experimental section. Although our appli

Scene descriptors for visual place recognition (VPR) prot£ation scenario is single-view self-localization, we eayeld
lems have been studied extensively. Local feature appesact® stereo SLAM system with visual odometry to collect a
such as BoVF scene descriptors have been widely stuget of view images with ground-truth viewpoint information
ied from various aspects [11] including confusing featurefur stereo SLAM system is built on a Bumblebee stereo
quantization errors, query expansion, database augriwntat vVision camera system and visual odometry [19] and follows
vocabulary tree, and global spatial geometric verificatisn the standard formulation of pose graph SLAM [20]. We used
post-processing. As suggested by previous studies [12] aifdages with size 64@ 480 [pixels] from the left eye view
also by our ICRA15 paper [13], existing BoVF models aredf the stereo camera as the image dataset.
not sufficiently discriminative and frequently fail to caps
the appearance changes across domains.

Global feature approaches such as the GIST feature de-We conduct a series MF = 1,800 self-localization tasks
scriptor [14] (where a scene is represented by a single blobzsing a set oNE independent subsets of the dataset. For
feature vector) are compact and have high matching speeégch task, we sample one imafé as a query input, one
In the robot vision community, global feature approacheignage IR as a relevant image, and a sig® — 1 image
have been widely used in the context of cross-domain VPBbllection (N® = 100) as destructor imagéi;D}i’\‘:Dl*1 so that

. PROBLEM
. Dataset

B. Localization Performance Index
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Fig. 3. Sample configurations of viewpoints for differentdks of localization difficulties.

its viewing angle is different from the query image’s viegin prediction is based on threlative LDI value. More formally,
angle byT? or its viewing area/ (p®) does not overlap with we sort all theNE self-localization tasks in ascending order
the query image’s viewing aré&(p), wherep® andp® are of LDI and then compare the difficulty of different self-
the ground-truth viewpoints of the destructor and the querpcalization tasks by using its rank within the sorted list
images. In this case, the viewing area is empirically definedormalized by the list's length [%]. To create a dataset,
as an isosceles-triangular region with an apex angle of 40e sample pairs of query and its relevant database images
deg and the length of a leg as 50 m. from a range of normalized rarfkank™", rank™®9, in which

Localization performance is measured by its recognitiothe parametersank™"% - rank™%, control the relative
rate. Given a query image, its retrieval result is in the forndifficulty of the dataset. In practice, we observed that this
of a ranked list of database images (with lenty}). Then, prediction method performed effectively. Fi displays
the recognition ratg is defined over a set of self-localization samples of viewpoints used in the experiment for three
tasks, as the ratip of tasks whose relevant database imagedistinct cases corresponding to three different levelsoF. L
are correctly included in the top (x < NP) ranked images.

1. METHODS

S - ) ) The proposed PCA-NBNN approach consists of three
The core of the localization difficulty index (LDI) is the gjstinct steps: (1) modeling, (2) encoding and (3) retfieva

evaluation of the view overlap between the relevant pags scenes, each of which is detailed in the following subsec-
of query and database images. Intuitively, the amount gfyns.

view overlap can be evaluated by counting the number of
local features matched between the relevant pair. In this. Modeling by Bag-of-Scene-Parts
study, we tested three different strategies for local f®atu scene modeling is an important first step in visual robot
matching: SIFT matching without any post verification [21] self-localization. The objective of scene modeling is to
SIFT matching with geometric verification by RANSAC conyert a robot's view image to an invariant scene desatipto
[22], and using vector field consensus (VFC) [7]. We deghich allows a robot to search over an environment map or
termined that VFC stably produces acceptable results.-SIFJ collection of pre-mapped view images to identify similar
matching frequently produces many false positives and {gews. The main problem we faced was how to describe
not effective to identify image pairs with small overlap.; scene discriminatively and compactly, both of which
RANSAC geometl’ic Vel’ification iS eﬁective Only When thereare necessary to manage the geometric/photometric VieW
are many structured objects such as buildings and dogganges and the significant amount of visual information.
perform well in general cases. Conversely, VFC is stablgne proposed approach is inspired by the fact that even
and able to produce many true matches; it performs well InCNN features frequently fail to capture the local parts of a
both structured and unstructured scenes. Based on thi§ resgcene, as we will see in the experimental discussion, Sectio
we elected to implement VFC as the method for eVaantirM Typ|ca||y’ it is weak against |arge view Changes and
view overlap in the following experiments. frequently produces poor results in visual robot locaiorat
Localization difficulty indexD(19“*Y) is now defined as Hence, we adopt a kind of bag-of-parts scene model [23],
a decreasing function of view overld(-, -) between query where each query/database image is described by an un-

C. Localization Difficulty Index

imagel9“*Y and its relevant imagé®c/an: ordered collection of part-level features, to facilitatstf yet
D(19ue) — 1/ {OUquery ”elevantﬂ @ discriminative correspondence between partially oveitagp
’ ' images.

Predicting localization difficulty from such an image based A key design issue is how to discover useful parts in
cue is an ill-posed problem; it is impossible to design @ scene. This is different from the problem of object seg-
perfect prediction method. Rather, our strategy for difficu mentation, i.e., segmenting an image into meaningful parts
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Fig. 4. Compact binary landmarks. a, b, c, and d: 4 differeah®les of a query image (top) being explained by one imagel-feature and 20 part-level
features (bottom). Each scene part is further encoded tBéitdinary code, which is visualized by a barcode.

such as objects, which is a core problem in the field dbag-of-parts representation, presented above, is aveliati
computer vision [24]. Rather, our goal is to realize comsist compact and discriminative scene descriptor. However, it
segmentation for similar view images, allowing a robot tas a high dimensional description and does not directly
obtain similar parts for similar scenes (i.e., relevantnsce realize high-speed scene retrieval. To address this isgele,
pair). In general, any part-segmentation technique such adopt the nearest neighbor approach [9] where each local
clusters of superpixels described in our ICRA15 paper [10fgature is explained by its nearest neighbor (NN) library
can be adopted. In the current study, we borrow techniquésatures. Because the original local feature can be coiypact
from the unsupervised object detector [25], which quarstifierepresented by the IDs of NN library features, efficient data
how likely it is for an image window to contain an object ofstructures such as inverted files can realize compact indexi
any class. We first extract the set of 100 bounding boxes witind fast retrieval.

the highest objectness score and then rerank these aagordinone of the most popular instances of the NN approach
to the area of the bounding box and select the 8P 1) s the bag-of-words (BoW) [8], a well-established techeiqu
ranked parts. In total, we obtain a si¥€ = 21 set of DCNN  for image retrieval. Its key component is offline dictionary
features consisting of one image-level feature and 20 paftarning. That is, offline, a set of visual features are exéa
level features. from training images and then a dictionary of exemplar
visual features are learned by unsupervised learning algo-
rithms such as k-means clustering. Once such a dictionary
We then encode the scene parts to a bag-of-parts repi@-learned, a given image is translated to an unordered
sentation [23]. First, we extract a 4,096 dimensional DCNNollection of NN library features, each of which is compgctl
feature from a region that corresponds to the boundingpresented by the ID of the NN library feature, which
box of each scene part. Although a DCNN is composel$ termed visual word. This pre-learning of the dictionary
of a number of layers, in each of which responses fror$ effective to achieve fast retrieval. Conversely, a known
the previous layer are convoluted and activated by a difimitation of the Bow model is its vector quantization effec
ferentiable function, we use the sixth layer of DCNN, agvhich significantly reduces the descriptive power of the Bow
it has proven to produce effective features with excellerftescriptor.
descriptive power in previous studies [26]. Then, we penfor We address the above issue by an experience-based fine
PCA compression to obtain 128 dimensional features. Owpcabulary. As a key difference from the BoW approach, we
strategy is supported by the recent findings in [1] where PCAirectly employ a library of available visual features,.,i.e
compression provides excellent short codes with 512, 2560t the vector quantized version, termed visual experience
and 128 short vectors that provide state-of-the-art acyuraThis strategy is motivated by the fact that an enormous
on a number of recognition tasks. In our experiments, we usgnount of visual experience is readily available, such as a
DCNN features from the database to train the PCA modetsllection of visual images acquired in the robot’s pregiou
for different settings of the output dimension, 512, 256] annavigation or shared by colleague robots, as well as images
128. crawled from the web. Because the proposed approach does
Another key design issue is an efficient scene retrieval. Thet rely on vector quantized visual features, databasarfest

B. Encoding by Experience-based Vocabulary
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Fig. 5. Effect of asymmetric distance computation (ADC)eTiigures Overlap in terms of number of VFC matches, which is a deongafsinction
compare the two different encoding schemes, BoW (top) an@ Aibttom), ~ Of localization difficulty index.
using a toy example of a 2D feature spacg, in the case of the fine

library. In the figures, query/database images are locate@l/z= —2, local .
features extracted from query/database images are lozatet/z — —1, ~Observed that the SDC strategy performed poorly in the case

and library features (green dots) including NN library tees (colored of our enormous and unorganized visual experience-based

small boxes) are locater= 0. Previous BoW systems (top), which encode; ; ; ;
both query and database features, frequently fail to iffeaimmon library I|brary owing to near duPhcate and useless “brary feature

features between query and database images in the case fifetibrary. 1N faFt, there is virtually no probability that a query im?-ge
Conversely, ADC, which encodes only database featuresjuesy features, and its relevant database image have the same NN library

is stable to identify NN library features of individual datse features by features in common (Fidﬂ tOp) Hence. we encode onIy
an online search over the space of library features @.e.0). e !
P Y @e0) database features and we directly match a query feature and
each database image’s NN library features (Bigpottom).

are expected t0 be approximated by many more similar ADC is more accurate than SDC and employed in some
NN library features. For example, in [10], we explore%

. S revious systems in different contexts [27]. In our view,
an approach for common landmark discovery aiming

: . . DC functions even when there are many near duplicate
unsupervised discovery of part-level library featurest tha}ibrary features, which is the case of our fine library. As
effectively explain a given input image. In this study, we '

| ol ¢ neiahbor-based dist i another advantage, ADC allows an incremental update (e.g.,
%mptf]zy a |§k)lmp ef netaresthn?lg or-t as? Istance dme M¢ §etionsinsertion of features) of the database and tharlb
Ier?uer a library teature that approximates a given awhich is an important property from the viewpoint of incre-

) . . mental mapping and localization [20].
We define place class as a collection of NN library features However, ADC is computationally more demanding as it

that approximates a given database image. To evaluate %%uires many-to-many comparisons between the query and
dissimilarity between a query and a place class (i.e., da@b

. . ) database images. To address this issue, we employ a compact
image), we propose to employ the image-to-class distan

. BUARE . ihary encoding of images and fast bit-count operation that
This strategy I msplreq by our previous IROS15 paper [9 nables fast image comparison (F#). Query and library
where image-to-class distance was successfully appliad to

it " 0 of d in localizati HeTS features are encoded iy bit binary codes using the com-
alternative scenario of cross-domain localization usitfg pact projection technique borrowed from [26] and [18] and

features. Letl and C denote a given query image and acompared by Hamming distance. Another limitation of the

gleic(i, Eizls fgg;jr::tgb?fs}? I(Enig{e;)/,}? O’[reﬁriern:}per-etz?at:sds IO3rigina| NBNN distance metric is that it must pre-define a set
distance is defined by: ' ' 9 of_place classe_s. To a_ddress thisz as me_ntion_ed, our dgorit
: mines the available visual experience (i.e., library) tcate
f(1,C) = Z min|f — f’|§, 2) similar NP NN library features that effectively explain the
a f'eC database feature, in the same spirit as in our previous IROS1
paper [28], and then use the set of mii¢@ilibrary features

C. Retrieval by Asymmetric Distance Computation as the place class that corresponds to the database image.

The proposed scene retrieval strategy is an instance bfien, we compute the image-to-class distance between the
asymmetric distance computation (ADC), which only enduery image to each place class @.(
codes the local features of the database; not the query local
feature (FigB). This is in contrast to symmetric distance
computation (SDC) employed by typical Bow systems, We evaluated the performance over three independent
which encodes both query and database features. We halatasets that were collected from different routes and view

IV. EXPERIMENTS



#1 overlap: 27. - #2 overlap: 26.0

#4 overlap: 19.0 rank: 93 #5 overlap: 18.0 rank: 45 #6 overlap: 17.0 rank: 11

#10 overlap: 8.0 rank: 27 #11 overlap: 7.0 rank: 38 #12 overlap: 0.0 rank: 21

#9 overlap: 9.0 rank: 12

#7 overlap: 16.0 rank: 8

Fig. 7. Samples of self-localization tasks. Displayed imrfgg are samples of self-localization tasks (using “bodve§orithm). We uniformly sampled
them from the experiments. For each sample, its query imk§® &nd the relevant database image (right) are displayi the view overlap score
(“overlap”) as well as the localization performance (“rgnidere, “rank” is the rank assigned to the ground-truthatlase relevant image, within a ranked
list output by the recognition algorithm. From top to bottoleft to right, these samples are displayed in descendidgroof view overlap (i.e., from
easiest to hardest).

points. The datasets used in these experiments consistedl “pcal28” descriptor is further compressed by com-
of collections of view images captured around a universitpact projection to 20-bit, 16-bit and 12-bit code (“bin20”,
campus, using the vision system describedliAl Fig.[2 “bin16”, and “bin12"). For the sake of reproducibility, we
presents an overhead view of our experimental environmesitmply use the full libraries with size?9, 216 and 22
and viewpoint paths. For each viewpoint path, we acquireespectively for the 20-bit, 16-bit and 12-bit codes. Part-
a collection of dense view images. Occlusion is severe ilevel DCNN features (“bodw20”, “bodw16”, and “bodw12")
all the scenes and people and vehicles are dynamic entitee different from “bin20”, “bin16”, “bin12” only in that
occupying the scenes. Moreover, viewpoints are close tio eathey are originated from not only the image-level DCNN
other, which produces many near-duplicate database imadeature but also from part-level DCNN features, as desdribe
and makes self-localization more difficult. in MM=A1 Further, we also implemented an alternative part-
We investigated self-localization performance versus dif€vel feature, termed “bodf”, which is only different fromnet
ficulty, based on the performance difficulty index introddice @bove “bodw20/16/12" in that the 128-dim PCA compressed
in [IEC] First, a number of samples of sets of query, relepart-level DCNN feature was used without binarization. We
vant database image, and destructor database images w¢s@ the “bodf” only for the purpose of investigating the
generated, and sorted according in ascending order of tAdantization loss caused by our compact projection. Nete th
LDI defined in [). Then, five different sets of 100 self- iN practice, the “bodf” method is not efficient and requires
localization tasks with different levels of difficulty formeh  relatively high space and time cost.
of the three viewpoint paths were sampled from rank 0%- Fig.[@ is a summary of distributions of self-localization
20%, 0%-50%, 0%-100%, 50%-100%, and 80%-100% of theerformance versus view overlap, where the self-locatinat
sorted list of self-localization tasks. Note that our ®ggtof performance is measured in terms of the normalized rank of
down-sampling the original image set to a small (i.e., sizthe relevant database image and the view overlap is measured
100) subset does not sacrifice self-localization difficidsy by VFC matches.

long as we use the recogpnition rate (definedliB) as the  Fig.[7 shows samples of query and database image pairs
performance index. with view overlap score measured by VFC, together with
In the experiments, different versions of image-leveperformance results from 12 different self-localizatiasks
and part-level DCNN features were compared. Image-leveking the proposed “bodw20” method. The case #4 has
DCNN features include the original 4,096-dim DCNN de-elatively high “overlap” value due to false positive magsh
scriptor (“dcnn”), its PCA compressed 128-dim, 256-dim anih the VFC verification, despite the fact that it is one of
512-dim descriptors (“pcal28”, “pca256”, and “pca512”)hardest self-localization tasks and in fact its self-lazglon
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Fig. 9. Localization performance on relatively hard lozafion scenarios.

performance is bad, rank = 93 %. The case #12 hastbBat the proposed “bodw” method achieved good tradeoff
“overlap” value and despite the fact, recognition algarith between efficiency and descriptive power in the challenging
performs relatively well, rank = 21 %. For several casesscenario of self-localization from images with small oegxl
such as #1 and #5, occlusion is a major source of errors inFinally, we investigated the case of “self-localizatioarfr
place recognition. Despite the difficulty, it can be saidtthamages with NO overlap”. More formally, we considered
the proposed recognition algorithm stably performs well as hardest setting where the relevant database image with
will be shown in performance results (Fid&.0). nearest neighbor viewpoint had zero overlap in terms of
Fig. B presents the results for relatively easy selfthe number of matches by VFC. Fi@NO” displays the
localization tasks. Note that for the “rank: 0% - 20%"results. It can be seen that DCNN features are better than
dataset, the proposed method “bodw20” with finé£) 1M  chance (i.e.y = x/300). There are two reasons for this: (1)
vocabulary performs relatively well despite the factitiseh VFC may fail to detect matches even when there is view
more efficient than non-binarized DCNN features. Its rankeverlap between the relevantimage pair; (2) views of releva
10% identification rate is approximately 0.9 and comparablenage pairs are frequently similar to one another owing to
to that of non-binarized DCNN features “dcnn” and highthe atmosphere effect even when there is no view overlap.
dimensional features “pca256” and “pca512”. Unfortungtel Overall, the proposed method “bodw20” is comparable to
the performance of the proposed method becomes relativélye non-binarized DCNN features, despite the fact that it is
less than the non-binarized high-dimensional DCNN featureeomputationally significantly more efficient.
for self-localization with medium level difficulty, as inchted

in “rank: 0% - 50%” and “rank: 0% - 100%". This indicates V. CONCLUSIONS
relative robustness of non-binarized DCNN feature in self- In this paper, we addressed the problem of self-localimatio
localization with a medium level of difficulty. from images with small overlap. We explicitly introduced

Fig. presents the results for relatively hard self-a localization difficulty index as a decreasing function of
localization tasks. It can be seen that the proposed methe@w overlap between query and relevant database images
“bodw20” again produces comparable results to 4,096-dimnd investigated performance versus difficulty for chajlen
DCNN features. Its top-10% identification rate is compagabling cross-view self-localization tasks. We then presented
to that of non-compressed or PCA-compressed versioasnovel approach to bag-of-visual-features scene retrieva
of DCNN features “dcnn”, “pcal28”, “pca256”, “pcab512”, called PCA-NBNN to facilitate fast, yet discriminative eor
and “bodf”. This is because the fact that in the relativelyespondence between partially overlapping images. In ex-
hard self-localization scenarios, the performance of DCNeriments, we investigated localization performance u&rs
features drop drastically, because the query scene appedifficulty and confirmed that the proposed method frequently
quite different from the relevant database scene. It camioe s yielded comparable performance with non-binarized high-



dimensional DCNN features. We further addressed an altgp4] M. Pandey and S. Lazebnik, “Scene recognition and weaklgrsiged
native important scenario of “self-localization from ingsg

with NO overlap”, where the highly compressed PCA—NBNN[25]
feature is comparable to the previous high-dimensional

DCNN features.
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