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Abstract— Software testing is an important tool to ensure
software quality. This is a hard task in robotics due to dy-
namic environments and the expensive development and time-
consuming execution of test cases. Most testing approaches use
model-based and/or simulation-based testing to overcome these
problems. We propose model-free skill-centric testing in which
a robot autonomously executes skills in the real world and
compares it to previous experiences. The skills are selected by
maximising the expected information gain on the distribution of
erroneous software functions. We use deep learning to model the
sensor data observed during previous successful skill executions
and to detect irregularities. Sensor data is connected to function
call profiles such that certain misbehaviour can be related to
specific functions. We evaluate our approach in simulation and
in experiments with a KUKA LWR 4+ robot by purposefully
introducing bugs to the software. We demonstrate that these
bugs can be detected with high accuracy and without the need
for the implementation of specific tests or task-specific models.

I. INTRODUCTION

In recent years robot programming increasingly matured
and trained skills became more complex. Programming
paradigms shifted from pure hard-coding of skills to (semi-)
autonomous skill acquisition techniques. Human supervisors
are asked for advice only when needed, e.g. in program-
ming by demonstration and/or reinforcement learning [1]–
[3]. These new paradigms typically produce a large corpus of
mostly unused data. Further, skills involve synchronisation of
a high number of components (e.g. computer vision, naviga-
tion, path planners, force/torque sensors, artificial skins) and
are implemented by large teams of experts in their respective
fields. Software components change rapidly which makes
it very hard for one single programmer to debug certain
components in case of failure. This problem becomes even
more severe if the developer is not an expert in the field
to which a certain component belongs. Currently, software
testing is done in simulation with a high initial cost of
implementing test cases. This has some obvious advantages
such as the high repeatability and higher safety. However, this
testing paradigm also has some serious disadvantages such
as the limited conformity with the world or the demand for
precise models of the physical environment.

We propose a novel testing scheme that does not re-
quire the test engineer to be an expert. Skills are executed
autonomously and all collected data, i.e. sensor data and
function call profiles, is compared to previous experiences.
From this stack of experiences two models can be trained:
a measurement observation model (MOM) and a functional
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profiling fingerprint (FPF). The MOM models sensor mea-
surements observed during successful skill executions. It is
trained with deep learning and, as opposed to other testing
approaches in robotics, does not impose a strong prior on
the nature of tasks or functions to be tested. Therefore
our approach is model-free in a sense that no component-
specific models are predefined. The FPF provides a typical
fingerprint of function calls for a certain skill. The idea is
to identify the point in time, in which a skill execution
failed, by using the MOM and to relate this to anomalies
in the FPF. The skills are selected in order to maximise
the expected information gain about which functions might
cause problems. The suggestions about possible erroneous
functions can be forwarded to the respective developers.

We do not distinguish between skills and tests, which elim-
inates the need for developing specific test cases. Currently,
experts spend time to design test cases with well-defined pre-
and post conditions. They typically also do not have a system
overview which causes the test cases to be too loose or too
strict. In our paradigm, the test cases are just as strict as they
need to be as they are grounded on the skills.

The concept is illustrated by a task in which an object is
to be pushed along a given path. Many components such as
robot control software, an object tracker (image acquisition,
segmentation, localisation), a path planner and pushing-
specific functions are involved. If the robot loses contact to
the object it will be detected by comparing the end-effector
force measurements to previous experiences. Our approach
will first suggest all running functions from segmentation
to pushing-specific functions. If the scene segmentation
contains a bug, all functions not related to segmentation can
be eliminated as a cause by running skills that use a different
segmentation algorithm or no object tracking at all.

II. RELATED WORK

Bihlmaier et al. propose robot unit testing RUT [4], closely
relating to the idea of classical unit tests. They rely on
simulators that are sufficiently accurate and argue that this
indeed is the case for most tasks. Laval et al. use pre-defined
tests for robot hardware in an industrial setting, in which
robots are manufactured in high numbers [5]. In such a
scenario, testing can only be performed in an autonomous
manner. They provide a multi-layered testing approach with
guidelines on how to test hardware with hand-crafted test
cases and how to share them between quality assurance and
maintenance staff. A similar idea is proposed by Lim et
al. by using a hierarchical testing framework composed of
unit testing, integration testing and system testing [6]. As
opposed to this work, these approaches are guidelines for the
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developers rather than testing frameworks for autonomous
robots. Regression testing is applied to robotics by Biggs [7].
He argues that even testing of low-level control stacks should
be performed in simulation in order to prevent dangerous
situations. Previous communication of network-based control
middle-ware is stored and fed back for testing again. Even
though this approach is similar in nature to our framework,
it is restricted to and designed for low-level components.
Zaman and Steinbauer et al. describe a diagnosis framework
and augment it with the additional ability of autonomous self-
repair [8], [9]. The framework is embedded into the ROS
diagnostics stack in which single components can publish
observations and diagnostic messages. It requires pre-defined
abstract diagnosis models, whereas our method learns the
model from experience. Petters et al. provide a set of tools
to ensure the proper working of the control software used
by teams of autonomous mobile robots [10]. This involves a
high level of manual test design.

Simulation-based testing [11], [12] is one of the most
widespread testing techniques. Son et al. propose a
simulation-based framework and guidelines for unit, state,
and interface testing, which involves the generation of test
cases and the execution in a simulator [11]. Park and Kang
propose the SITAF architecture [12] for testing software
components in which tests are specified as abstractly as
possible. Tests are generated automatically and are run on
a simulator. Related work is also done in the area of
fault detection [13]–[21]. Many of these systems follow
an observer-based approach in which separate observers
monitor components. Reasoning over the observed data in
combination with a pre-defined model allows failures to be
identified in dynamic systems. An extensive discussion of
fault detection systems is outside the scope of this work,
as these methods are mainly concerned with model-based
approaches applied to specific scenarios or components.

Work that also relies on automatic data storage from
previous successful experiences was proposed by Niemueller
et al. [22]. Data is queried automatically during the execution
of skills and stored to a database. It is directly taken
from listening to ROS topics and stored to the NoSQL
database MongoDB. They demonstrate the applicability of
automatic data storage to fault analysis by hand-crafting a
Data-Information-Knowledge-Wisdom hierarchy [23], which
represents different levels of abstraction. Developers can then
manually work through the hierarchy and identify potential
errors by comparing current sensor data on several levels
to previous experiences. This demonstrates that such an ap-
proach makes sense in principle, however, in our method the
identification of problems is done completely autonomously.

III. SKILL-CENTRIC AUTONOMOUS TESTING

A skill is a pair of a state-changing behaviour and a
predicate that determines success. A behaviour is a function

b : S 7→ S (1)

that maps an environment state s∈ S to another state s′ ∈ S. A
skill a = (b,β ) consists of a behaviour b ∈ B and a predicate

β (b(s)) = true (2)

with s ∈ D. The predicate β provides a notion of success
for the behaviour b. The set D ⊆ S is called the domain of
applicability of the skill a. We assume the robot holds a set
of well-trained skills A, i.e. the set Da is large with |Da|� 1.

For each skill a∈A, the robot holds a database ∆a of pairs

∆a = {(Ma(s), Fa(s))} (3)

These pairs are positive experiences of successful skill execu-
tions, i.e. β (s) = true. The matrix Ma(s) contains the sensor
data (e.g. m1 = force/torque sensors, m2 = position data,
m3 = images, . . . ) measured during execution of a by

Ma(s) =




m1(0) . . . m1(T ) sensor 1
m2(0) . . . m2(T ) sensor 2

...
. . .

... ↓
mM(0) . . . mM(T ) sensor M

t = 1 ∆t−→ t = T

(4)

with dim(Ma(s)) = (∑i dim(mi),T ) and the execution time
T . Analogously, the profiling matrix Fa(s) is given by

Fa(s) =




f c1(0) . . . f c1(T ) function 1
f c2(0) . . . f c2(T ) function 2

...
. . .

... ↓
f cF(0) . . . f cF(T ) function F

t = 1 ∆t−→ t = T

(5)

where f ci(t) denotes the number of active executions of
function i at time [t, t+1]. Two distributions can be estimated
from ∆a: the measurement observation model (MOM)

pa (succ |M, t) (6)

and the functional profiling fingerprint (FPF)

p f
a ( f c |M, t, succ = true) (7)

The MOM reflects the probability of a successful execution
of skill a given the sensor data M at time t. The FPF denotes
the probability of how many instances of a function f were
active in the time period [t, t +1]. The conditioning on M is
required in order to include closed-loop controllers that can
chose certain actions dependent on the current measurement.

The goal is to execute skills from the robot’s skill reper-
toire in order to find a blaming distribution

pblame ( f = fi |o1:T , a1:T ) (8)

given a sequence of executed skills a1:T and corresponding
observations o1:T . Each observation o = (M, F) contains
sensor data and a functional profile. The skills are selected by
maximising the expected information gain given the current
belief pblame (section III-D). After each execution of a skill,
the belief is updated by Bayesian inference (section III-C).
The complete algorithm is summarised in Algorithm 1.



Algorithm 1 Algorithm for autonomous skill-based testing

1: Uniformly initialise p0 = pblame ( f | /0, /0)
2: Compute information gain and next skill (a0, I0) ←

OPTIMISE IG(p0)
3: Initialise t← 0
4: while It not converged do
5: (at+1, It+1)← OPTIMISE IG(pt )
6: Execute at+1 and observe ot+1 = (Mat+1 ,Fat+1)
7: if succt+1 6= true then
8: Use MOM to estimate tfail
9: else

10: tfail← not required
11: pt+1← BAYES(pt , ot+1, at+1, succt+1, tfail)
12: t← t +1
13: function OPTIMISE IG(pblame ( f |o1:t , a1:t))
14: Compute H [pblame]
15: for each skill a ∈ A do
16: Initialise set of sampled entropies Hsam← /0
17: for each observation o = (M,F) ∈ ∆ do
18: Sample pairs s = (succ, tfail)
19: p′blame← BAYES(pblame, o, a, s, tfail)
20: Compute H

[
p′blame

]
and add to Hsam

21: Compute E [H (pblame ( f | . . .o, a))] from Hsam
22: E[I(a)]← H [pblame]−E [H (pblame ( f | . . .o, a))]
23: return (a, I(a)) with maximum I(a)
24: function BAYES(pblame ( f |o1:t , a1:t), o, a, succ, tfail)
25: Estimate pa (o | f , ∆a) according to equation (14)
26: return pblame ( f |o1:t , o, a1:t , a) ∝

27: pa (o | f , ∆a) pblame ( f |o1:t , a1:t)

A. Training the Observation Model

For the MOM we follow the idea of learning an en-
coder/decoder neural network and using the reconstruction
error to determine whether a given sequence is part of the
training distribution or not. Similarly, the reconstruction error
was used for anomaly detection [24], [25].

Our neural network is implemented as follows: Each
vector of the time series is encoded by the same fully
connected neural network with fewer output neurons than
there are dimensions in the input vector. This inevitably
means that information is lost. This compression step is
followed by a layer of Gated Recurrent Units (GRUs) [26],
with a number of output neurons equal to the dimensions
of the input vector. Fig. 1 shows a schematic sketch of the
network used. The network is trained by providing a given
time series as input, and the same time series as expected
output. As a loss function we use the average of the cosine
similarities between the vectors of the actual output of the
network and the expected output (the original time series).
This way, the network is forced to compress the time series
and reconstruct a time series as close to the original as
possible. The cosine similarity is later also used as a metric
for the reconstruction error. The network is trained end to end
using ADAM as an optimization scheme [27]. Since GRUs

Fully
Connected

GRU ...

Fully
Connected

GRU

Fully
Connected

GRU

Fig. 1: Schematic of the network architecture used for the
measurement observation model

have recurrent connections, they can use information from
previously-seen vectors in the reconstruction of following
vectors. Therefore, the decoding is done as a whole for the
complete time series, although the encoding is done for each
vector separately.

After such a network is trained on multiple time series
of successful skill executions, we can assume that it has
specialised to encode and decode sequences of this kind
with a low reconstruction error. The hypothesis is that
sequences deviating from successful examples will have a
higher reconstruction error. Unfortunately, depending on the
different phases of execution, the reconstruction error will
also vary for the successful examples. In practice this means
that there are times at which a high reconstruction error
is more suspicious. To incorporate this information in our
model, we calculate the mean and standard deviation of the
reconstruction errors of all successful examples for each time
step. This gives us a normal distribution per time step, which
we use to determine the likelihood that a given reconstruction
error is of a familiar time series. For a given reconstruction
error, we use the probability density at this point as an
indication of the likelihood that this error is produced by
a successful sequence. Since we get a reconstruction error
at each time step, we are able to detect at which point
in time the sequence begins to deviate from successful
examples. Therefore, we can infer at which point an error
has occurred. To filter out inevitable noise, we smooth the
resulting likelihood sequence using moving average.

Figure 5 shows the reconstruction error likelihood of dif-
ferent sequences. It can be seen that the likelihood of failing
sequences (red) generally falls to a value close to 0 over
time. The drop-off point is where an error in execution of
the task has likely occurred. The successful sequences used
during training are shown in green. Additional successful
examples, not seen during training, are shown in blue.

B. Training the Functional Profiling Fingerprint

We assume that fingerprints, i.e. the time-series of function
calls, are Gaussian distributed separately at each time step



for a specific skill. For each cell f ci(t) of the matrix F in
equation (5), we estimate the mean and variance over all
sample executions of a skill a ∈ A independently. This is
equivalent to approximating the fingerprint distribution by a
multivariate Gaussian distribution

pa (F |M, t, succ = true)≈N (µF(t), Σ(t)) (9)

with a diagonal co-variance matrix Σ(t). Therefore, the mean
and variance are computed for each time step independently,
but are averaged over all observed executions. This allows
us to model the fingerprint of each function f separately, i.e.
the probability

(10)
p f

a ( f c |M, t, succ = true) =∫
t ′ 6=t

∫
f ′ 6= f

pa (F |M, t, succ = true) d f ′ d t ′

of function f being called at time t. While the independence
assumption is not true in general, we assume a certain degree
of smoothness for a specific skill where the function call
time-series is similar for all supported environment states
(e.g. also for closed-loop controllers). This allows us to
further approximate by averaging over all observaions M. We
stress that, in contrast, the MOM demands a more powerful
modelling technique such as deep learning in order to model
sensor data can vary strongly.

C. Bayesian Inference for Bug Detection

When a skill a ∈ A is executed, an observation o =
(Mexec

a , Fexec
a ) is measured. We seek to update the proba-

bility distribution pblame ( f = fi |o1:T ,o, a1:T ,a) accordingly.
Using Bayes’ theorem and assuming that the likelihood
function does not depend on the previous actions a1:T
and observations o1:T , i.e. pa (o | f = fi, o1:T , a1:T , ∆a) ≈
pa (o | f = fi, ∆a), we can write

pblame ( f = fi |o1:T ,o, a1:T ,a) ∝

pa (o | f = fi, o1:T , a1:T ∆a) pblame ( f = fi |o1:T , a1:T ) ≈
pa (o | f = fi, ∆a) pblame ( f = fi |o1:T , a1:T ) .

(11)

The likelihood function pa (o | f = fi, ∆a) denotes the proba-
bility of seeing a certain observation o given that the function
f = fi is buggy. For the sake of readability we omit the
condition on the database ∆a for the distribution pblame.
The likelihood function typically is unknown but can be
approximated given the following assumptions:

(i) A failure in function fi executed at time texec influences
pa (succ |M, t = texec +δ t) with a probability proportional to
e−αδ t = e−α(tfail−texec(), where tfail is the estimated failure
time and α is a free parameter.

(ii) As all probabilities p fi
a ( f c |M, t, succ = true) for all fi

are assumed to be independent, the failure of fi only causes
changes in the ith row of Fexec

a .
(iii) A failure of fi can, but does not have to, cause

a change in the ith row of the fingerprint Fexec
a , e.g. the

execution length of fi changes (which would affect Fexec
a )

or just the behaviour of fi changes (which does not mean

that the distribution of function calls is affected).

A skill is executed and the MOM is used to estimate the
earliest time step tfail with pa (succ |M, tfail)≤ pthresh. We use
the fingerprints F∆

a in the database ∆ of skill a to compute the
expected values of exponentially weighted function counts
e−αδ t f c∆

i (t) for each function fi with

E∆
tfail

[ fi] := E∆
tfail

[
e−αδ t f ci

]
=∫

N

∫
M

∫ tfail

0
e−αδ t f c p fi

a ( f c |M, t, succ = true)dt dMd f c

(12)

and corresponding variances var∆
tfail

[ fi] := var∆
tfail

[
e−αδ t f ci

]
.

The open parameter α determines the size of the time
window on the fingerprint. We further compute the weighted
mean of the executed fingerprint Fexec

a with

µ
exec
tfail

[ fi] =
1
T

tfail

∑
t=0

e−αδ t f cexec
i (t). (13)

These values are used to compare the observed fingerprint of
the executed skill a to the corresponding FPF in the database
∆a. The assumptions defined above culminate in

(14)pa (o | f = fi, ∆a) =

{
pdev if a was successful
(1+pdev)

2 else,

pdev = N
(

x ∈
[
µ

exec
tfail

[ fi], E∆
tfail

[ fi]
]
|E∆

tfail
[ fi] , var∆

tfail
[ fi]
)
.

(15)
The probability pdev measures how much a measurement

µexec
tfail

deviates from a regular execution of the skill a within
the time window t ∈ [0, tfail]. Case 1 of equation 14 treats the
case of a successful execution. The probability of observing
a successful observation o given the function fi has a bug
should be low. However, a function might still have a bug
but just did not affect the skill enough to make it fail.
Therefore, pa (o | f = fi, ∆a) should increase if the finger
print strongly differs from other successful experiences. The
second case of equation 14 applies if the skill was not
executed successfully. Each executed function should at least
be suspicious, i.e. pa (o | f = fi, ∆a) ≥ 1/2. The probability
increases proportionally to the deviation from previous suc-
cessful experiences.

D. Skill Selection by Information Gain Maximisation

The previous section described how to update the belief
pblame ( f = fi |o1:T ,o, a1:T ,a) given a skill a was selected.
This skill should be selected such that the entropy of the
probability distribution pblame decreases. A common way to
solve this problem is to maximise the expected information
gain. The information gain is defined by

(16)I [a] = H [pblame ( f = fi |o1:T , a1:T )]

− H [pblame ( f = fi |o1:T ,o, a1:T ,a)]

Before executing the skill a ∈ A, the information gain
cannot be computed directly, as the corresponding obser-
vation o is not known yet. However, the current belief
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(a) Expected information gains for skills with simulated fingerprints
Fa1 = (1, 2) (blue), Fa2 = (2, 4, 5) (red), Fa3 = (3, 4, 6) (green,
behind magenta), Fa4 = (3, 4, 5, 6) (magenta). The skills a3 and a4
do not share any function with a1, among which the error must be
after executing a1, and are ignored. For different executions of the
algorithm the height and exact locations of the maxima might shift
slightly due to the random generation of the fingerprint data.
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(b) pblame for the first 6 functions. All other functions have a low
probability (comparable to the magenta curve) and are omitted. Ini-
tially the dominant skill is a1 (cf. Fig. 2a), which cannot discriminate
between functions f1 (red) and f2 (blue). After 19 steps, skill a2 is
chosen which identifies f2 as the cause of error.

Fig. 2: Typical information gains for four different skills and the respective probabilities pblame for functions 1 to 6 plotted
over the number of executed skills. The function f2 is simulated to be the cause of the error.

pblame ( f = fi |o1:T , a1:T ) can be used to estimate the ex-
pected information gain E [I [a]]. We estimate E [I [a]] by
uniformly sampling pairs (succ, tfail) for each sample in
the database ∆a with random success succ ∈ {true, false}
and random failure time with probability p(tfail) = 1/T .
At each step a Bayesian belief update is performed, and
the expected entropy E [H [pblame ( f = fi |o1:T ,o, a1:T ,a)]] is
estimated. The current entropy H [pblame ( f = fi |o1:T , a1:T )]
can be computed in closed form and the robot optimises

(17)
anext = argmax

a
E [I (a)] = argmax

a

H [pblame ( f = fi |o1:T , a1:T )]

− E [H [pblame ( f = fi |o1:T ,o, a1:T ,a)]] .

IV. EXPERIMENTS

We evaluate our method in simulation and in real-world
tasks. In simulation we analyse the behaviour of the Bayesian
inference and the information gain optimisation indepen-
dently of the MOM. Our approach is tested with a real robot
by implementing a set of purposefully sabotaged skills.

A. Simulated Experiments

The Bayesian reasoning is decoupled from the
MOM by generating artificial fingerprints of the type
Fa ( f1, f2, . . . fF) = (fc1, fc2, . . . , , fcF)

T . If fi = false, the
vector fci is chosen with fci = ~0. Otherwise it is given
by fci = ( f ci(0) ∝ N (µi,σi), . . . , f ci(T ) ∝ N (µi,σi))

T .
If the matrices Fa ( f1, f2, . . . fF) are generated this
way, the particular choice of the MOM is irrelevant.
Artificial skills using the first 6 out of 241 available
functions were generated. In order to simplify the

notation, only used functions are denoted, e.g.
Fa (true, true, false, . . . , false) ≡ Fa (1, 2). In Figs. 2 –
4 typical evolutions of information gains and blaming
probabilities by using skills with different fingerprints are
shown. In all scenarios a bug in function f2 causes an error
if a skill uses f2. Our system was able to detect the error in
all scenarios with pblame( f = f2)≈ 1. Fig. 2 shows a typical
scenario, in which one skill is executed until another skill
has a higher information gain. The skill is switched after
19 executions in order to discriminate between two failure
candidates f1 and f2. Note that all functions except f1 and
f2 have almost 0 probability as after executing the skill a1
has identified that a bug must be in functions f1 or f2 which
places the algorithm in a local optimum. If further bugs are
contained in the software, the system has to be re-iterated
when the bug in f2 is fixed. The high number of functions
with very low probability causes the probabilities in Fig. 2b
to look like they are not normalised, however, this is just a
visual artifact. Fig. 3 shows a similar scenario with a slightly
different selection of used functions per skill. Even though
the information gains develop differently, the bug belief
develops the same way as in Fig. 2b because no different
actions are taken. Fig. 4 shows a degenerate case in which
two skills contribute equally much to identify the function
f2 and are executed alternately while the confidence in f2
increases continuously. Even though the correct function is
identified, the skill switching might require extra effort for
preparation of different environments.

B. Real-world experiments

We show the applicability of deep learning to failure
detection in two simple tasks: simple grasping and object
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Fig. 3: Expected information gains for skills with simulated
fingerprints Fa1 = (1, 2) (blue), Fa2 = (2, 4, 5) (red, hid-
den behind magenta), Fa3 = (1, 3, 6) (green, hidden behind
magenta), Fa4 = (1, 3, 4, 6) (magenta). As opposed to the
scenario in Fig. 2a, the skills a3 and a4 can also help to
identify the bug. The skills a2 and a3 are equally likely to
be helpful and have the same expected information gain,
whereas skill a4 uses one function more than a3 and therefore
has a slightly lower expected information gain.

handover. Further, our system is tested with a set of simple
skills by purposefully introducing bugs to the software. The
robot setting used can be found in Fig. 6. It consists of
two KUKA LWR 4+ robotic arms with one Schunk SDH
gripper attached to each arm. The KUKA arms provide a
control interface called fast research interface (FRI), which
enables control and sensor data retrieval (joint positions, joint
forces, Cartesian forces and torques). For object detection
two Kinects are mounted - one on the chest and one above
the robot. Objects are localised by segmenting them from the
table surface and fitting a box to the remaining point cloud
image by using PCL. Three different skills are implemented:
• Simple grasp: Objects are placed in front of the robot.

A PCL based localiser recognises the objects and a
Cartesian planner is used to move the end-effector. The
fingers are closed and the object is lifted.

• Pressing a button: A red emergency button is placed in
a fixed robot-relative position. A joint plan is executed
and the button is pressed with the wrist and without
using the fingers.

• Handover: The robot reaches forward by using a joint
plan and waits until an object is placed in the hand. This
event is detected by observing the end-effector forces.
When an object is handed over, the fingers are closed.

1) Evaluation of the MOM: A set of erroneous executions
was generated by either adding bugs to the code or by
manually interfering with the environment, e.g. by kicking
the object out of the robots hand.

Our implementation of the MOM uses a fully con-
nected neural network with 32 output neurons and a RELU
nonlinearity. The size of this bottleneck depends on the

dimensionality of the input vectors. In our case, it was
determined empirically. The GRU layer uses an internal
tanh-nonlinearity and a logistic sigmoid nonlinearity for the
output. The network is trained for 500 epochs which, on an
nVidia GTX 1080 GPU for 70 sequences of 2000 time steps
each, takes about five minutes.

Fig. 5a shows the MOM performance on the dataset for
simple grasping. For most negative samples the likelihood
of being a successful sample drops close to zero, while this
is not the case for successful samples. Two different failure
types are visible: the first failure type arises very early, at t <
500, and corresponds to failed path planning which causes
the arm not to move at all. When the arm moves, a failure
cannot be detected as there is no contact with the object yet.
Failures are detected when contact is made with the object
from time t > 1000. In the handover task (Fig 5b), the failure
is detected when the arm does not move at all during the
reaching motion or when the object should be placed in the
hand, but is not. It should be noted that as soon as an error is
detected, the further development of the reconstruction error
is not relevant anymore.

2) Running the complete system: Sensor data and finger-
prints were measured for at least 70 executions per skill. In
total, more than 80 functions (including robot control) were
used by the skills. Different types of bugs were purposefully
introduced to the software. To reduce the computational
effort for the estimation of the information gain, the decaying
expected value in equation 12 was computed only for a
window of 2 seconds before tfail.

In the first scenario, the Cartesian planner was destroyed
by introducing a constant shift. This type of error could hap-
pen if the robot model is not correct. The robot started to test
the grasping skill which failed due to missing the object. It
identified a set of potentially faulty functions and the 4 func-
tions with the highest belief were {getRobotId, planJoint-
Trajectory, storeJointInfoToDatabase, updateFilter}. None
of these functions are related to the Cartesian shift bug.
However, the confidence of the robot was low and planCar-
tesianTrajectory was included with a similar probability. The
grasping skill was used to confirm the belief until the button
pressing skill provided a higher expected information gain.
The button pressing skill was executed successfully because
only a joint plan was used. This allowed the robot to exclude
most wrong guesses and to suggest the list {cartesianPtp,
planCartesianTrajectory, computeIk, closeHand} with high
probability. The localiseObject is not suspicious as it was
executed outside the time window, but is in the list as
well if the window is enlarged. The handover skill enabled
the robot to eliminate closeHand. All identified functions,
i.e. {cartesianPtp, planCartesianTrajectory, computeIk}, are
involved in Cartesian planning (and not in joint planning).

In the second scenario commands for moving the hand
were not forwarded to the hardware. This affected the grasp-
ing skill and the handover skill, whereas the button pressing
skill succeeded. All functions used in the button pressing
skill were removed from the list of candidates (e.g. for
joint planning, arm control functions) and the functions for
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(a) Expected information gains for skills with simulated fingerprints
Fa1 = (1, 2) (blue), Fa2 = (2, 4) (red, not visible, aligned with
blue), Fa3 = (1, 3, 6) (green, not visible, aligned with magenta),
Fa4 = (1, 3, 4, 6) (magenta). Skills a1 and a2 have about the same
expected information gain, which causes alternate execution.
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(b) The failure function is correctly identified early. The alternate
execution of skills a1 and a2 yields a continuous improvement of
confidence. All probablities excecpt for f2 (blue) are close to 0.

Fig. 4: Degenerate scenario: information gains for four different skills and the respective probabilities pblame for functions
1 to 6. The skills a1 and a2 are executed alternately. The function f2 is simulated to be the cause of the error.

(a) Simple grasping skill (b) Handover skill

Fig. 5: MOM in two simple skill scenarios. The graphs show the reconstruction error likelihood over the execution time. It
includes the (only positive) training samples (green), the positive test samples (blue) and the negative test samples (red). As
can be seen, the method does not work in all cases, but the likelihood of a correct execution of a skill being classified as
not working is relatively small.

Cartesian planning and hand control remained: {closeHand,
cartesianPtp, planCartesianTrajectory, computeIk}. In the
next step the handover skill was executed. Because the
Cartesian planning functions were not used in the failing
handover skill, the corresponding functions were eliminated.

In another scenario, the localisation system was destroyed
by returning a constant position. In this case, the error is
hard to detect: In the grasping scenario, the robot misses
the object long after the localiser was run. If the time
window is long enough, the system still identifies the lo-
caliser among other plausible candidates and returns the
set {localiseObject, cartesianPtp, planCartesianTrajectory,
computeIk} with high probabilities. Given the three provided

skills, the robot has no possibility to discriminate between
errors in the respective functions. In our setting, the localiser
and Cartesian planning are always used together and an error
in the localiser does not appear earlier in the sensor data. A
video demonstration of the approach switching from one skill
to another can be found online1.

V. CONCLUSION AND FUTURE WORK

We introduced a skill-centric software testing approach
that uses data collected over the life-time of a robot, which
eliminates the need for defining separate test cases. We use

1https://iis.uibk.ac.at/public/shangl/iros2017/
hangl-iros2017.mp4

https://iis.uibk.ac.at/public/shangl/iros2017/hangl-iros2017.mp4
https://iis.uibk.ac.at/public/shangl/iros2017/hangl-iros2017.mp4


Fig. 6: Robot setting and the used objects.

two different types of data: sensor data of successful skill
executions and corresponding profiling data. We train a so-
called measurement observation model (MOM) (deep learn-
ing) and a functional profiling fingerprint (FPF) (Multivariate
Gaussian model). Skills are executed as test cases and sensor
data is compared to previous experiences. We use Bayesian
belief updates to estimate a probability distribution of which
functions contain bugs. The skills are selected in order to
maximize the expected information gain. The approach is
evaluated in simulation and in real robot experiments by
purposefully introducing bugs to existing software.

This work discusses the problem of bug detection and
autonomous testing. Future work will be concerned with
developing autonomous strategies for bug fixing (e.g. by
automatically performing selective git roll-backs or au-
tonomously replacing hardware). Further, due to the lack of
data, the likelihood function of the Bayesian belief update
(equation 14) had to be hand-crafted following reasonable
assumptions. In a more general framework the likelihood
function can be trained automatically by providing ground
truth data whenever the programmer has fixed a certain bug.
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