Sequential quadratic programming for task plan optimization | IEEE Conference Publication | IEEE Xplore

Sequential quadratic programming for task plan optimization


Abstract:

We consider the problem of refining an abstract task plan into a motion trajectory. Task and motion planning is a hard problem that is essential to long-horizon mobile ma...Show More

Abstract:

We consider the problem of refining an abstract task plan into a motion trajectory. Task and motion planning is a hard problem that is essential to long-horizon mobile manipulation. Many approaches divide the problem into two steps: a search for a task plan and task plan refinement to find a feasible trajectory. We apply sequential quadratic programming to jointly optimize over the parameters in a task plan (e.g., trajectories, grasps, put down locations). We provide two modifications that make our formulation more suitable to task and motion planning. We show how to use movement primitives to reuse previous solutions (and so save optimization effort) without trapping the algorithm in a poor basin of attraction. We also derive an early convergence criterion that lets us quickly detect unsatisfiable constraints so we can re-initialize their variables. We present experiments in a navigation amongst movable objects domain and show substantial improvement in cost over a backtracking refinement algorithm.
Date of Conference: 09-14 October 2016
Date Added to IEEE Xplore: 01 December 2016
ISBN Information:
Electronic ISSN: 2153-0866
Conference Location: Daejeon, Korea (South)

Contact IEEE to Subscribe

References

References is not available for this document.