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Walking Stabilization Using Step Timing and Location Adjustment on the

Humanoid Robot, Atlas

Robert J. Griffin1,2, Georg Wiedebach2, Sylvain Bertrand2, Alexander Leonessa1, Jerry Pratt2

Abstract— While humans are highly capable of recovering
from external disturbances and uncertainties that result in large
tracking errors, humanoid robots have yet to reliably mimic this
level of robustness. Essential to this is the ability to combine
traditional “ankle strategy” balancing with step timing and
location adjustment techniques. In doing so, the robot is able
to step quickly to the necessary location to continue walking.
In this work, we present both a new swing speed up algorithm
to adjust the step timing, allowing the robot to set the foot
down more quickly to recover from errors in the direction
of the current capture point dynamics, and a new algorithm
to adjust the desired footstep, expanding the base of support
to utilize the center of pressure (CoP)-based ankle strategy
for balance. We then utilize the desired centroidal moment
pivot (CMP) to calculate the momentum rate of change for
our inverse-dynamics based whole-body controller. We present
simulation and experimental results using this work, and discuss
performance limitations and potential improvements.

I. INTRODUCTION

People are very adept at recovering from large distur-

bances and uncertainties when walking. Shifting the Center

of Pressure (CoP) within the available foothold (the “ankle

strategy”) is common, as is using angular momentum, by

lunging the upper body (the “hip strategy”) [1] or wind-

milling the arms [2]. Angular momentum has its limits,

though, and the control authority of the ankle strategy

decreases as the walking speed increases and becomes more

dynamic. To handle these limitations, humans quickly adjust

their step to the right location and continue walking [3].

Humanoid robots can, in theory, utilize these same ap-

proaches, but have yet to match the speed and adaptability of

humans. Robots have been demonstrated to be very capable

of walking using a set of desired footsteps, stably tracking

desired center of mass (CoM) motions, as long as the

tracking error does not become too large. This has primarily

been performed by controlling either the Zero Moment Point

(ZMP), Instantaneous Capture Point (ICP), or Divergent

Component of Motion (DCM) with momentum based meth-

ods. The Linear Inverted Pendulum Model (LIPM) has been

well utilized to generate feasible CoM motions using analytic

solutions [4], preview control [5], and Differential Dynamic

Program [6], among others. Both the ICP [7] and DCM [8]
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Fig. 1. Atlas recovering from a lateral push while stepping in place.

were introduced by splitting the LIPM dynamics into stable

and unstable components, and then controlling only this

unstable portion to maintain balance. The LIPM dynamics

have then been tracked successfully using momentum-based

whole-body control techniques with both traditional feedback

controllers [6] and LQR-based methods [9]. ICP and DCM

methods have also been used with whole-body controllers to

effectively stabilize the walking motion [10]–[12]. Due to the

limited size of the support polygon, however, these type of

tracking controllers are ill equipped to handle large tracking

errors, and have very limited effective control authority.

While angular momentum has been illustrated as providing

additional controllability [13], further improvements are still

needed to handle the large tracking errors that may result

from external disturbances and uncertainties.

To improve robustness in the face of large errors, several

authors have mimicked nature and introduced step adjust-

ment algorithms. Some works have formulated model predic-

tive controllers (MPC) as quadratic programs to achieve this

step adjustment [14]–[16]. In [14], [15], the step locations

are optimized to reject disturbances using the ZMP dynamics

while minimizing the CoM jerk to ensure smooth motions.

Instead of utilizing the ZMP dynamics, the MPC in [16]

is based on the DCM dynamics, but similarly optimizes

footstep locations while trying to provide “nice” CoM mo-

tions. Alternatively, [17] simply uses the LIPM dynamics to

determine the necessary upcoming footstep to return to the

desired step plan. This is similar to the work in [18], which

integrates the current DCM forward in time to calculate

the necessary footstep location to return to the nominal

trajectory. While highly efficient, as they are not optimizing

full trajectories, neither [17] or [18] consider the combined

effects of the ankle strategy with step adjustment.

Instead of adjusting the footstep location, however, the

http://arxiv.org/abs/1703.00477v2
 {rgriffin, sbertrand, gwiedebach, jpratt}@ihmc.us
leonessa@vt.edu


foot can also simply be set down more quickly, another

common action employed by humans. However, adjusting

the step timing is a challenge, as it tends to result in

nonlinearities, and so it is typically viewed as fixed. [19]

uses a nonlinear optimization-based pattern generator to

find the optimized step positions and step timing given the

current CoM state, which are then tracked using a ZMP

based feedback controller. [20] augments the earlier work

of [15] by allowing the step time to vary, as well, but

again utilizes nonlinear optimization to do so. Instead, [21]

approximates this nonlinear term as a linear one, allowing

the problem to maintain its convexity and efficiency. These

methods all, however, use optimization to determine the

timing adjustment. We believe that the advantages of timing

adjustment can be captured using only the ICP dynamics.

In this work, we present a simple timing adjustment

algorithm that is highly effective when the ICP tracking error

is in the direction of the desired motion, essentially speeding

up the dynamic plan in the direction of this error. This then

greatly improves the effectiveness of the disturbance rejec-

tion with step adjustment, as the robot is able to quickly step

to the necessary location for recovery. For step adjustment,

instead of using traditional MPC techniques that optimize the

entire trajectory, we instead combine the ability to utilize

CoP control like in [15] with step adjustment to return to

the nominal ICP plan, as in [18]. This can be done by

observing that the reference ICP trajectory is a linear function

of the upcoming footstep locations. Then, by embedding a

proportional feedback controller into a quadratic program,

the reference trajectory can be optimized by adjusting the

footsteps, taking into account the CoP feedback control

action. This makes for a highly efficient algorithm that can

be run on robotic hardware in real-time at high frequencies.

II. DYNAMIC PLANNING AND CONTROL

The underlying dynamic planning algorithm utilized on

Atlas is based on the ICP, and is fully described in [22].

Note that in [22], the authors utilize the DCM, but, assuming

constant height, this is formulaically equivalent in x-y to

the ICP. We will summarize this approach in the following

paragraphs.

The ICP is a transformation of the CoM state defined as

ξ = x+
1

ω0

ẋ, (1)

where ξ = [ξx, ξy]
T

is the ICP position, x = [x, y]
T

and ẋ = [ẋ, ẏ]
T

are the CoM position and velocity, and

ω0 =
√

g/∆zcom is the natural frequency of the inverted

pendulum. By reordering this, we can see that the CoM

has stable first order dynamics with respect to the ICP,

meaning that it will converge to the ICP over time. Through

differentiation, the ICP dynamics are defined as

ξ̇ = ω0 (ξ − rcmp) , (2)

where we see that the Centroidal Moment Pivot (CMP)

point [23], rcmp, controls the ICP dynamics. From

Fig. 2. Heel-to-Toe ICP trajectory [22], with left representing instantaneous
shifting between heel and toe and CMPs, and right using smoothing splines.

Equation 2, the CMP is defined as

rcmp = ξ −
1

ω0

ξ̇, (3)

allowing it to be calculated from a given ICP trajectory.

A. Dynamic Planning

From the definition of the ICP dynamics in Equation 2,

the linear, first order differential equation has a closed form

solution

ξ(t) = eω0t (ξ0 − rcmp) + rcmp, (4)

assuming rcmp is held constant throughout t. Using this

equation, we can calculate a desired ICP trajectory for

walking, given a set of desired footsteps and desired CMP

locations in those footsteps. To more accurately represent

human-like walking, we use two CMPs per foot, one in

the heel (rcmp,H ) and one in the toe (rcmp,T ), as shown in

Figure 2 by the green circles. This results in the reference

CMP trajectory moving from the heel to the toe in the foot

while stepping.

To determine the desired ICP trajectory, we can recurse

backward from the final objective location. This can be done

by using the solution to the ICP dynamics in Equation 4,

and assuming a static CMP location. We can define the time

spent on the toe-CMP as a fraction of the full step duration,

TTH = αTHT and the corresponding time spent on the heel-

CMP as THT = (1− αTH)T . Using this, we can calculate

the ICP “corner points”, ξTH,i and ξHT,i. This results in the

dark blue trajectories in Figure 2(a).

To achieve this reference trajectory, however, an instanta-

neous shift is required from the reference CMP locations,

rcmp,H,i and rcmp,T,i. Instead, we can smooth these tra-

jectories using third order polynomial interpolation, which

guarantees smoothness of the CMP trajectory [22]. The

general goal during the transfer state is to shift the desired

CMP from the previous toe to the upcoming heel. As such,

we can define the initial ICP location at the start of double



Fig. 3. Diagram showing step plans at different walking speeds. The light
blue lines represent the ICP trajectory during swing, while the orange lines
are during transfer.

support, ξiniDS,i, and the ICP location at the end of double

support, ξeoDS,i, with respect to the corner point ξHT,i as

ξiniDS,i = rcmp,T,i−1 + e−ω0TiniDS
(

ξHT,i − rcmp,T,i−1

)

,

ξeoDS,i = rcmp,H,i + eω0TeoDS
(

ξHT,i − rcmp,H,i

)

.
(5)

The durations to compute these boundary conditions are de-

fined by TiniDS = αiniDSTDS and TeoDS = (1− αiniDS) TDS ,

where TDS is the transfer duration. These knots are shown

as the dark red circles in Figure 2(b). This spline can then

be used to compute the ICP position and velocity as a linear

function of the boundary conditions,

ξ(t) = Cξ(t)Ξbnd, ξ̇(t) = Cξ̇(t)Ξbnd. (6)

Here, the matrices Cξ and Cξ̇ encode the polynomial values

at time t. This results in the light blue and orange colored

lines in Figure 2(b). The reference CMP trajectory can then

be calculated using Equation 3.

This approach for ICP planning leads to the trajectories

shown in Figure 3, which uses αTH = αiniDS = 0.5. As the

walking speed is increased, the resulting plans become more

dynamic. The blue cross represents the desired ICP location

half-way through the swing state. As shown, as the walking

speed increases, this ICP location gets further outside of the

foot, representing more dynamic walking trajectories.

B. Control

In our momentum-based control framework, the desired

CMP position rcmp,d is transformed to the desired rate of

change of the horizontal linear momentum of the robot by

l̇ = mω2
0 (x− rcmp,d) . (7)

This becomes the momentum objective to the whole-body

controller described in [11]. rcmp,d can be calculated using a

simple proportional feedback law [13],

rcmp,d = ξ −
1

ω0

ξ̇r + kp (ξ − ξr) , (8)

where ξ is the measured ICP location. Inserting the ICP

dynamics from Equation 2 into Equation 8 yields

rcmp,d = kξ (ξ − ξr) + rcmp,r, (9)

Fig. 4. Illustration of proposed swing speed up calculation.

where kξ = kp + 1, showing that the controller simply

adjusts the CMP proportional to the current ICP error.

III. SWING SPEED UP

While in an ideal scenario, humanoid robots do not experi-

ence any tracking errors when walking, this is, unfortunately,

almost never the case. Any combination of circumstances

can combine to induce these errors, from joint stiction to

inaccurate dynamic models to external disturbances. Most

commonly, some form of proportional feedback controller,

as in Equation 8, is employed to correct for this tracking

error. This results in applying additional corrective forces to

drive the ICP back to the desired path.

An alternative to providing corrective forces during swing

is to adjust the timing of the step. This is a technique

commonly utilized by people; when pushed, we will rapidly

put our foot down to recover, in addition to or in place

of adjusting the step. If the error occurs along the current

ICP trajectory, this then requires no corrective forces at

all, instead only setting the foot down. Additionally, when

combined with step adjustment strategies, step timing can

be very effective for assisting in rejecting significant ICP

tracking errors. Due to the exponential relationship between

the ICP dynamics and the step time, as shown in Equation 4,

the required step adjustment to recover from tracking errors

increases exponentially as the swing time increases. This

means that the inverse also holds: decreasing the swing time

exponentially decreases the required step adjustment.

We would like to find a time advancement, ∆t, then, such

that, at t+ = t+∆t, the reference ICP, ξp, is as close to the

estimated ICP as possible. From the definition of the ICP

dynamics, this value lies on the vector ξt − ξr, where ξt

is the final ICP location at touchdown. This is an accurate

description of the ICP dynamics, assuming that the location

of rcmp,r does not change during swing; a valid assumption

given appropriate planning. ξ can be projected onto this

vector to find ξp by

ξp = ξr + (ξ − ξr)
T
(ξt − ξr)

(ξt − ξr)

‖ξt − ξr‖
, (10)

as shown in Figure 4.

From ξp, we can calculate how much further ahead in time

that point is using Equation 4, setting the projected ICP as

the end condition,

ξp = eω0∆t (ξr − rcmp,r) + rcmp,r. (11)

From here, ∆t can be solved for by

∆t =
1

ω
loge

(

ξp − rcmp,r

ξr − rcmp,r

)

. (12)



Fig. 5. Speeding up the plan can be very effective when the error is in the
direction of the dynamics, as in (a) and (b), but not when it is perpendicular
to this motion, as in (c).

The ICP plan is then advanced to the new time, t+. To track

the swing foot trajectory, however, instead of advancing the

time, we calculate a speed up factor σ that will cause the

remaining duration to pass more quickly. σ can be calculated

using ∆t as

σ =
TSS − t

TSS − t+
(13)

where TSS is the desired swing time. This approach prevents

discontinuities in the desired position for the swing foot.

This control technique is very effective for compensating

for errors in the direction of the desired motion, such as being

pushed from behind while walking forward, as shown in

Figure 5. If the robot is taking slower steps, as in Figure 5(a),

some tracking error purely in the x direction is still on the

ICP plan, requiring no corrective forces. If we take faster

steps, as in Figure 5(b), significant forward error still results

in relatively small tracking errors once the plan is sped

up. However, this speed up approach is not very effective

when the errors are perpendicular to the stepping motion

(Figure 5(c)). Here, the tracking error is only marginally

reduced by projecting the ICP onto the plan, requiring

either significant corrective forces or step adjustment to

compensate.

IV. STEP ADJUSTMENT

The main objective of the step adjustment algorithm is to

combine a proportional feedback controller with one that can

adjust the upcoming footsteps. As we showed in section III,

speeding up the swing is only effective for errors in the

directions of the desired ICP dynamics. When these errors

are perpendicular to the dynamics, CMP-based control must

be used to try and return the ICP to the reference trajectory.

The control authority granted by moving this value is limited,

though, which is equivalent to saying that some tracking

errors are too great to return to the nominal plan. In this

case, the only remaining action is to adjust the upcoming

footsteps, allowing the footstep to be moved in the direction

of the current ICP dynamics. When combined with the ability

speed up the swing plan, this becomes particularly effective,

allowing the robot to step quickly to the necessary location

to return to the nominal walking plan after N steps.

A. Recursive Dynamics

Given a footstep plan, we can define N steps to consider

for adjustment. We can then define the first static ICP corner

point in the plan, ξHT,N+1, as ξf, from which the local

reference value will be defined. Based on Equation 4, we can

see that the ICP corner points are simply linear functions of

ξf and the N heel and toe CMP locations. This is formally

defined by

ξeo =γfξf +
∑N

i=0
(γT,ircmp,T,i + γH,ircmp,H,i) , (14)

where ξeo is ξTH,0 if the robot is currently in the swing state

and ξHT,0 if in transfer. The scalar multipliers γf, γT,i, and

γH,i are computed in Algorithm 1. If we observe that the

CMP locations can be defined relative to footstep positions

by

rcmp,T,i = roff,T,i + rf,i, rcmp,H,i = roff,H,i + rf,i. (15)

Equation 14 can then be rewritten as a linear function of the

step positions,

ξeo =γfξf +Ξoff + γT,0rcmp,T,0 + γH,0rcmp,H,0

+
∑N

i=1
(γT,i + γH,i) rf,i,

(16)

where

Ξoff =
∑N

i=1
(γT,iroff,T,i + γH,iroff,H,i) .

Algorithm 1 Recursive multipliers

1: if Single-Support then

2: ξeo = ξTH,0;
3: γT,0 = 1− e−ω0TTH,0 ;
4: γH,0 = 0;

5: γf = e−ω0(TTH,0+
∑N

i=1
Ti);

6: for i = 1,N do

7: γT,i = e−ω0(TTH,0+THT,i+
∑i−1

j=1
Tj) (1− e−ω0TTH,i

)

;

8: γH,i = e−ω0(TTH,0+
∑i−1

j=1
Tj) (1− e−ω0THT,i

)

;
9: end for

10: else

11: ξeo = ξHT,0;
12: γT,0 = e−ω0THT,0

(

1− e−ω0TTH,0
)

;
13: γH,0 = 1− e−ω0THT,0 ;

14: γf = e−ω0

∑N
i=0

Ti ;
15: for i = 1,N do

16: γT,i = e−ω0(THT,i+
∑i−1

j=0
Tj) (1− e−ω0TTH,i

)

;

17: γH,i = e−ω0

∑i−1

j=0
Tj
(

1− e−ω0THT,i
)

;
18: end for

19: end if

We can then define the boundary conditions for the

splines in transfer and swing for Equation 6. Using ξeo from

Equation 16, we can define Ξbnd as

Ξbnd =AFξeo +BT,0rcmp,T,0 +BH,0rcmp,H,0, (17)

where AF,BT,0, and BH,0 are calculate the boundary con-

ditions from the corner points using the ICP dynamics.

Combining Equation 16 and Equation 17 yields ξr as a

linear function of the step positions,

ξr = ΦF ξf +
∑N

i=1
Γirf,i +Φcnst, (18)



where

ΦF =γfCξ(t
+)AF,

Γi =(γT,i + γH,i)Cξ(t
+)AF,

Φcnst =Cξ(t
+) (AFΞoff + (BT,0 + γT,0AF) rcmp,T,0

+(BH,0 + γH,0AF) rcmp,H,0) .

B. Objective Function

Equation 9 can be rearranged to yield the corrective CMP

action,

δ = rcmp,d − rcmp,r = kξ (ξ − ξr) , (19)

where δ encodes the amount of corrective forces the robot

exerts to try to return to the nominal plan. By inserting

Equation 18, we can see that the feedback action is a function

of the current state of the robot ξ, the current time t+,

and the upcoming footsteps, rf,i. Using this, we can define

a quadratic program (QP) that optimizes between using

feedback control and footstep adjustment, which can be

written as

min
rf,i,δ

N
∑

i=1

‖rf,i − rf,r,i‖
2

Qf,i
+ ‖δ‖

2

R + ‖η‖
2

Qη

subject to δ = kξ

(

ξ −ΦF ξf −

N
∑

i=1

Γirf,i −Φcnst − η

)

,

(20)

where Qf,i, Qη , and R are positive definite weighting matri-

ces. The weight Qf,i penalizes deviations of the ith footstep

position, rf,i, from the ith reference footstep position, rf,r,i.

The weight R penalizes the use of corrective forces. η is a

slack variable introduced to the dynamics to guard against

over constraining the problem, and is minimized by a high

weight matrix, Qη .

This controller can be seen to allow the two fundamentally

different types of walking to emerge. If we require that

rf,i = rf,r,i, the robot can no longer adjust its feet, and

walks purely by controlling the ICP with the CMP, as with a

standard proportional feedback controller. If δ is constrained

to equal zero, no correct forces are allowed, and the robot is

only allowed to balance through step adjustment, similar to

walking with only point feet and a point mass.

In practice, through proper tuning, we can ensure that the

robot utilizes its full control authority with the CMP before

adjusting the footsteps by setting Qf,i much greater than R.

The required footstep adjustment has an exponential relation

with the tracking error, but only a linear one with δ. As such,

with proper weighting, increasing δ incurs much lower costs

than adjusting the footstep. However, δ has limits, which

we impose through constraints on the QP in the following

section. This leads to the robot adjusting the footsteps only

when absolutely necessary.

C. Problem Constraints

While the CMP is, theoretically, allowed to exit the sup-

port polygon through the generation of angular momentum,

in practice, this should be used sparingly. The amount of

angular momentum that can be generated is limited, and
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Fig. 6. Maximum push the robot can recover from and continue walking,
at different push angles and step speeds, as a function of the robot weight,
using different push recovery methods. The push is applied to the center of
mass for 0.1s. Forward steps are 0.5m long.

it must always be “paid back” by removing it from the

system. As such, we can constrain the CMP to be within

the support polygon by defining a series of equality and

inequality constraints

rcmp,d =
∑

c βcrc, 1 =
∑

c βc, 0 ≤ βc, ∀c. (21)

This defines the CMP as being a sum of the corner points,

rc, of the polygon.

Additional constraints can be placed on the footstep loca-

tions, as long as they represent an affine function

Ar,irf,i ≤ br,i, ∀i. (22)

In this work, we used this to define a simple rectangular

reachability constraint for the robot. This formulation can

also be used to constrain the footstep location to permissible

convex regions, such as the planar regions used in the original

footstep planning algorithm.

V. RESULTS AND DISCUSSION

We used the above walking controller both in simulation

and on the hardware platform for the Atlas robot. Using a

quad-core 2.7 GHz 3rd generation i7 processor, the QP was

solved using a custom active-set solver at in an average 80µs,

while the entire algorithm took an average 220µs, allowing

it to be easily solved in real-time.

To explore the effectiveness of different ICP control mech-

anisms, we conducted simulations comparing the maximum

external disturbance that can be recovered from by the

four different control mechanisms: proportional feedback

only, feedback with step adjustment, feedback with swing



speed up, and feedback with step adjustment and swing

speed up. The results of applying disturbances in different

directions to different step motions are shown in Figure 6.

Each disturbance was applied to the center of mass of the

robot for 0.1s halfway through the step. The step motions

included 0.5m forward and stationary steps, both fast (0.95s)

and slow (2.0s). This minimum swing time allowed after

speed up was 0.6s. The inclusion of additional stabilizing

mechanisms (step adjustment, etc.) to the feedback controller

was found to improve disturbance rejection, while adding

both speed up and step adjustment was consistently the most

robust method. Speed up was generally more effective than

step adjustment when walking slowly, as the corresponding

required step adjustment was quite large due to the slower

step speed. Exceptions to this are when tracking errors are

perpendicular to the dynamics, such as being pushed forward

when stepping in place. As expected, the effectiveness of step

adjustment for stabilization was dramatically increased by

increasing the step speed. It is worth noting that the magni-

tude of recoverable disturbances using only feedback did not

significantly change between the different step speeds. Using

both speed up and step adjustment, the largest recoverable

disturbance in simulation was 1.92 times its weight, or

2937N , when stepping quickly in place.

The real robot was also able to successfully use this

algorithm to adjust the step timing and locations to com-

pensate for large tracking errors. We forced these tracking

errors by pushing the robot while stepping. In both presented

experiments, the steps durations were 2s, with 1s spent

in transfer and 1s in swing. Figure 7 shows the results of

applying an outward push when stepping in place. As can

be seen, the reference time is advanced during swing to speed

up the ICP trajectory, and the foot is adjusted outward to help

maintain balance, with some tracking errors due to the high

speed required in the adjustment. Figure 8 shows the results

of a forward push while the robot is walking. Again, the

swing state is sped up, and the step adjusted in the direction

of the push. Low frequency oscillations in the ICP position

occurred after heel strike due to the high speed at which the

robot set the foot down, but were quickly damped out. The

impact speed also resulted in additional ICP tracking errors in

the direction of the stance foot, but this was easily corrected

given the additional control authority during transfer.

While the presented algorithm requires fairly accurate

control of the CoP and CMP, the ability to adjust the step

outward based on the ICP dynamics somewhat relaxes this

requirement. By expanding the support polygon, the robot’s

CoP control authority is less likely to become saturated

by operating further from the support polygon boundary,

where accuracy is lowest as well. On the Atlas robot, the

CoP is controllable with an accuracy of approximately 2cm
due to good force control in the ankle joints. Based on

the constraints we have set on the CMP location, this is

roughly equivalent to the CMP accuracy. However, as we are

not directly measuring the CMP, there may be unquantified

tracking errors caused by unmeasured deviations of the actual

CMP from the actual CoP. Greater control authority could

Fig. 7. Results of applying an outward push when stepping in place. The
gray background represents the transfer phase. The dashed blue foot is the
reference footstep, the dashed red footstep is the reference footstep with
adjustment, and the black footstep is the actual foot location.

Fig. 8. Results of applying an forward push when walking forward. The
gray background represents the transfer phase. The dashed blue foot is the
reference footstep, the dashed red footstep is the reference footstep with
adjustment, and the black footstep is the actual foot location.

be gained with angular momentum by allowing the CMP

to leave the support polygon, as well. This could be done

by adding an additional control variable to the optimization

describing deviations from the CMP and the CoP, and then

minimizing this deviation while constraining the CoP.

The proposed algorithm does not significant provide im-

provements against tracking errors in the inward direction of

the step. The step reachability polygon does not allow for

any crossover of the steps, simply constraining them to a

minimum inward position. This is due to the difficulties in

defining a reachability region that enables crossover while

maintaining convexity, as well as range of motion limitations.

By defining multiple possible reachability constraints and

selecting the active one based on the current step type and



tracking errors, however, crossover could be possible.

A variety of factors led to performance limitations of

this controller when ported from simulation to hardware.

These include: Errors in the robot model. When using an

inverse dynamics-based approach, model accuracy greatly

affects the resulting ground reaction forces. If the controller

cannot effectively achieve the CoP at the support polygon

edge, it will not be able to as successfully mitigate tracking

errors; Actuator speed and torque limits, which bounds how

quickly the robot can step. By increasing this step speed,

we expect the effectiveness of step adjustment algorithms

to greatly improve, as illustrated in Figure 6; Sensor noise,

which greatly affects the precision of the ICP calculation.

Measurement uncertainty further exacerbates inaccuracies in

the inverse-dynamics calculation, as well as other task-space

controllers.

VI. CONCLUSION

The ability to robustly recover from large tracking errors

is essential to improving the capabilities of humanoid robots,

and represents a critical step forward in enabling them

to competently function in uncertain environments. In this

work, we presented a new approach for adjusting both step

timing and locations to reject external disturbances and

their corresponding tracking errors. By including step timing

adjustment, the required step adjustment to reject errors is ex-

ponentially decreased. Our algorithm formulates this problem

in a highly efficient manner, allowing it to be solved quickly

in real-time. In the future, we hope to incorporate angular

momentum in the algorithm to further increase the control

authority available to the robot. We also plan to integrate

the step timing adjustment into the optimization algorithm,

borrowing from the gradient descent approaches used by air

vehicles [24]. We will additionally include environmental

information to allow the step adjustment algorithm to be used

effectively in dynamic and cluttered environments.
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