
Real-Time Trajectory Replanning for MAVs using Uniform
B-splines and a 3D Circular Buffer

Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic and Daniel Cremers
Technical University of Munich

Abstract—In this paper, we present a real-time approach
to local trajectory replanning for microaerial vehicles (MAVs).
Current trajectory generation methods for multicopters achieve
high success rates in cluttered environments, but assume that
the environment is static and require prior knowledge of the
map. In the presented study, we use the results of such planners
and extend them with a local replanning algorithm that can
handle unmodeled (possibly dynamic) obstacles while keeping the
MAV close to the global trajectory. To ensure that the proposed
approach is real-time capable, we maintain information about the
environment around the MAV in an occupancy grid stored in a
three-dimensional circular buffer, which moves together with a
drone, and represent the trajectories by using uniform B-splines.
This representation ensures that the trajectory is sufficiently
smooth and simultaneously allows for efficient optimization.

I. INTRODUCTION

In recent years, microaerial vehicles (MAVs) have gained
popularity in many practical applications such as aerial pho-
tography, inspection, surveillance and even delivery of goods.
Most commercially available drones assume that the path
planned by the user is collision-free or provide only limited
obstacle-avoidance capabilities. To ensure safe navigation in
the presence of unpredicted obstacles a replanning method that
generates a collision-free trajectory is required.

Formulation of the trajectory generation problem largely
depends on the application and assumptions about the envi-
ronment. In the case where an MAV is required to navigate
a cluttered environment, possibly an indoor one, we would
suggest subdividing the problem into two layers. First, we
assume that a map of the environment is available and a
trajectory from a specified start point to the goal point is
planned in advance.

This task has been a popular research topic in recent years,
and several solutions have been proposed by Achtelik et al. [1]
and Richter et al. [21]. They used occupancy representation
of the environment to check for collisions and searched for
the valid path in a visibility graph constructed using sam-
pling based planners. Thereafter, they followed the approach
proposed by Mellinger and Kumar [14] to fit polynomial
splines through the points of the planned path to generate a
smooth feasible trajectory. The best algorithms of this type
can compute a trajectory through tens of waypoints in several
seconds.

To cope with any unmodeled, possibly dynamic, obsta-
cle a lower planning level is required, which can generate
a trajectory that keeps the MAV close to the global path

Fig. 1: Example of local trajectory replanning algorithm run-
ning in the simulator. Global trajectory is visualized in purple
and the local obstacle map is visualized in red. The local
trajectory is represented by a uniform quintic B-spline, and its
control points are visualized in yellow for the fixed parts and
in green for the parts that can still change due to optimization.

and simultaneously avoids unpredicted obstacles based on an
environment representation constructed from the most recent
sensor measurements. This replanning level should run in
several milliseconds to ensure the safety of MAVs operating
at high velocities.

The proposed approach solves a similar problem as that
solved by Oleynikova et al. [17], but instead of using poly-
nomial splines for representing the trajectory we propose the
use of B-splines and discuss their advantages over polynomial
splines for this task. Furthermore, we propose the use of a
robocentric, fixed-size three-dimensional (3D) circular buffer
to maintain local information about the environment. Even

ar
X

iv
:1

70
3.

01
41

6v
2

 [
cs

.R
O

]
 2

4
Ju

l 2
01

7

though the proposed method cannot model arbitrarily large
occupancy maps, as some octree implementations, faster look-
up and measurement insertion operations make it better suited
for real-time replanning tasks.

We demonstrate the performance of the system in several
simulated and real-world experiments, and provide open-
source implementation of the software to community.

The contributions of the present study are as follows:
• Formulation of local trajectory replanning as a B-spline

optimization problem and thorough comparison with al-
ternative representations (polynomial, discrete).

• High-performance 3D circular buffer implementation for
local obstacle mapping and collision checking and com-
parison with alternative methods.

• System design and evaluation on realistic simulator and
real hardware, in addition to performance comparison
with existing methods.

In addition to analyzing the results presented in the paper,
we encourage the reader to watch the demonstration video and
inspect the available code, which can be found at

https://vision.in.tum.de/research/
robotvision/replanning

II. RELATED WORK

In this section, we describe the studies relevant to different
aspects of collision-free trajectory generation. First, we discuss
existing trajectory generation strategies and their applications
to MAV motion planning. Thereafter, we discuss the state-of-
the-art approaches for 3D environment mapping.

A. Trajectory generation

Trajectory generation strategies can be subdivided into
three main approaches: search-based path planning followed
by smoothing, optimization-based approaches and motion-
primitive-based approaches.

In search-based approaches, first, a non-smooth path is
constructed on a graph that represents the environment. This
graph can be a fully connected grid as in [6] and [11], or be
computed using a sampling-based planner (RRT, PRM) as in
[21] and [3]. Thereafter, a smooth trajectory represented by a
polynomial, B-spline or discrete set of points is computed to
closely follow this path. This class of approaches is currently
the most popular choice for large-scale path planning problems
in cluttered environments where a map is available a priory.

Optimization-based approaches rely on minimizing a cost
function that consists of smoothness and collision terms. The
trajectory itself can be represented as a set of discrete points
[25] or polynomial segments [17]. The approach presented
in the present work falls into this category, but represents a
trajectory using uniform B-splines.

Another group of approaches is based on path sampling
and motion primitives. Sampling-based approaches were suc-
cessfully used for challenging tasks such as ball juggling
[15], and motion primitives were successfully applied to flight
through the forest [19], but the ability of both approaches

to find a feasible trajectory depends largely on the selected
discretization scheme.

B. Environment representation

To be able to plan a collision-free trajectory a representation
of the environment that stores information about occupancy
is required. The simplest solution that can be used in the
3D case is a voxel grid. In this representation, a volume is
subdivided into regular grid of smaller sub-volumes (voxels),
where each voxel stores information about its occupancy. The
main drawback of this approach is its large memory-footprint,
which allows for maping only small fixed-size volumes. The
advantage, however, is very fast constant time access to any
element.

To deal with the memory limitation, octree-based represen-
tations of the environment are used in [9] [22]. They store
information in an efficient way by pruning the leaves of the
trees that contain the same information, but the access times
for each element become logarithmic in the number of nodes,
instead of the constant time as in the voxel-based approaches.

Another popular approach to environment mapping is voxel
hashing, which was proposed by Nießner et al. [16] and used
in [18]. It is mainly used for storing a truncated signed distance
function representation of the environment. In this case, only
a narrow band of measurements around the surface is inserted
and only the memory required for that sub-volume is allocated.
However, when full measurements must be inserted or the
dense information must be stored the advantages of this
approach compared to those of the other approaches are not
significant.

III. TRAJECTORY REPRESENTATION USING UNIFORM
B-SPLINES

We use uniform B-spline representation for the trajectory
function p(t). Because, as shown in [14] and [1], the trajectory
must be continuous up to the forth derivative of position
(snap), we use quintic B-splines to ensure the required smooth-
ness of the trajectory.

A. Uniform B-splines

The value of a B-spline of degree k − 1 can be evaluated
using the following equation:

p(t) =

n∑
i=0

piBi,k(t), (1)

where pi ∈ Rn are control points at times ti, i ∈ [0, .., n] and
Bi,k(t) are basis functions that can be computed using the De
Boor – Cox recursive formula [5] [4]. Uniform B-splines have
a fixed time interval ∆t between their control points, which
simplifies computation of the basis functions.

In the case of quintic uniform B-splines, at time t ∈
[ti, ti+1) the value of p(t) depends only on six control points,
namely [ti−2, ti−1, ti, ti+1, ti+2, ti+3]. To simplify calcula-
tions we transform time to a uniform representation s(t) =
(t − t0)/∆t, such that the control points transform into
si ∈ [0, .., n]. We define function u(t) = s(t) − si as time

https://vision.in.tum.de/research/robotvision/replanning
https://vision.in.tum.de/research/robotvision/replanning

0 2 4 6 8 10
Insertion time [ms]

0

100

200

300

400

500 Ring buffer

(a)

0 20 40 60 80 100
Insertion time [ms]

0

20

40

60

80

100

120 Octomap

(b) (c) (d)

Fig. 2: Comparison between octomap and circular buffer for occupancy mapping on fr2/pioneer slam2 sequence of [23]. Being
able to map only a local environment around the robot (3 m at voxel resolution of 0.1 m) circular buffer is more than an order
of magnitude faster when inserting point cloud measurements from a depth map subsampled to a resolution of 160 × 120.
Subplots (a) and (b) show the histograms of insertion time, and (c) and (d) show the qualitative results of the circular buffer
(red: occupied, green:free) and the octomap, respectively.

elapsed since the start of the segment. Following the matrix
representation of the De Boor – Cox formula [20], the value
of the function can be evaluated as follows:

p(u(t)) =


1
u
u2

u3

u4

u5



T

M6


pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (2)

M6 =
1

5!


1 26 66 26 1 0
−5 −50 0 50 5 0
10 20 −60 20 10 0
−10 20 0 −20 10 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1

 . (3)

Given this formula, we can compute derivatives with respect
to time (velocity, acceleration) as follows:

p′(u(t)) =
1

∆t


0
1

2u
3u2

4u3

5u4



T

M6


pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (4)

p′′(u(t)) =
1

∆t2


0
0
2

6u
12u2

20u3



T

M6


pi−2
pi−1
pi
pi+1

pi+2

pi+3

 . (5)

The computation of other time derivatives and derivatives
with respect to control points is also straightforward.

The integral over squared time derivatives can be computed
in the closed form. For example, the integral over squared
acceleration can be computed as follows:

Eq =

∫ ti+1

ti

p′′(u(t))2dt (6)

=


pi−2
pi−1
pi
pi+1

pi+2

pi+3



T

MT
6 QM6


pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (7)

(8)

where

Q =
1

∆t3

∫ 1

0


0
0
2

6u
12u2

20u3




0
0
2

6u
12u2

20u3



T

du (9)

=
1

∆t3


0 0 0 0 0 0
0 0 0 0 0 0
0 0 8 12 16 20
0 0 12 24 36 48
0 0 16 36 57.6 80
0 0 20 48 80 114.286

 . (10)

Please note that matrix Q is constant in the case of uniform
B-splines. Therefore, it can be computed in advance for
determining the integral over any squared derivative (see [21]
for details).

B. Comparison with polynomial trajectory representation
In this subsection, we discuss the advantages and disad-

vantages of B-spline trajectory representation compared to
polynomial-splines-based representation [21] [17].

To obtain a trajectory that is continuous up to the forth
derivative of position, we need to use B-splines of degree five

or greater and polynomial splines of at least degree nine (we
need to set five boundary constraints on each endpoint of the
segment). Furthermore, for polynomial splines we must ex-
plicitly include boundary constraints into optimization, while
the use of B-splines guarantees the generation of a smooth
trajectory for an arbitrary set of control points. Another useful
property of B-splines is the locality of trajectory changes
due to changes in the control points, which means that a
change in one control point affects only a few segments
in the entire trajectory. All these properties result in faster
optimization because there are fewer variables to optimize and
fewer constraints.

Evaluation of position at a given time, derivatives with
respect to time (velocity, acceleration, jerk, snap), and inte-
grals over squared time derivatives are similar for both cases
because closed-form solutions are available for both cases.

The drawback of B-splines, however, is the fact that the
trajectory does not pass through the control points. This makes
it difficult to enforce boundary constraints. The only constraint
we can enforce is a static one (all time derivatives are zero),
which can be achieved by inserting the same control point
k+ 1 times, where k is the degree of the B-spline. If we need
to set an endpoint of the trajectory to have a non-zero time
derivative, an iterative optimization algorithm must be used.

These properties make polynomial splines more suitable
for the cases where the control points come from planning
algorithms (RRT, PRM), which means that the trajectory must
pass through them, else the path cannot be guaranteed to be
collision-free. For local replanning, which must account for
unmodeled obstacles, this property is not very important; thus,
the use of B-spline trajectory representation is a better option.

IV. LOCAL ENVIRONMENT MAP USING 3D CIRCULAR
BUFFER

To to avoid obstacles during flight, we need to maintain
an occupancy model of the environment. On one hand, the
model should rely on the most recent sensor measurements,
and on the other hand it should store some information over
time because the field of view of the sensors mounted on the
MAV is usually limited.

We argue that for local trajectory replanning a simple
solution with a robocentric 3D circular buffer is beneficial. In
what follows, we discuss details pertaining to implementation
and advantages from the application viewpoint.

A. Addressing

To enable addressing we discretize the volume into voxels
of size r. This gives us a mapping from point p in 3D space
to an integer valued index x that identifies a particular voxel,
and the inverse operation that given an index outputs its center
point.

A circular buffer consists of a continuous array of size N
and an offset index o that defines the location of the coordinate
system of the volume. With this information, we can define
the functions to check whether a voxel is in the volume and

Fig. 3: Example of online trajectory replanning using proposed
optimization objective. The plot shows a global trajectory com-
puted by fitting a polynomial spline through fixed waypoints
(red), voxels within 0.5 m of the obstacle (blue), computed B-
spline trajectory with fixed (cyan) and still optimized (green)
segments and control points. In the areas with no obstacles,
the computed trajectory closely follows the global one, while
close to an obstacle, the proposed method generates a smooth
trajectory that avoids the obstacle, and rejoins the global
trajectory.

find its address in the stored array:

insideV olume(x) = 0 ≤ x− o < N, (11)
address(x) = (x− o) mod N. (12)

If we restrict the size of the array to N = 2p, we can rewrite
these functions to use cheap bitwise operations instead of
divisions:

insideV olume(x) = ! ((x− o) & (∼ (2p − 1))), (13)
address(x) = (x− o) & (2p − 1). (14)

where & is a ”bitwise and,” ∼ is a ”bitwise negation,” and !
is a ”boolean not.”.

To ensure that the volume is centered around the camera,
we must simply change the offset o and clear the updated part
of the volume. This eliminates the need to copy large amounts
of data when the robot moves.

B. Measurement insertion

We assume that the measurements are performed using
range sensors, such as Lidar, RGB-D cameras, and stereo
cameras, and can be inserted into the occupancy buffer by
using raycast operations.

We use an additional flag buffer to store a set of voxels
affected by insertion. First, we iterate over all points in our
measurements, and for the points that lie inside the volume,
we mark the corresponding voxels as occupied. For the points

(a) (b) (c)

Fig. 4: Real-world experiment performed outdoors. The drone (AscTec Neo) equipped with RGB-D camera (Intel Realsense
R200) is shown in (a). In the experiment, the global path is set to a straight line with the goal position 30 m ahead of the
drone, and trees act as unmapped obstacles that the drone must avoid. Side view of the scene is shown in (b), and visualization
with the planned trajectory is shown in (c).

that lie outside the volume, we compute the closest point
inside the volume and mark the corresponding voxels as free
rays. Second, we iterate over all marked voxels and perform
raycasting toward the sensor origin. We use a 3D variant of
Bresenham’s line algorithm [2] to increase the efficiency of
the raycasting operation.

Thereafter, we again iterate over the volume and update
the volume elements by using the hit and miss probabilities,
similarly to the approach described in [9].

C. Distance map computation

To facilitate fast collision checking for the trajectory, we
compute the Euclidean distance transform (EDT) of the oc-
cupancy volume. This way, a drone approximated by the
bounding sphere can be checked for collision by one look-
up query. We use an efficient O(n) algorithm written by
Felzenszwalb and Huttenlocher [7] to compute EDT of the
volume, where n = N3 is the number of voxels in the grid
(the complexity is cubic in the size of the volume along a
single axis). For querying distance and computing gradient,
trilinear interpolation is used.

V. TRAJECTORY OPTIMIZATION

The local replanning problem is represented as an optimiza-
tion of the following cost function:

Etotal = Eep + Ec + Eq + El, (15)

where Eep is an endpoint cost function that penalizes position
and velocity deviations at the end of the optimized trajectory
segment from the desired values that usually come from the
global trajectory; Ec is a collision cost function; Eq is the cost
of the integral over the squared derivatives (acceleration, jerk,
snap); and El is a soft limit on the norm of time derivatives
(velocity, acceleration, jerk and snap) over the trajectory.

A. Endpoint cost function

The purpose of the endpoint cost function is to keep the
local trajectory close to the global one. This is achieved by

penalizing position and velocity deviation at the end of the
optimized trajectory segment from the desired values that
come from the global trajectory. Because the property is
formulated as a soft constraint, the targeted values might not
be achieved, for example, because of obstacles blocking the
path. The function is defined as follows:

Eep = λp(p(tep)− pep)2 + λv(p
′(tep)− p′ep)2, (16)

where tep is the end time of the segment, p(t) is the trajectory
to be optimized, pep and p′ep are the desired position and
velocity, respectively, λp and λv are the weighting parameters.

B. Collision cost function

Collision cost penalizes the trajectory points that are within
the threshold distance τ to the obstacles. The cost function is
computed as the following line integral:

Ec = λc

∫ tmax

tmin

c(p(t))||p′(t)||dt, (17)

where the cost function for every point c(x) is defined as
follows:

c(x) =

{
1
2τ (d(x)− τ)2 if d(x) ≤ τ
0 if d(x) > τ,

(18)

where τ is the distance threshold, d(x) is the distance to the
nearest obstacle, and λc is a weighting parameter. The line
integral is computed using the rectangle method, and distances
to the obstacles are obtained from the precomputed EDT by
using trilinear interpolation.

C. Quadratic derivative cost function

Quadratic derivative cost is used to penalize the integral
over square derivatives of the trajectory (acceleration, jerk,
and snap), and is defined as follows:

Eep =

4∑
i=2

∫ tmax

tmin

λqi(p
(i)(t))2dt. (19)

0 2 4 6 8 10
0

200

400

600

800

1000 Soft Limit Cost Function

Fig. 5: Soft limit cost function l(x) proposed in Section V-D
for pmax equals three (red), six (green), and nine (blue). This
function acts as a soft limit on the time derivatives of the
trajectory (velocity, acceleration, jerk, and snap) to ensure they
are bounded and are feasible to execute by the MAV.

The above function has a closed-form solution for trajectory
segments represented using B-splines.

D. Derivative limit cost function

To make sure that the computed trajectory is feasible, we
must ensure that velocity, acceleration and higher derivatives
of position remain bounded. This requirement can be included
into the optimization as a constraint ∀t : p(k)(t) < pkmax, but
in the proposed approach, we formulate it as a soft constraint
by using the following function:

Eep =

4∑
i=2

∫ tmax

tmin

l(p(i)(t))dt, (20)

where l(x) is defined as follows:

l(x) =

{
exp((p(k)(x))2 − (pkmax)2)− 1 if p(k)(x) > pkmax
0 if p(k)(x) ≤ pkmax

(21)

This allows us to minimize this cost function by using any
algorithm designed for unconstrained optimization.

E. Implementation details

To run the local replanning algorithm on the drone, we first
compute a global trajectory by using the approach described in
[21]. This gives us a polynomial spline trajectory that avoids
all mapped obstacles. Thereafter, we initialize our replanning
algorithm with six fixed control points at the beginning of
the global trajectory and C control points that need to be
optimized.

In every iteration of the algorithm we set the endpoint
constraints (Sec. V-A) to be the position and velocity at tep
of the global trajectory. The collision cost (Sec. V-B) of the
trajectory is evaluated using a circular buffer that contains
measurements obtained using the RGB-D camera mounted
on the drone. The weights of quadratic derivatives cost (Sec.
V-C) are set to the same values as those used for global
trajectory generation, and the limits (Sec. V-D) are set 20%
higher to ensure that the global trajectory is followed with the
appropriate velocity while laterally deviating from it.

Algorithm Success
Fraction

Mean
Norm.
Path

Length

Mean
Compute
time [s]

Inf. RRT* + Poly 0.9778 1.1946 2.2965
RRT Connect + Poly 0.9444 1.6043 0.5444
CHOMP N = 10 0.3222 1.0162 0.0032
CHOMP N = 100 0.5000 1.0312 0.0312
CHOMP N = 500 0.3333 1.0721 0.5153
[17] S = 2 jerk 0.4889 1.1079 0.0310
[17] S = 3 vel 0.4778 1.1067 0.0793
[17] S = 3 jerk 0.5000 1.0996 0.0367
[17] S = 3 jerk + Restart 0.6333 1.1398 0.1724
[17] S = 3 snap + Restart 0.6222 1.1230 0.1573
[17] S = 3 snap 0.5000 1.0733 0.0379
[17] S = 4 jerk 0.5000 1.0917 0.0400
[17] S = 5 jerk 0.5000 1.0774 0.0745
Ours C = 2 0.4777 1.0668 0.0008
Ours C = 3 0.4777 1.0860 0.0011
Ours C = 4 0.4888 1.1104 0.0015
Ours C = 5 0.5111 1.1502 0.0021
Ours C = 6 0.5555 1.1866 0.0028
Ours C = 7 0.5222 1.2368 0.0038
Ours C = 8 0.4777 1.2589 0.0054
Ours C = 9 0.5777 1.3008 0.0072

TABLE I: Comparison of different path planning approaches.
All results except thouse of the presented study are taken
from [17]. Our approach performs similarly to approaches
using polynomial splines without restarts, which indicates that
B-splines can represent trajectories similar to those repre-
sented by polynomial splines. Lower computation times of
our approach can be explained by the fact that unconstrained
optimization occurs directly on the control points, unlike other
approaches where the problem must first be transformed into
an unconstrained form.

After optimization, the first control point from the points
that were optimized is fixed and sent to the MAV position
controller. Another control point is added to the end of the
spline, which increases tep and moves the endpoint further
along the global trajectory.

For optimization we use [10], which provides an interface
to several optimization algorithms. We have tested the MMA
[24] and BFGS [13] algorithms for optimization, with both
algorithms yielding similar performance.

VI. RESULTS

In this section, we present experimental results obtained
using the proposed approach. First, we evaluate the mapping
and the trajectory optimization components of the system
separately for comparison with other approaches and justify
their selection. Second, we evaluate the entire system in
a realistic simulator in several different environments, and
finally, present an evaluation of the system running on real
hardware.

A. Three-dimensional circular buffer performance

We compare our implementation of the 3D circular buffer
to the popular octree-based solution of [9]. Both approaches
use the same resolution of 0.1 m. We insert the depth maps

Fig. 6: Result of local trajectory replanning algorithm running
in a simulator on the forest dataset. The global trajectory
is visualized in purple, local trajectory is represented as a
uniform quintic B-spline, and its control points are visualized
in cyan. Ground-truth octomap forest model is shown for
visualization purposes.

sub-sampled to the resolution of 160 × 120, which come
from a real-world dataset [23]. The results (Fig. 2) show that
insertion of the data is more than an order of magnitude
faster with the circular buffer, but only a limited space can
be mapped with this approach. Because we need the map of a
bounded neighborhood around the drone for local replanning,
this drawback is not significant for target application.

B. Optimization performance

To evaluate the trajectory optimization we use the forest
dataset from [17]. Each spline configuration is tested in 9
environments with 10 random start and end positions that
are at least 4 m away from each other. Each environment
is 10 × 10 × 10 m3 in size and is populated with trees
with increasing density. The optimization is initialized with
a straight line and after optimization, we check for collisions.
For all the approaches, the success fraction, mean normalized
path length, and computation time are reported (Table I).

The results of the proposed approach are similar in terms
of success fraction to those achieved with polynomial splines
from [17] without restarts, but the computation times with the
proposed approach are significantly shorter. This is because the
unconstrained optimization employed herein directly optimizes
the control points, while in [17], a complicated procedure to
transform a problem to the unconstrained optimization form
[21] must be applied.

Another example of the proposed approach for trajectory
optimization is shown in Figure 3, where a global trajectory
is generated through a pre-defined set of points with an
obstacle placed in the middle. The optimization is performed
as described in Section V-E, with the collision threshold τ set
to 0.5 m. As can be seen in the plot, the local trajectory in
the collision free regions aligns with the global one, but when
an obstacle is encountered, a smooth trajectory is generated
to avoid it and ensure that the MAV returns to the global
trajectory.

Operation
Computing

3D
points

Moving
volume

Inserting
mea-
sure-
ments

SDF
compu-
tation

Trajectory
opti-
mization

Time
[ms] 0.265 0.025 0.518 9.913 3.424

TABLE II: Mean computation time for operations involved in
trajectory replanning in the simulation experiment with depth
map measurements sub-sampled to 160×120 and seven control
points optimized.

C. System simulation

To further evaluate our approach, we perform a realistic
simulation experiment by using the Rotors simulator [8]. The
main source of observations of the obstacles is a simulated
RGB-D camera that produces VGA depth maps at 20 FPS.
To control the MAV, we use the controller developed by Lee
et al. [12], which is provided with the simulator and modified
to receive trajectory messages as control points for uniform B-
splines. When there are no new commands with control points,
the last available control point is duplicated and inserted into
the B-spline. This is useful from the viewpoint of failure case
because when an MAV does not receive new control points,
it will slowly stop at the last received control point.

We present the qualitative results of the simulations shown
in Figures 1 and 6. The drone is initialized in free space
and a global path through the world populated with obstacles
is computed. In this case, the global path is computed to
intersect the obstacles intensionally. The environment around
the drone is mapped by inserting RGB-D measurements into
the circular buffer, which is then used in the optimization
procedure described above.

In all presented simulation experiments, the drone can
compute a local trajectory that avoids collisions and keeps it
close to the global path. The timings of the various operations
involved in trajectory replanning are presented in Table II.

D. Real-world experiments

We evaluate our system on a multicopter in several outdoor
experiments (Fig. 4). In these experiments, the drone is initial-
ized without prior knowledge of the map and the global path
is set as a straight line with its endpoint in front of the drone
1 m above the ground. The drone is required to use onboard
sensors to map the environment and follow the global path
avoiding trees, which serve as obstacles.

We use the AscTec Neo platform equipped with a stereo
camera for estimating drone motion and an RGB-D camera
(Intel Realsense R200) for obstacle mapping. All computations
are performed on the drone on a 2.1 GHz Intel i7 CPU.

In all presented experiments, the drone can successfully
avoid the obstacles and reach the goal position. However, the
robustness of the system is limited at the moment owing to
the accuracy of available RGB-D cameras that can capture
outdoor scenes.

VII. CONCLUSION

In this paper, we presented an approach to real-time local
trajectory replanning for MAVs. We assumed that the global
trajectory computed by an offline algorithm is provided and
formulated an optimization problem that replans the local
trajectory to follow the global one while avoiding unmodeled
obstacles.

We improved the optimization performance by representing
the local trajectory with uniform B-splines, which allowed us
to perform unconstrained optimization and reduce the number
of optimized parameters.

For collision checking we used the well-known concept
of circular buffer to map a fixed area around the MAV,
which improved the insertion times by an order of magnitude
compared to those achieved with an octree-based solution.

In addition, we presented an evaluation of the complete
system and specific sub-systems in realistic simulations and
on real hardware.

ACKNOWLEDGMENTS

This work has been partially supported by grant CR 250/9-
2 (Mapping on Demand) of German Research Foundation
(DFG) and grant 608849 (EuRoC) of European Commission
FP7 Program.

We also thank the authors of [17] for providing their dataset
for evaluation of the presented method.

REFERENCES

[1] Markus W Achtelik, Simon Lynen, Stephan Weiss,
Margarita Chli, and Roland Siegwart. Motion-and
uncertainty-aware path planning for micro aerial vehicles.
Journal of Field Robotics, 2014.

[2] John Amanatides and Andrew Woo. A fast voxel traver-
sal algorithm for ray tracing. In Eurographics 87, 1987.

[3] Michael Burri, Helen Oleynikova, , Markus W. Achtelik,
and Roland Siegwart. Real-time visual-inertial mapping,
re-localization and planning onboard MAVs in unknown
environments. In Intelligent Robots and Systems, 2015.

[4] Maurice G Cox. The numerical evaluation of B-splines.
IMA Journal of Applied Mathematics, 1972.

[5] Carl De Boor. On calculating with B-splines. Journal of
Approximation theory, 1972.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,
and James Diebel. Practical search techniques in path
planning for autonomous driving. Ann Arbor, 2008.

[7] Pedro F Felzenszwalb and Daniel P Huttenlocher. Dis-
tance transforms of sampled functions. Theory of Com-
puting, 2012.

[8] Fadri Furrer, Michael Burri, Markus Achtelik, and
Roland Siegwart. Robot operating system (ROS). Studies
in Computational Intelligence, 2016.

[9] Armin Hornung, Kai Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 2013.

[10] Steven G. Johnson. The nlopt nonlinear-optimization
package. URL http://ab-initio.mit.edu/nlopt.

[11] Dongwon Jung and Panagiotis Tsiotras. On-line path
generation for small unmanned aerial vehicles using B-
spline path templates. In AIAA Guidance, Navigation
and Control Conference and Exhibit, 2008.

[12] Taeyoung Lee, Melvin Leoky, and N Harris McClam-
roch. Geometric tracking control of a quadrotor uav on
SE(3). In Conference on Decision and Control, 2010.

[13] Dong Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
Programming, 1989.

[14] D. Mellinger and V. Kumar. Minimum snap trajectory
generation and control for quadrotors. In International
Conference on Robotics and Automation, 2011.

[15] Mark Mueller, Markus Hehn, and Raffaello D’Andrea.
A computationally efficient algorithm for state-to-state
quadrocopter trajectory generation and feasibility verifi-
cation. In Intelligent Robots and Systems, 2013.

[16] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale
using voxel hashing. Transactions on Graphics, 2013.

[17] Helen Oleynikova, Michael Burri, Zachary Taylor, Juan
Nieto, Roland Siegwart, and Enric Galceran. Continuous-
time trajectory optimization for online UAV replanning.
In International Conference on Intelligent Robots and
Systems, 2016.

[18] Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan
Nieto, and Roland Siegwart. Voxblox: Building 3d
signed distance fields for planning. arXiv preprint
arXiv:1611.03631, 2016.

[19] Aditya Paranjape, Kevin C Meier, Xichen Shi, Soon-Jo
Chung, and Seth Hutchinson. Motion primitives and
3d path planning for fast flight through a forest. The
International Journal of Robotics Research, 2015.

[20] Kaihuai Qin. General matrix representations for B-
splines. In Sixth Pacific Conference on Computer Graph-
ics and Applications, 1998.

[21] Charles Richter, Adam Bry, and Nicholas Roy. Polyno-
mial trajectory planning for aggressive quadrotor flight in
dense indoor environments. In Robotics Research. 2016.

[22] Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers.
Volumetric 3D mapping in real-time on a cpu. In IEEE
Conference on Robotics and Automation, 2014.

[23] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the
evaluation of RGB-D SLAM systems. In Intelligent
Robots and Systems, 2012.

[24] Krister Svanberg. A class of globally convergent opti-
mization methods based on conservative convex separa-
ble approximations. Journal on Optimization, 2002.

[25] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, and Siddhartha S Srinivasa. CHOMP:
Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 2013.

http://ab-initio.mit.edu/nlopt

	I Introduction
	II Related Work
	II-A Trajectory generation
	II-B Environment representation

	III Trajectory Representation using uniform B-splines
	III-A Uniform B-splines
	III-B Comparison with polynomial trajectory representation

	IV Local Environment Map using 3D Circular Buffer
	IV-A Addressing
	IV-B Measurement insertion
	IV-C Distance map computation

	V Trajectory Optimization
	V-A Endpoint cost function
	V-B Collision cost function
	V-C Quadratic derivative cost function
	V-D Derivative limit cost function
	V-E Implementation details

	VI Results
	VI-A Three-dimensional circular buffer performance
	VI-B Optimization performance
	VI-C System simulation
	VI-D Real-world experiments

	VII Conclusion

