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Abstract—Understanding the 3D structure of a scene is
of vital importance, when it comes to developing fully
autonomous robots. To this end, we present a novel deep
learning based framework that estimates depth, surface
normals and surface curvature by only using a single RGB
image. To the best of our knowledge this is the first work
to estimate surface curvature from colour using a machine
learning approach. Additionally, we demonstrate that by
tuning the network to infer well designed features, such as
surface curvature, we can achieve improved performance at
estimating depth and normals.This indicates that network
guidance is still a useful aspect of designing and training
a neural network. We run extensive experiments where the
network is trained to infer different tasks while the model
capacity is kept constant resulting in different feature maps
based on the tasks at hand. We outperform the previous
state-of-the-art benchmarks which jointly estimate depths
and surface normals while predicting surface curvature in
parallel.

I. INTRODUCTION
Extracting information from raw data is a well studied

problem in robotics. A visual image is one such form of
raw data and has been widely used in the community to
tackle a range of problems including image segmentation
[1], localization and mapping [2], visual servoing [3] etc.
and there exist a continuous stream of research which look
at maximizing the amount of information extracted. In this
paper we show that we can estimate geometric quantities
such as surface curvature using only RGB images as input.
To our knowledge this is the first work to demonstrate such
a capability.

Surface Curvature is an important geometric surface
feature, that indicates the rate at which the direction of
the normals change on the surface at any particular point.
It has been shown to be particularly useful for the task of
segmentation on range image and 3D data [4, 5, 6, 7]. A
key challenge in accurately estimating surface curvature is
its sensitivity to noise in the input data, as it is a second
order surface derivative, it is affected quadratically by
noise. Previous works have shown that neural networks
can be used to provide accurate geometric estimates from
just single RGB images [8, 9, 10, 11], including estimating
depth and normals. In this work we extend our network to
estimate principal surface curvatures as well as depth and
normals and demonstrate that we can accurately perform
this task from a single RGB image.

Contrary to the popular belief that hand-engineered
features are inferior compared to learnt features, we ar-
gue that well designed features combined with machine
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Fig. 1: A selection of curvature predictions made by
our system. The left column shows the corresponding
RGB image from the NYUv2 test dataset which was used
as the only source of information to estimate curvature.
The middle column shows the ground truth curvature
computed using the depth data and the right image shows
the prediction of our network. The Positive curvatures are
shown in blue, Negatives in red, Saddles in green and
Planes in white.

learnt representations provide improved performance. It
should be stressed that the features designed are not hand
calculated by us, but rather predicted by the network
itself as part of the inference pipeline. More concretely,
we inform the network in order to accurately estimate a
single quantity such as depth, normals or curvature the
network should learn an internal representation of the
other two quantities. We demonstrate this by estimating
surface curvature, surface normals and depth in a multi
task learning framework which gives us superior results
compared to training them as individual tasks. We employ
a two-stage learning process where coarse level predictions
of all three quantities are used as feature maps for the
finer layers. Our work is similar to [8] in that sense, as
Eigen et al. also estimated three quantities (depth, surface
normals and semantic labels) using a single network. The
fundamental difference between ours and their approach
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is that the three quantities we try to estimate are more
tightly coupled at a primitive level where as the semantic
labels, although clearly related, should be considered a
higher order quantity compared to its counterparts depths
and normals. We show both quantitatively and qualitatively
that we are able to achieve better results on depth and
surface normals on the NYUv2 dataset [12] by estimating
a view point invariant quantity (surface curvature) jointly
with depth and normals. We believe that robotic appli-
cations that revolve around segmentation tasks such as
the Amazon Picking Challenge could benefit from our
approach. Our contributions are as follows :
• A novel technique to estimate surface curvature of

objects using purely RGB images.(Method: Section
IV-C, Results: Section VI-C)

• A framework which predicts depth,surface normals
and curvature jointly.(Method: Section IV, Results:
Section VI)

• Demonstrate that joint training can improve the ac-
curacy of all three tasks while keeping the model
capacity fixed (Method: Section V-C, Results: Tables
I, II, III.

II. RELATED WORK

In this section we review existing work in the literature
that is related to this paper and in turn inspired the ideas
presented. We take a look at traditional approaches used to
compute surface curvature from raw depth data, then we
summarize how deep learning has been used to predict
information from images and finally, we discuss how the
problem of learning multiple tasks in a single platform
was performed using deep learning.

Surface Curvature Estimation Surface Curvature es-
timation is a well explored topic in robotics and computer
vision. It has been shown to be useful for object segmenta-
tion [4, 5, 7, 6] in depth scans and RGB-D imagery. There
are several popular approaches to estimating the surface
curvature. One technique is to simply twice-differentiate
the surface [4, 6], but this can lead to a high sensitiv-
ity to noise in the data and generally requires removal
or rejection of surface outliers. Another technique is to
estimate the surface curvature from a locally connected
surface mesh based on the change in adjacent facet normal
angles [7, 13, 14]. This method is predominantly used for
computer graphics and low-noise data as it operates on a
small neighbourhood of facets. Yet another technique is
to use locally fit surface quadrics and directly extract the
principal curvatures from their parameterization [5, 15],
which has been shown to be robust to noisy data and fast
enough to be computed in real-time [16]. In this work we
use the approach in [16], to compute surface curvature and
surface normals from the training data sourced from the
NYUv2 dataset [12] as they have shown it performs well
on range image data of the type present in the dataset.

Predicting Information using Deep Neural Networks
Convolutional Neural Networks (CNNs) have been very
effectively applied to a range of robotic and vision tasks
including grasp pose detection [17, 18], image classifica-
tion [19, 20], semantic segmentation [1], depth estimation
[8, 9, 10, 11], surface normal estimation [21, 22, 8]. Our

work is more closely related to the latter two tasks as we
demonstrate surface curvature can be predicted using RGB
images as the only input. We began this work by using
the VGG architecture [23] as a starting point to predict
surface curvature in a standalone network and extended it
to estimate depth and surface normals as well, in the one
network.

Prior to the resurgence of neural networks depth was
either computed using a Simultaneous Localisation and
Mapping (SLAM) system [24, 2] or directly obtained from
a range sensor such as expensive LIDAR, stereo rigs, Time
of Flight (ToF) sensors or structured light sensors[25]
(Microsoft Kinect). In a robotic context going from data
to information as efficiently as possible is vital, and
predicting quantities from a single image is a step in that
direction. Saxena et al. in [10] used a supervised learning
approach that combines local and global image features by
using a Markov Random Field (MRF). The idea of using
both global and local features was further investigated by
Eigen et al. [26] using the AlexNet [19] architecture in
a multi-scale scheme. Liu et al. [9] proposed to combine
graphical models in the form of a Conditional Random
Field (CRF) with a CNN to improve the accuracy of
monocular depth estimation. More recently, Laina et al.
[11] proposed to use a far superior fully convolutional
residual architecture and obtain state-of-the-art results in
single image depth estimation.

Data driven single image surface normal estimation
was first tackled by Fouhey et al. in [27]. They used a
SVM based detector followed by an iterative optimization
scheme to extract geometrically informative primitives.
Ladicky et al. proposed to use image cues of pixel-
wise and segment based methods to generate a feature
representation that can estimate surface normals in a
boosting framework [28]. A ConvNet approach to esti-
mating surface normals in global and local scales while
incorporating numerous constraints such as room layout
and edge labels was taken by Wang et al. [21]. Recently,
Bansal et al. [22] showed that by combining hierarchy
of features from different levels of activations in a skip-
network architecture that you could generate much finer
predictions for surface normals achieving state of the art
results.

Learning Multiple Tasks In one of the earliest works
in this area Caruana et al. showed in [29] that by learning
related tasks in parallel, the performance of all tasks could
be improved, which is consistent with our findings. Multi-
ple tasks were learned in the form of material classification
and defect detection in railway fasteners in [30] where
they used Deep CNN based multi task learning for railway
track inspection. They were able to show the adaptability
of the multi task learning platform by using different
training batch sizes (due to availability of data). In our
case, all three tasks were trained with the same batch size
as training data for the derived quantities (normals and
curvature) were computed from depth. Multi task learning
algorithms were also used to perform head pose estimation
[31], web search ranking [32], face verification [33] etc.
Li et al. in their work Learning Without Forgetting [34]
demonstrated that in the presence of a model trained on
one task, it can be fine-tuned to perform better on a new



task while not hindering the performance of the previous
task by only using training data of the new task. However,
as we have access to training data for all three tasks
we train the prediction stacks jointly in order to achieve
superior performance compared to fine-tuning.

III. MODEL ARCHITECTURE

The functionalities of the model can be divided into 3
main sections. Firstly, there is a set of convolutional layers
based on the VGG16[23] architecture corresponding to
feature extraction which is followed by 2 fully connected
layers which can see the whole image in their field views.
Secondly, we have a stack of convolutional layers corre-
sponding to coarse level predictions of depths, normals
and curvatures and finally, a set of convolutional layers
which predicts the three quantities at a finer resolution.

It is worth mentioning that all the convolutional layers
in the coarse and fine level prediction stacks perform 5x5
convolutions with a stride of 1 and a pad of 2. Therefore,
the input resolution is preserved at the output. There is an
explicit up-sampling layer which up samples the coarse
level prediction from 74x55 resolution to 147x109 and
this is maintained throughout, by the final convolutional
stack as shown in Figure 2. At the end of each scale, there
are individual solvers for each of the training tasks which
essentially compute the loss and initiate the backward
propagation.

Although the overall architecture is as explained above,
in order to make sure the model capacity is kept constant
and the contribution of each new task is indeed improving
the previous tasks we make several changes during training
which is explained in the Section V-C .

IV. TASKS

A. Depth

We use the raw depth data distribution given by the
NYUv2 dataset [12] for training based on the official
train and test scene split (that is 249 training scenes
and 219 test scenes). Similar to previous approaches we
train our network to estimate depth at several scales.
The loss function used for calculating the error in the
depth estimation includes an Euclidean loss term, a scale
invariant term and a gradient term which compares the
local rate of change of the predicted and ground truth
depth values spatially. However, we do not the fix the
coarse level feature stacks while training the fine level
features (depth, normals and curvature) rather jointly train
both stacks together as opposed to [8]. For the benefit of
the reader we include the loss function in the following
equation which is the same loss criterion employed by [8].

L(D,D∗)=
n

∑
i=1

d2
i −

1
2n2

(
n

∑
i=1

di

)2

+
1
n

n

∑
i=1

(
(∇xdi)

2 +(∇ydi)
2)

(1)
where di is the difference in predicted log depth and
ground truth log depth for the valid pixels n (pixels that
contain non-zero depth values in the raw depth data), ∇xdi
is the horizontal image gradient of the difference and ∇ydi
is it’s vertical counterpart.

Fig. 2:
Visual Representation of Model Architecture

B. Surface Normals

The ground truth normals are computed using different
techniques in the literature. We estimate the normals by
fitting a quadric patch to a set of nearby points in the
point cloud. This gives a more accurate representation of
the surface compared to just fitting planar regions, while
not adding an extra time complexity as the normals are
computed as part of the curvature computation pipeline.
We use a combination of pixel wise Euclidean loss along
the three channels corresponding to the three unit vectors
i, j, k and the difference in angle between the predicted
normals and the ground truth as the loss criterion when
the normals are trained. This is expressed as

L(N,N∗) =−N ·N∗+
3

∑
i=1

(ni−n∗i )
2, (2)



where N and N∗ are the predicted and ground truth
normal respectively, ni ∈ N and n∗i ∈ N∗ are the three
components (i, j,k) of each of the normals. Inclusion of
the the Euclidean terms improves both the convergence
rate and the final accuracy of the system, compared to
using the dot product term alone.

C. Surface Curvature

We use the method from [16] to compute an estimate
of principal surface curvatures, which is computed from
a locally fit parabolic quadric. We use a sparsely sam-
pled circular patch of radius 18 pixels, to fit a quadric
at each point and extract the local principal curvature
values. We limit the principal curvature κ1,κ2 to the
range {−100,100} in order to avoid the estimation of
implausible curvatures, effectively limiting the minimum
detectable radius of curvature to be 1cm. This aligns
with the precision of the system[35] at the distances
present in the training data. This provides a dense estimate
of curvature for every point (640x480), which we then
bicubicly downsample to 120x160 to generate the LMDBs
that can be used in the training of our network. We attempt
to estimate principal curvatures directly as opposed to
Gaussian or mean curvature, as we found principal cur-
vatures to provide improved performance during training.

We employed a Euclidean loss criterion with depth
based weighting to predict surface curvature. Due to the
inherent sensor noise the computed principal curvatures
which are used as the ground truth tend to have a large
uncertainty beyond a certain distance threshold. To prevent
the network from learning these rather uncertain values we
use the following loss function

L(C,C∗) =
n

∑
i=1

(
(κ1i−κ∗1i)

2 +(κ2i−κ∗2i)
2

(1+Di)−2 , (3)

where κ1i and κ2i are the predicted principal curvatures
and κ∗1i and κ∗2i are their corresponding ground truth values
while D represents the depth in meters for the ith pixel.

V. TRAINING
A. Data Generation

We randomly augment the training data by performing
flips, translations, rotations and variations on the color
channels. The same transformation is applied to the RGB
input, ground truth depth, surface curvature and surface
normals in order to obtain consistent training data. Unlike
some notable previous approaches [8], we use the raw
depth directly from the dataset provided without any post
processing to fill holes or smooth surfaces. We also use
the raw depths to calculate the surface normals and surface
curvature, which provides a stronger link between our
three ground truth sources.

As described in Section IV-C we use the method de-
scribed in [16] to produce training data for surface normals
and surface curvature. Their approach to curvature and
normal estimation is specifically targeted for noisy data
such as that from a Microsoft Kinect, and they show that
it produces good estimates for both surface normals and
principal curvatures. We found that by scaling the ground
truth curvature values by a factor of 0.1, to produce a

similar range of values to the input depth, improved both
qualitative and quantitative results of curvature estimation.
We reverse this scaling when we provide our final predic-
tion for both principal curvatures κ1 and κ2 by multiplying
each value by 10.

B. Hyperparameters and Weight Initialisation

We use Nesterovs accelerated gradient [36] as the
optimizer with a base learning rate of 0.1 and a momentum
of 0.95 and train for 50 epochs using a NVIDIA GeForce
GTX 1080, which took approximately 4 days. Weights of
the convolutional layers corresponding to feature extrac-
tion were initialized using VGG pretrained on ILSVRC
[37] image data. We also experimented with initializing
the feature extraction layers with the VGG weights of [8]
and found that it did not give a qualitative or quantita-
tive improvement, although it converged faster. All the
convolutional layers corresponding to depth, normals and
curvature estimation and the fully connected layers were
randomly initialized using MSRA weight initialization
scheme [38] which converged much faster compared to ini-
tializing the filters from a Gaussian distribution with zero
mean and 0.01 standard deviation. Everytime when the
training loss plateaued (approximately every 10 epochs)
we halved the learning rate and continued training. Caffe
[39] was used as the learning framework and all the
experiments were carried out using a mini batch size of
16.

C. Training Separate Models With Equal Model Capacity

We train several models with equivalent model ca-
pacity to estimate quantities both separately and jointly.
We do this to demonstrate that the improved estimates
for normals and depths are not the result of increased
model capacity, but more likely the result of including
derived features as tasks to the network. Explicitly we
train 4 models, depth only, normals only, depth+normals,
depth+normals+curvature, all while maintaining a constant
model capacity for each task. More concretely, when we
train a single quantity model (depths only or normals only)
we leave the coarse level convolutional layers correspond-
ing to the other tasks in place. However, there is only a
single solver attached at the end of scale 2 based on the
training task. We would like to point the reader to Figure
3, in which we are looking at the scale 2 prediction section
of our model. When we are training all three tasks jointly,
there is a solver attached at the end of each prediction
stack. Simultaneously, we pass the coarse level predictions
to scale 3 to be refined further. In a scenario where there
is only one training task, the solver corresponding to the
training task is kept intact while the other solvers are
removed. However, the feature maps of the other stacks
are still present and now act as additional weights which
are trained using the scale 3 solver. To recapitulate, we
preserve the model capacity by keeping the number of
feature maps a constant regardless of the task/tasks that is
been trained while greatly influencing what is being learnt
by the feature maps through the use of additional tasks.



Fig. 3: A closer look at Scale 2 of the architecture for
different tasks. Top: When all three tasks are trained
jointly, there is a solver at the end of Scale 2 for all three
tasks and the coarse feature maps are passed on to Scale
3 after being concatenated together. Bottom: When only
a single task is trained(in this case depth) there is a single
solver at the end of Scale 2 and the other two stacks now
provide additional feature maps which can trained by the
Scale 3 solver(not shown in the figure).

VI. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of our
system across the three tasks. We begin with a quantitative
analysis for each of the tasks using the established bench-
marks. Then we present qualitative results of our system
and conclude this section with a segmentation example to
showcase how this work could be applied in a real life
scenario.

Depth Prediction
Type Method Relabs RMSlin RMSlog δ δ 2 δ 3

si
ng

le Liu[9] 0.230 0.824 - 0.614 0.883 0.972
Eigen[26] 0.214 0.877 0.283 0.614 0.888 0.972

Ours(Depth) 0.156 0.646 0.216 0.765 0.949 0.987
Laina[11] 0.127 0.573 0.195 0.811 0.953 0.988

jo
in

t Eigen(Alex)[8] 0.198 0.753 0.255 0.697 0.912 0.977
Ours(D+N) 0.156 0.642 0.215 0.766 0.949 0.988

Eigen(VGG)[8] 0.158 0.641 0.214 0.769 0.950 0.988
Ours(Full) 0.156 0.624 0.212 0.776 0.953 0.989

TABLE I: Depth prediction Metrics: the middle three
columns indicate errors (lower better) from ground truth,
the final three columns indicate the percentage of points
within δ n (higher better) of the ground truth (δ = 1.25).
The bold values indicate the best performing method of
each type (single,joint).

Fig. 4: Demonstrates the qualitative improvement of
our approach for depth estimation. Top: RGB image 1st

row: Eigen’s Prediction 2nd row: Our Prediction Bottom:
Ground Truth

A. Depth

We evaluate our depth predictions in the same manner
as outlined in previous work [11],[8] and the results
are tabulated in Table I. The predicted depth maps are
upsampled by a factor of 4 to match the image resolution
of 640x480 and are evaluated against the official ground
truth depth maps including the filled in areas but limited to
the region where there is a valid depth map projection. In
terms of relative performance we improve mostly in terms
of RMSlin and have similar performance for Relabs and
RMSlog, which are more related to the ratio of predicted
and ground truth depths. We have included the methods
that estimate depth alone as a single task for completeness,
although we outperform all the methods except [11] which
uses a much more powerful ResNet[20] architecture.
Based on the results of the joint task training scheme we
strongly believe that the performance of [11] could still be
improved had it been trained simultaneously with normals
and surface curvature. As we keep adding more tasks
that are based on related quantities we can see gains in
performance. Also the contribution from curvature is much
more significant (reduction of RMSE by 0.02) compared
to the contribution of normals (reduction of RMSE by
0.004). As it can be seen in Table I the contribution of
semantic labels (Eigen VGG [8]), although very small,
helps to increase the performance. But, curvature being a
more tightly connected quantity to depth gives the largest
improvement.

B. Surface Normals

We compare our normals in a similar way to [8, 21, 27].
As we don’t have access to ground truth normal data, we
compare our approach against two different methods of



Surface Normal Predictions : Compared to [28]

Angular Error Within t◦
Type Method Mean Median ≤ 11.25◦ ≤ 22.5◦ ≤ 30◦

si
ng

le

Ladicky [28] 35.3 31.2 16.4 % 36.6% 48.2%
Wang [21] 26.9 14.8 42.0% 61.2% 68.2%

Ours (Norms) 21.1 13.5 43.6% 66.6% 75.4%
Bansal et al [22] 19.8 12.0 47.9 % 70.0 % 77.8 %

jo
in

t

Eigen(Alex)[8] 23.7 15.5 39.2 % 62.0 % 71.1%
Ours (D+N) 21.1 13.6 43.6% 66.5% 75.4%

Eigen(VGG)[8] 20.9 13.2 44.4% 67.2% 75.9%
Ours (Full) 20.6 13.0 44.9% 67.7% 76.3%

Surface Normal Predictions : Compared to [16]

Angular Error Within t◦
Type Method Mean Median ≤ 11.25◦ ≤ 22.5◦ ≤ 30◦

si
ng

le Wang [21] 36.4 26.2 27.2% 45.6% 53.9%
Ours (Norms) 27.7 20.2 31.8% 53.7% 63.8%

Bansal[22] 27.1 19.0 32.8% 55.8% 65.7%

jo
in

t

Eigen(Alexnet)[8] 29.7 21.8 30.0% 51.0% 61.0%
Ours (D+N) 27.7 20.2 31.7% 53.6% 63.7%

Eigen(VGG)[8] 27.3 19.6 32.3% 54.7% 64.6%
Ours (Full) 27.2 19.6 32.9% 54.7% 64.7%

TABLE II: The mean, median angular error and the
percentage of points with an angular error less than a
threshold t◦ for several normal estimation approaches
evaluated against two different methods [28, 16].

estimating normals from the raw depth data, including the
ground truth normals as shown in [28] and the method
we use to compute our input data from [16]. Qualitatively
[28] takes a more aggressive approach to noise and pro-
duces very smoothed out estimates, while the method in
[16] produces smoothed normals but still provides sharp
edges. During evaluation the regions corresponding to the
missing depth values are masked out since the ground
truth normals can not be accurately computed on those
areas. We summarise these results in Table II and demon-
strate improved results for each normal estimation method
over previous methods. Quantitatively we approach the
performance metrics of Bansal et al. [22] who used a
skip architecture with a larger model capacity compared
to ours, although arguably qualitatively both [8] and our
approach outperform their predictions as shown in Figure
5.

Similar to depths, predicted normals also gained an
increase in accuracy when the network was trained in a
multi task platform. Although, having merely depths in
parallel did not make a noticeable change extending the
network to learn all three tasks resulted in a significant
improvement.

C. Surface Curvature

In order to evaluate the accuracy of estimating surface
curvature without access to true ground truth data we
evaluate the performance of our approach against the
method of [16]. We evaluate the predictions from our net-
work which attempts to explicitly predict curvature, to the
estimated curvature values computed from the predicted
depths produced by our own network and the network
from [8]. We compare the RMS error of each of the
principal curvatures (κ1,κ2) against the computed ground
truth and present the median error of the mean curvature
0.5∗(κ1+κ2) across two categories, planar and non-planar
regions. We define planar surfaces to be those with a radius
of curvature greater than 1 meter. As expected predicted
curvatures clearly outperform the computed curvatures

Fig. 5: Demonstrates the qualitative improvement of
our approach for normal estimation. Top: RGB image
1st row: Bansal[22], 2nd row: Eigen[8], 3rd row: Our
Prediction Bottom: Ground Truth [16]. The missing areas
in the ground truth normals coincide with those in the raw
depth images.

from depths. Furthermore, the predicted curvatures using
the joint model which learned surface normals and depths
in parallel provide better performance compared to the
model which only learnt surface curvature.

Figure 6 is included as a reference to show how the
metrics in Table III translate into visual appearance.

Principal Curvature Predictions

RMS (m−1) Median (m−1) Within σt
Method [16] κ1 κ2 planar non-planar σ1 σ2 σ3

Eigen(Depth) [8] 5.56 7.50 3.86 1.44 25.7% 33.9% 43.5%
Ours (Depth) 6.03 6.50 4.23 1.38 26.9% 34.9% 44.2%

Ours (Curvatures) 3.41 5.17 1.984 0.184 52.6% 63.2% 73.2%
Ours (joint) 2.81 4.47 1.634 0.085 63.1% 72.7% 80.3%

TABLE III: The table shows the RMS error of estimating
the principal surface curvatures (κ1,κ2), the median error
for planar and non-planar regions and the percentage of
curvatures values that are within a threshold σ1 = 0.25m−1,
σ2 = 0.5m−1, σ3 = 1m−1. The first two approaches do
not explicitly predict curvature and are computed from
the predicted depths.

D. Possible Applications For This Work

As a purely qualitative demonstration of our approach,
we show a simple example of scene segmentation that
combines information from the colour, depth and curvature
of selected scenes. We generate a simple segmentation by



Fig. 6: Demonstrates the qualitative improvement of
our approach for surface curvature estimation. Top:
RGB image 1st row: Computed surface curvature based
on Eigen’s[8] depth prediction 2nd row: Prediction of our
system Bottom: Ground Truth computed from raw depth
data

combining the gradients of colour and depth, and curvature
values. This border function b(u,v) can be expressed as

b(u,v) = wI ·∇I(u,v)+wd ·∇D(u,v)+wc ·C(u,v), (4)

where ∇I(u,v) is the the magnitude of the image intensity
gradient, ∇D(u,v) is the magnitude of the depth gradient
and C(u,v) is the curvature value at the point u,v. That is

∇I(u,v) =

√
∂ I(u,v)

∂u

2

+
∂ I(u,v)

∂v

2

, (5)

and

∇D(u,v) =

√
∂D(u,v)

∂u

2

+
∂D(u,v)

∂v

2

. (6)

The segmentation is then generated by a simple single
threshold on this border function. That is a pixel is
considered a border (B(u,v)) if it satisfies the condition

B(u,v) =

{
1 if b(u,v)≥ δthresh

0 otherwise
(7)

We compare the performance of this segmentation
method using the ground truth quantities and the predic-
tions (depths and curvature) generated by our network. We
show the results of this in Figure 7. The results are not
intended to be treated as state of the art segmentations, but
are included to demonstrate a possible future extension of
this work and also to illustrate that the information from
the network can be used to perform similar tasks.

VII. CONCLUSIONS

In this work we present a unified multi task learning
platform which is capable of predicting depths, surface

Fig. 7: Demonstrates a basic segmentation algorithm, that
uses colour, depth and curvature to generate a border
function. The rows of the figure are, top to bottom: Input
colour image, Input ground truth depth, Segmentation
From GT data, Segmentation from Predicted Data. The
key contribution of the depth and curvature to the seg-
mentations, are on the depth boundaries and wall edges
that are difficult to differentiate from colour alone.

normals and surface curvatures using a single RGB im-
age. We show that carefully chosen hand crafted feature
representations can outperform the machine learnt features
provided they are closely related to the prediction task.
This shows that network guidance is a useful aspect and
should not be completely ignored when training neural
networks. We run extensive experiments where we keep
the model capacity of the architecture fixed while grad-
ually increasing the number of prediction tasks to verify
the effectiveness of our hypothesis. We provide a potential
application for our work in a robotic context in the form
of a segmentation example as a qualitative demonstration.
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