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Real-Time Mesh-based Scene Estimation for Aerial Inspection

Lucas Teixeira and Margarita Chli
Vision for Robotics Lab, ETH Zurich, Switzerland

Abstract— With society and industry pushing for robot-
assisted systems to automate cumbersome tasks, such as inspec-
tion and maintenance, a vast amount of research effort has been
dedicated to relevant technologies. Right at the forefront are
small Unmanned Aerial Vehicles (UAVs) equipped with onboard
cameras, recently demonstrating that vision-based autonomous
flights without reliance on GPS are possible, sparking great
interest in a plethora of areas. Current solutions, however, still
lack in portability and generality struggling to perform outside
the controlled laboratory environment, with onboard robotic
perception constituting the biggest impediment.

Driven by the need for real-time denser scene estimation, in
this work we present a dramatically low-computation approach
enabling estimation of the immediate surroundings of a UAV
using the inertial and visual cues from a single onboard camera.
Instead of following the recent trend towards dense scene
reconstruction, we trade detail of reconstruction for efficiency of
estimation, albeit without compromising accuracy. We present
results against scene ground truth obtained by a millimetre-
precise laser scanner which we make publicly available together
with our code. The ETHZ CAB Building dataset contains
the ground-truth and visual-inertial data captured from both
handheld and flying setups.

CODE AND DATASET

The video, dataset and code related to this work
are available at: http://www.v4rl.ethz.ch/
research/datasets-code.html

I. INTRODUCTION

Dense scene estimation from vision-based cues is a highly
active research area at present, with new sensors and al-
gorithms emerging continuously. Promising unprecedented
perception of the environment, such techniques offer exciting
prospects to robotic navigation and subsequently, interaction
of robots with their environment. With applications ranging
from robotic scene manipulation to robot navigation and path
planning for fast moving Unmanned Aerial Vehicles (UAVs)
addressed in this work, the needs for accuracy and speed of
computation vary greatly.

Following the success of real-time monocular systems
for Simultaneous Localization And Mapping (SLAM), sub-
stantial interest was triggered in achieving 3D scene recon-
struction with a monocular camera. Early attempts to create
richer online maps resorted to meshing the sparse feature-
based SLAM map and dressing the facades of the mesh with
portions of images with similar viewpoints, such as in [1].
While the result is visually more pleasing than a sparse map,
the crudeness of these maps prohibits them from realistic use
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Fig. 1: The mesh created by the proposed algorithm in real-
time providing a dense representation of the scene as seen from
the current pose (blue point) of the UAV (visible in the inset).
Each mesh-facade is dressed according to the image with the
closest viewpoint to the facade’s normal, considering all viewpoints
experienced throughout the UAV’s trajectory (yellow line). The
laser point-cloud used as scene ground-truth is superimposed and
colour-coded by height.

in tasks such as navigation for inspection of large structures
as envisioned, for example in [2].

Addressing the need for real-time dense scene perception,
research turned towards pixel-wise depth-estimation tech-
niques, which in turn, meant processing of vast amounts
of data necessitating the use of heavy-duty processors such
as GPUs. In [3], Newcombe et al. proposed a real-time
dense reconstruction technique running PTAM [4] on the
background, while calculating a depth value for each pixel
in a reference image using Total-Variation regularisation,
obtaining dense surface models even in regions with low
image texture. An important milestone in dense scene re-
construction has been the development of KinectFusion
[5] demonstrating online scene reconstruction of impressive
quality using a Kinect camera capturing both visual and
depth information (aka RGB-D). However, it was with
DTAM [6] that the Computer Vision community has been
captivated, as it was the first to demonstrate that real-
time dense reconstruction is possible using a visible-light
camera achieving comparable quality to KinectFusion. The
flip side, however, of these works lies with the amount of
computation required, necessitating the use of power-hungry
GPUs and restricting their operation to very small spaces
and prohibiting them of employment onboard robots with
restricted computational/power capabilities, such as small
UAVs.



Circumventing the need for heavy GPU processing, Engel
et al. in [7] proposed a novel SLAM method able of real-
time dense scene estimation (i.e. denser than traditional
feature-based SLAM) on a multi-threaded CPU. Performing
depth measurements only for pixels in the current camera
frame based on an estimate of their uncertainties, they
simultaneously estimate the camera pose and propagate the
depth information from frame to frame. Also targeting lower
cost dense scene representation on a CPU, other works such
as [8], [9] have recently emerged promising various levels
of accuracy, density and computational complexity.

Motivated by the need for accurate dense scene repre-
sentations for tasks, such as visual inspection from a UAV
[2], here we propose a novel, simple approach to build
on top of the basic SLAM functionality anyway running
onboard a UAV on tasks requiring any autonomy. Via a
mesh-based representation of the environment, the proposed
method estimates the piecewise scene normals, the number
of viewpoints a part of the scene has been observed from,
as well as the distance of the camera from the scene.
Our framework achieves an unprecedented balance between
accuracy and computational complexity, especially suited to
UAV navigation for inspection, where views perpendicular
to the structure of interest are desired for effective visual
inspection and potentially denser scene reconstruction.

Working with lower quality off-the-shelf webcams,
Pradeep et al. [10] developed a 3D dense reconstruction
technique without using global optimization and instead
relying on PTAM-like SLAM running in the background.
Their method creates a dense depth map at each frame
by performing stereo matching between the current frame
and previously selected keyframe and integrates the depth
maps into a voxel-based implicit model. While the technique
eliminates the need for the computationally expensive op-
timization process of DTAM, the system still needs to be
parallelized on a GPU. Very recently, Engel et al. in [7]
proposed a novel SLAM method, which runs in real-time
on a multi-threaded CPU. Performing depth measurements
only for pixels in the current camera frame based on an
estimate of their uncertainties, they simultaneously estimate
the camera pose and propagate the depth information from
frame to frame. This results in a “semi-dense” reconstruction
of the scene, not as dense and certainly not as accurate as a
DTAM map, albeit in real-time on a CPU, bringing denser
scene representations a step closer to realistic application
onboard a robot.

Together with LSD-SLAM, the other most relevant
pipeline to the one proposed in this paper is the most
recent Densified ORB-SLAM in [8]. In contrast to LSD-
SLAM, which puts tracking in the loop of denser mapping,
in [8] as well as in the pipeline we propose here, the
camera pose estimation is left to the keyframe-based ORB-
SLAM [11]. Running on a separate thread, the densification
is performed on every keyframe and in contrast to the
proposed pipeline, [8] perform no image rectification and
use a probabilistic measure in stereo matching for depth
estimation, which together with their global optimization

results to a very accurate, albeit rather sparse final map. As
a result, despite demonstrating better accuracy than LSD-
SLAM, in the framework in [8] this comes at the cost of
both map-sparsity and quite importantly, computational time.
With local and global optimization running continuously, the
delay in acquiring a depth map of the current view prohibits
its application to tasks such as obstacle avoidance and
scene manipulation/grasping. With the focus on developing a
methodology able to perform in these scenarios, the proposed
approach, does not aim for acquiring a global map, but
rather, accurate and denser views of the camera’s vicinity,
demonstrably circumventing the lack of accuracy of LSD-
SLAM and the computational complexity and sparsity of
ORB-SLAM.

Mesh-based approaches have long been explored for
denser reconstruction. Using a stereo camera, Geiger et al.
[12] create a mesh out of salient 3D points calculated on the
stereo image pair and then use this mesh as prior for robust
stereo matching. with runtime of about 800 ms per frame.
Their method is not suitable for the hard real-time constrains
and high frame-rate requirements during UAV navigation,
while it also does not provide any pose information. The
interactive-time approach using triangulated meshes of Daf-
fry et al. [13] uses a bag of words approach to create matches
between sequential frames, which is not very robust. These
matches are then used to create a first triangulation subject
to further optimization later. Our approach uses as input the
sparse 3D point map coming from a SLAM system. Here,
we present results using the visual inertial key-frame SLAM
of[14]. This type of sparse map has high-quality and scale,
but it is still too sparse to be used for many robotic tasks,
such as path-planning for inspection. As a result, in this work
we use a SLAM map that is anyway computed for navigation,
as a basis for real-time mesh-based denser scene estimation.

II. METHODOLOGY

The proposed method extracts a dense representation of
the scene including surface normals, based on the local
neighbourhood of a sparse 3D feature map (as shown in Fig-
ure 1). As our method is coupled with a nominal keyframe-
based SLAM algorithm that provides a 3D feature map, we
use the knowledge of how the local point cloud is built in
order to speed up the generation of the scene representation.
Moreover, in order to achieve a computationally efficient
algorithm, we also propose a scheme for fast mesh smoothing
in 3D. The overall workflow of our method is as follows:

1) A keyframe-based SLAM system builds and maintains
a sparse 3D feature map of the environment.

2) A probabilistic filter eliminates the worst points in the
map, based on neighbourhood support.

3) The map points are projected onto the current image
plane.

4) 2D Delaunay triangulation is performed on the image
plane using the projected map points.

5) A 2D triangular mesh is obtained in the image plane.
6) Outlier detection is performed in 3D eliminating points

that violate our specific constraints on the 2D mesh.



7) A smoothed out triangular mesh in obtained in 3D
using all the points visible from the current viewpoint.

8) Attributes of the mesh are subject to interpolation,
before the full scene representation is generated.

It is important to note that we relax the requirement for
a complete mesh, i.e. a mesh with holes is often generated,
as in autonomous motion planning, a whole surface repre-
sentation of the scene is not a necessity. Supposing UAV
motion parallel to the ground, a naive planner assuming that
the size of the UAV corresponds to a single point, even a
1D profile of maximum depths and normals at each observed
pixel is already enough to fly around any structure of interest.
Here, a full representation of the scene in the neighbourhood
of the camera is generated, while features violating the
smoothness of the scene without enough neighbourhood
support are penalised and areas around them corresponding
to mesh facades can get eliminated. In effect, we trade a
fully complete surface in turn for a high quality estimation
of the surface normals wherever possible (i.e. in areas with
stable, reliable 3D feature estimates).

A. UAV Pose and Scene Estimation using Monocular and
Inertial Cues

The SLAM algorithm in the back-end of our algorithm is
certainly the most important enabler of the scene represen-
tation estimation proposed here. SLAM using sophisticated
laser range finders[15] promise some of the most accurate
maps of the environment, however, they are not suitable for
use onboard a small UAV due to their prohibitive weight
and power consumption. Approaches using stereo vision or
RGBD sensors are also more accurate than SLAM based
on visual cues from a single camera, because they can
allow instantaneous depth measurements of a point in the
field of view, in contrast to the need for sufficient parallax
in the monocular case. Despite this downside, monocular-
based surface estimation not only is particularly suited to
UAV navigation due to low weight, power and computation
consumption, but also it eliminates the need for accurate
extrinsic calibration in multi-camera setups, while it also not
affected by direct sunlight as is the case with RGBD sensing.
More importantly, the measurement range of a monocular
setup is far more flexible than, say, a stereo one, as the
desired baseline varies with the depth of the scene that
needs to be estimated. This is particularly evident in aerial
navigation, where the agility of UAVs is often the reason
that the platforms are selected over other robots, while it is
this agility that can vary the views of the scene of interest
greatly, posing great challenges in accurate scene estimation.
Integration of inertial cues is typical in UAV navigation [16]
in order to provide more accurate instantaneous motion prim-
itives than when using vision alone. Moreover, as Inertial
Measurement Units (IMUs) are typically available onboard
UAVs, it makes them a natural choice for use on the UAV
sensor-suite.

While the proposed approach is largely agnostic to the
SLAM algorithm used (it needs to be based on vision and
use a keyframes-approach), here we choose to work with the

monocular version of the visual-inertial SLAM implementa-
tion of [14], referred to as “OKVIS”. This method performs
local bundle adjustment over a window of keyframes close to
the current time-stamp, resulting to constantly a constantly
refined pose graph (and estimated point cloud) at the vicinity
of the current keyframe. As input to our algorithm we use
only the points in the current window that were found in the
latest keyframe and we only generate mesh at keyframes (i.e.
not on every frame). As most keyframe-based SLAM system,
OKVIS provides information about the list of keyframes,
where each feature was observed from, providing useful
information on viewpoint estimation.

As input to our dense scene representation algorithm, we
need the following from the SLAM approach used:

1) Camera intrinsics and distortion parameters.
2) The most recent camera frame and the 3D Points that

were matched in it, in world coordinates.
3) If available, the quality q associated with each such

3D Point.
4) The transformation of the latest keyframe i to the world

coordinate frame.
These serve as inputs to the mesh generation stage under

the following assumptions:
• The projection of the features in the image plane is

nearly perfect.
• The quality of each feature is inversely proportional to

the uncertainty of the distance between camera origin
and the feature in 3D, e.g. the depth value of the feature
in relation to the camera.

• The depth of any feature within SLAM is calculated via
triangulation of detections in 2 or more images.

B. Mesh Generation

Mesh Generation from point cloud is a ill-posed problem,
because the same point cloud can generate many different
solutions. This is particularly evident in typical, sparse
feature-based SLAM maps, as some features can be com-
pletely disconnected from the rest. The assumption of world
smoothness is commonly used to address this issue [3]. Other
approaches include space carving and variational approaches
[17], [18], [13]. Here, we aim for an efficient method and
we bias meshing decisions towards grouping together locally
co-planar regions.

To this end, we begin by creating 2D Delaunay Triangu-
lation using the projections of the 3D points that the SLAM
algorithm detects in the current frame. Then we apply our
first condition over the triangulation in order to remove long
edges (i.e. causing highly oblique triangles). Long edges are
penalised since they expand the local-planarity assumption
for each triangle over larger areas with little information. The
second condition is the mesh cannot occlude a feature when
observed from the two last keyframes, in which the feature
was observed. In the next section we will explain how to
apply this condition to the mesh. After the elimination of the
problematic triangles and vertices, we apply an adaptation of
the Laplacian smoothing algorithm.



Fig. 2: A manifestation of unnecessary surface deformation due to
the estimation of the convex hull during the Delaunay Triangulation
(right), despite the often concave nature of the points. Instead, here
long edges causing very oblique triangles in the mesh, such as the
red ones on the left, are removed.

Fig. 3: The problem of large spikes in the meshing procedure. Such
effects are generally associated with erroneous depth estimates of
features in the SLAM map. This mesh was generated on images
depicting a planar scene.

1) The Long-Edges Condition: There are two main cases,
where long edges in Delaunay Triangulation are problematic.
The first one is a consequence of the convex hull property;
Delaney Triangulation produces the convex hull of the 2D
points, while these point clouds often have a concave distri-
bution. This is especially problematic in concave L-shaped
corners, with the convex hull resulting to deformation of such
corners creating virtual planes on the top and bottom of the
corner as illustrated in Figure 2. In order to avoid such cases,
here, we remove all triangles, in which the biggest edge is
larger than the mean plus one standard deviation. Assuming
a Gaussian distribution, 45% of the edges are eliminated with
this step.

2) The Large Spikes Condition: Imposing this condition
aims at removing big spikes in the mesh. These spikes
are most often, a result of mismatches during the mapping
process, usually due to similar features around each other.
This problem is illustrated in Figure 3. This type of feature
estimates are present in the map because we use the most re-
cently updated map generated by the SLAM algorithm, often
containing features that were observed just twice resulting
to only one, often unreliable depth measurement. Instead of
explicitly removing these vertices from the mesh, in order

Fig. 4: An illustration of our approximation to the application of
the Laplacian smoothing. On the left is a part of a mesh, where the
local neighbourhood is not planar and the centroid of the neighbours
of the green vertex, the blue point, is not aligned with the camera
ray in direction to the origin of the camera (star). On the right is a
depiction of the assumption we make in this case.

to avoid the cost of updating the Delaunay triangulation and
all the book-keeping related with the graph, we just replace
the depth of this vertex (coming from the corresponding
feature in the SLAM map) with the average value of the
neighbouring vertices in the mesh. We detect such spikes by
comparing the distance between the 3D positions of each
vertex and the average its neighbours in the mesh. Here,
the threshold can be set either by consulting the covariance
matrix or by setting an absolute value in the case that the
3D points are in metric scale (i.e. the user can set a suitable,
stable absolute value). This procedure is strongly related to
the Radius Outlier Removal Filter – in cases, where the
facade under reconstruction is mostly planar, our approach
will give the same result as this filter.

3) Approximated Laplacian Smoothing: The Laplacian
smoothing operator is one of the most used in the field of
mesh generation, because it provides a way of measuring
the local curvature of the surface as represented in the mesh.
The naive application of this operator, however, results to
problematic cases and after discussing these cases below, we
propose an approximation to this procedure more suitable to
the nature of the vertices in this work. The main problem
with the Laplacian operator is that it can deform areas of
the mesh to convex structures. In our case, naive smoothing
with the Laplacian operator causes rounding of the cor-
ners between surfaces. For this reason, here we perform a
few smoothing iterations before obtaining the smoothed out
mesh. Formally, Laplacian smoothing operator is,

µik =
1

N

∑
r∈Ω

xir (1)

xi+1
k = (1 − α)xir + αµik , (2)

where the xi+1
k is the position of the feature k at the ith

iteration. Ω is the set with size N , of the features directly
connected with k in the mesh (neighbours). α is the damping
term.

In order to avoid the violation of the assumption that the
projection of the 3D map feature onto the current image plane
is correct, we propose the following equation that varies only
the depth of a feature without changing the projection onto



Fig. 5: A view of the scene ground truth captured with a high-
precision laser scanner from different viewpoints.

the image plane.

xi+1
k =

(
α
zµi

k
− zxi

r

zxi
r

+ 1

)
xir , (3)

where zw if the depth component of the 3D point w. The
effect of this approximation of the naive application of the
Laplacian operator is illustrated in Figure 4.

The second approximation we make here, is to take
account of the expectation of a regular grid of neighbours
around the point of smoothing within the standard Laplacian
approach, as this is not necessarily the case in the meshes
obtained in this work. The traditional workaround to this
problem is to resample the mesh to get a regular and
sufficiently dense grid out of this mesh. Instead, here we rely
on our pipeline to get a similar result more efficiently; firstly,
a non-maximum suppression is applied over the features in
the image plane, before the Delaunay Triangulation step –
generally, a vision-based SLAM algorithm performs this step
anyway internally and so there is no need to do it again. The
Delaunay Triangulation builds a mesh that tends to be locally
rather regular, since it maximizes the angles of the triangles.
Moreover, with the elimination of the long edges both in 2D
and the 3D using the large spike test, the meshing structure
gets more regular.

III. THE ETHZ CAB BUILDING DATASET

As for scene ground truth the community typically resorts
to simulated scenery and imagery [19], [20], in order to
enable thorough evaluation of our work, we captured a
dataset containing scene ground truth and real sensor data
using a small rotorcraft UAV. To the best of our knowledge,
there are no UAV datasets in real scenarios with scene ground
truth in the literature at present. Both this dataset and the
code for our mesh-based reconstruction are publicly available
on the authors website

For scene ground truth, we used a high-definition laser
scanner (Leica TS15 Total Station) offering millimetre pre-
cision, to scan the CAB Building of ETH Zurich. The
resolution of the scans corresponds to one point per 0.15o

degree intervals, from 3 different positions in front yard
of the building. A view of the scene ground truth can be
seen in Figure 5. Note that every measurement point also

holds the corresponding color data. Together with the laser
point cloud, we also provide 3 aerial sequences captured at
different distances from the building and heights (referred to
as “Aerial 1-3”). A fourth one very close from the building
(about 2m away from the facade of the building) is also
available, but recorded using a hand-held setup, due to
safety reasons (referred to as “Ground”). Each sequence was
recorded with a VI-Sensor [21] that provides monochrome,
global-shutter stereo images at 20Hz together with readings
from a hardware-synchronised, high quality IMU.

IV. RESULTS

Using the captured sequences posing different challenges
as explained above, we generated the dense scene represen-
tation of the local vicinity of the camera with the proposed
method, recording the deviation from the ground truth, as
well as the computational time on an Intel-i7 4700MQ
processor. For the mesh generation, we use the Fade2D
Delaunay Triangulation software [22]. Our implementation
was optimized in C++ avoid any expensive operations, such
as trigonometric and power operators.

A. Qualitative Assessment of the Scene Estimation

In order to visually assess the quality of the scene rep-
resentation obtained by the proposed approach, Figure 6
illustrated the obtained result on a view from the Aerial 2
sequence exhibiting interesting depth structure. As evident
in the shape of the mesh and the surface normals visible
through shading, the resulting representation, despite being
an approximation to the underlying ground truth structure,
it still follows closely the scene. Despite that the SLAM
system used [14] is probably of the highest performing
visual-inertial implementations at present, the feature points
visible at any particular instant are still subject to erroneous
estimates, especially in depth. As a result, reassessing all
the candidate mesh vertices is absolutely necessary before
a meaningful scene representation is obtained. Figure 8 is
illustrates visually the effectiveness of the proposed method
to diminish the effect of bad feature estimates, superimposing
the obtained mesh with a mesh naively using all points
visible from the current viewpoint – this is the same scene
and view used in Figure 6, while Figure 7 shows the view
from the camera with all the SLAM points being tracked.

B. Quantitative Evaluation of the normals against Scene
Ground Truth

In order to assess the quality of the scene representation
against our ground truth information on the scene, we evalu-
ate the reconstruction accuracy of the system against a mostly
planar scene. While the accuracy of the scene representation
is directly affected by the quality of the SLAM estimated
pose and points, since this varies with different SLAM
implementations, this experiment is designed to analyse the
estimation of normals by the proposed method, without the
uncertainty of the alignment between of the ground truth and
the camera. The ground truth curvature of this scene is visible
in Figure 9. In red are the points with maximum curvature,



Fig. 6: In red is the computed mesh with shading providing visual feedback on the estimated normals calculated by our algorithm. This
result, which was part of the Aerial 2 dataset obtained with α = 0.2 and 5 iteration of smoothing, follows closely the scene ground truth
shown in the background.

Fig. 7: The view from the camera superimposing the SLAM feature
points successfully tracked in this frame and used for the mesh
construction in both Figures 6 and 8.

Fig. 8: The superposition of the initial mesh naively computed on
the SLAM points visible from the current viewpoint in green, with
the final mesh obtained using the proposed pipeline in red. This
mesh is computed on the same scene as in Figure 6.

Fig. 9: The curvature of the scene extracted from the ground truth
scan of the scene. The color map corresponds to blue for 0 curvature
(i.e. planar area) up to red for maximum curvature.

No. iter. α mean std No. points
10 0.1 0.0789 0.0790 325k
5 0.2 0.12 0.129 515k
2 0.5 0.102 0.110 475k
Pure Delaunay 0.933 2.077 650k
Ground Truth 0.036 0.047 63k

TABLE I: The Mean Curvature values for different configurations
captured on an 11s-sequence as depicted in Figure 9. For compari-
son, we show the curvature values for pure Delaunay Triangulation
and the ground truth. For each case, the total number of points
participating in the estimation is shown. We use a spatial sampling
of 5 cm over the triangulation. This is why configurations with more
curvature tend to have more points. The number of points used for
the ground truth is only related with the ground truth scan of the
scene.

while blue corresponds to the minimum (i.e. planar areas).
For this evaluation, we use the Ground sequence, because of
the proximity it exhibits to the building’s facade, allowing
good views of largely planar scenes aims for this experiment.
A sub-sequence of 11s from Ground, was used for this
evaluation and the Mean Curvature value was recorded on
point in each image at every frame. This is a standard method
to analyse the smoothness of a surface and this value is direct
proportional to the estimated normal at each point. Table I
shows the Mean Curvature values for different configurations



No. iter. Ground Aerial 1 Aerial 2 Aerial 3
10 7.1 ± 3.7ms 5.7 ± 1.8ms 6.9± 2.3ms < 1ms
5 6.8 ± 1.9ms 5.0 ± 1.7ms 5.2± 1.5ms < 1ms
2 6.6 ± 1.8ms 5.3 ± 1.7ms 4.9± 1.7ms < 1ms

TABLE II: Average timings per keyframe on each sequence, using
different number of iterations in the mesh generation. Evidently,
the proposed approach is able to obtain a dense local scene
representation at dramatically low computational cost.

of our method. It is important to highlight that the column-
mean in this table is the mean of the Mean Curvature along
all points that are originating from all keyframes in this test
sequence. Evidently, the configuration with 10 iterations with
a damping factor α = 0.1 provides the best results, closely
following the ground truth.

C. Timings
As the scene representation is only computed locally,

the computational complexity of the proposed method is
bounded and it depends on the number of candidate mesh
vertices, which correspond to the features successfully
tracked by the SLAM algorithm in the current view. With
the emergence of binary features, such as BRISK [23] used
in [14], current vision-based SLAM systems can handle
numbers of the order of 100 features per frame, which was
previously computationally infeasible (e.g. in [24]). Across
all sequences that we test our approach on, the SLAM system
tracks the scene with less than 200 features per frame (an
example of the density of the features is visible in Figure 7).
As evident in Table II, the proposed approach is extremely
low cost achieving a dense, local scene representation even
with 10 smoothing iterations of the mesh estimation. While
there is no explicit records of the timings of the SLAM algo-
rithm used in [14], in our implementation, the whole pipeline
including SLAM estimation and dense scene estimation runs
always well faster than real-time. Moreover, the dramatically
low cost of computation of the proposed approach makes
it applicable to other, potentially more expensive SLAM
techniques.

V. CONCLUSIONS
In this paper we present a method achieving a dense, local

scene representation using sensing cues from a single camera
at a dramatically low computational cost. The proposed ap-
proach builds on top of a nominal monocular-inertial SLAM
system to estimate a rough mesh-based representation of the
scene, albeit of accuracy that permits high-fidelity navigation
even for a highly agile and computationally constrained
platform such as a UAV. We evaluate our system with respect
to scene ground truth obtained using a laser scanner offering
millimetre precision.

Further work, involves research into the use of the pro-
posed method for more detailed scene reconstruction to speed
up existing methods for both online and offline accurate,
scene reconstruction.
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