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Abstract— 2D fully convolutional network has been recently
successfully applied to object detection from images. In this pa-
per, we extend the fully convolutional network based detection
techniques to 3D and apply it to point cloud data. The proposed
approach is verified on the task of vehicle detection from lidar
point cloud for autonomous driving. Experiments on the KITTI
dataset shows a significant performance improvement over the
previous point cloud based detection approaches.

I. INTRODUCTION

Understanding point cloud data has been recognized as
an inevitable task for many robotic applications. Compared
to image based detection, object detection in point cloud
naturally localizes the 3D coordinates of the objects, which
provides crucial information for subsequent tasks like navi-
gation or manipulation.

In this paper, we design a 3D fully convolutional network
(FCN) to detect and localize objects as 3D boxes from
point cloud data. The 2D FCN [19] has achieved notable
performance in image based detection tasks. The proposed
approach extends FCN to 3D and is applied to 3D vehicle
detection for an autonomous driving system, using a Velo-
dyne 64E lidar. Meanwhile, the approach can be generalized
to other object detection tasks on point cloud captured by
Kinect, stereo or monocular structure from motion.

II. RELATED WORKS

A. 3D Object Detection in Point Cloud

A majority of 3D detection algorithms can be summarized
as two stages, i.e. candidate proposal and classification. Can-
didates can be proposed by delicate segmentation algorithms
[2], [5], [11], [14], [21], [22], [28], [29], [31], sliding window
[30], random sampling [13], or the recently popular Region
Proposal Network (RPN) [26]. For the classification stage,
research have been drawn to features including shape model
[6], [13] and geometry statistic features [22], [27], [29], [31].
Sparsing coding [4], [15] and deep learning [26] are also used
for feature representation.

Besides directly operating in the 3D point cloud space,
some other previous detection alogrithms project 3D point
cloud onto 2D surface as depthmaps or range scans [3], [16],
[17]. The projection inevitably loses or distorts useful 3D
spatial information but can benefit from the well developed
image based 2D detection algorithms.
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Fig. 1. A sample illustration of the structure of the FCN.

B. Convolutional Neural Network and 3D Object Detection

CNN based 3D object detection is recently drawing a
growing attention in computer vision and robotics. [3], [9],
[16], [17], [24], [25] embed 3D information in 2D projection
and use 2D CNN for recognition or detection. [16] also
suggest it possible to predict 3D object localization by 2D
CNN network on range scans. [10] operates 3D voxel data
but regards one dimension as a channel to apply 2D CNN.
[8], [20], [26], [32] are among the very few earlier works on
3D CNN. [8], [20], [32] focus on object recognition and [26]
proposes 3D R-CNN techniques for indoor object detection
combining the Kinect image and point cloud.

In this paper, we transplant the fully convolutional network
(FCN) to 3D to detect and localize object as 3D boxes in
point cloud. The FCN is a recently popular framework for
end-to-end object detection, with top performance in tasks
including ImageNet, KITTI, ICDAR, etc. Variations of FCN
include DenseBox [12], YOLO [23] and SSD [18]. The
approach proposed in this paper is inspired by the basic idea
of DenseBox.

III. APPROACH

A. FCN Based Detection Revisited

The procedure of FCN based detection frameworks can
be summarized as two tasks, i.e. objectness prediction and
bounding box prediction. As illustrated in Figure 1, a FCN
is formed with two output maps corresponding to the two
tasks respectively. The objectness map predicts if a region
belongs to an object and the bounding box map predicts
the coordinates of the object bounding box. We follow the
denotion of [16]. Denote oa

p as the output at region p of the
objectness map, which can be encoded by softmax or hinge
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Fig. 2. A sample illustration of the 3D FCN structure used in this paper. Feature maps are first down-sampled by three convolution operation with the
stride of 1/23 and then up-samped by the deconvolution operation of the same stride. The output objectness map (oa) and bounding box map (ob) are
collected from the deconv4a and deconv4b layers respectively.

loss. Denote ob
p as the output of the bounding box map,

which is encoded by the coordinate offsets of the bounding
box.

Denote the groundtruth objectness label at region p as `p.
For simplicity each class corresponds to one label in this pa-
per. In some works, e.g. SSD or DenseBox, the network can
have multiple objectness labels for one class, corresponding
to multiple scales or aspect ratios. The objectness loss at p
is denoted as

Lobj(p) = − log(pp)

pp =
exp(−oa

p,`p
)∑

`∈{0,1} exp(−oa
p,`)

(1)

Denote the groundtruth bounding box coordinates offsets
at region p as bp. Similarly, in this paper we assume only
one bounding box map is produced, though a more so-
phisticated network can have multiple bounding box offsets
predicted for one class, corresponding to multiple scales or
aspect ratios. Each bounding box loss is denoted as

Lbox(p) = ‖ob
p − bp‖2 (2)

The overall loss of the network is thus denoted as

L =
∑
p∈P
Lobj(p) + w

∑
p∈V
Lbox(p) (3)

with w used to balance the objectness loss and the bounding
box loss. P denotes all regions in the objectness map and
V ∈ P denotes all object regions. In the deployment phase,
the regions with postive objectness prediction are selected.
Then the bounding box predictions corresponding to these
regions are collected and clustered as the detection results.

B. 3D FCN Detection Network for Point Cloud

Although a variety of discretization embedding have been
introduced for high-dimensional convolution [1], [8], for
simplicity we discretize the point cloud on square grids. The
discretized data can be represented by a 4D array with dimen-
sions of length, width, height and channels. For the simplest
case, only one channel of value {0, 1} is used to present
whether there is any points observed at the corresponding

grid elements. Some more sophisticated features have also
been introduced in the previous works, e.g. [20].

The mechanism of 2D CNN naturally extends to 3D
on the square grids. Figure 2 shows an example of the
network structure used in this paper. The network follows and
simplifies the hourglass shape from [19]. Layer conv1, conv2
and conv3 downsample the input map by 1/23 sequentially.
Layer deconv4a and deconv4b upsample the incoming map
by 23 respectively. The ReLU activation is deployed after
each layer. The output objectness map (oa) and bounding
box map (ob) are collected from the deconv4a and deconv4b
layers respectively.

Similar to DenseBox, the objectness region V is denoted
as the center region of the object. For the proposed 3D
case, a 3D sphere located at the object center is used. Points
inside the sphere are labeled as positive / foreground label.
The bounding box prediction at point p is encoded by the
coordinate offsets, defined as:

∆bp = (c>p,1, c
>
p,2, . . . , c

>
p,8)> − (p>, . . . ,p>) (4)

where cp,? define the 3D coordinates of 8 corners of the
object bounding box corresponding to the region p.

The training and testing processes of the 3D CNN follows
[16]. For the testing phase, candidate bounding boxes are
extracted from regions predicted as objects and scored by
counting its neighbors from all candidate bounding boxes.
Bounding boxes are selected from the highest score and
candidates overlapping with selected boxes are suppressed.

Figure 3 shows an example of the detection intermediate
results. Bounding box predictions from objectness points
are plotted as green boxes. Note that for severely occluded
vehicles, the bounding boxes shape are distorted and not
clustered. This is mainly due to the lack of similar samples
in the training phase.

C. Comparison with 2D CNN

Compared to 2D CNN, the dimension increment of 3D
CNN inevitably consumes more computational resource,
mainly due to 1) the memory cost of 3D data embedding
grids and 2) the increasing computation cost of convolving
3D kernels.
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Fig. 3. Intermediate results of the 3D FCN detection procedure. (a) Bounding box predictions are collected from regions with high objectness confidence
and are plotted as green boxes. (b) Bounding boxes after clustering plotted with the blue original point cloud. (c) Detection in 3D since (a) and (b) are
visualized in the bird’s eye view.

On the other hand, naturally embedding objects in 3D
space avoids perspective distortion and scale variation in the
2D case. This make it possible to learn detection using a
relatively simpler network structure.

IV. EXPERIMENTS

We evaluate the proposed 3D CNN on the vehicle detec-
tion task from the KITTI benchmark [7]. The task contains
images aligned with point cloud and object info labeled by
both 3D and 2D bounding boxes.

The experiments mainly focus on detection of the Car
category for simplicity. Regions within the 3D center sphere
of a Car are labeled as positive samples, i.e. in V . Van and
Truck are labeled to be ignored. Pedestrian, Bicycle and the
rest of the environment are labeled as negative background,
i.e. P − V .

The KITTI training dataset contains 7500+ frames of data,
of which 6000 frames are randomly selected for training in
the experiments. The rest 1500 frames are used for offline
validation, which evaluates the detection bounding box by its
overlap with groundtruth on the image plane and the ground
plane. The detection results are also compared on the KITTI
online evaluation, where only the image space overlap are
evaluated.

The KITTI benchmark divides object samples into three
difficulty levels. Though this is is originally designed for the
image based detection, we find that these difficulty levels can
also be approximately used in difficulty division for detection
and evaluation in 3D. The minimum height of 40px for the
easy level approximately corresponds to objects within 28m
and the minimum height of 25px for the moderate and hard
levels approximately corresponds to object within 47m.

A. Performance Analysis

The original KITTI benchmark assumes that detections are
presented as 2D bounding boxes on the image plane. Then
the overlap area of the image plane bounding box with its
ground truth is measured to evaluate the detection. However,
from the perspective of building a complete autonomous
driving system, evaluation in the 2D image space does not
well reflect the demand of the consecutive modules including

TABLE I
PERFORMANCE IN AVERAGE PRECISION AND AVERAGE ORIENTATION

SIMILARITY FOR THE OFFLINE EVALUATION

Easy Moderate Hard

Image Plane (AP) Proposed 93.7% 81.9% 79.2%
VeloFCN 74.1% 71.0% 70.0%

Image Plane (AOS) Proposed 93.7% 81.8% 79.1%
VeloFCN 73.9% 70.9% 69.9%

Ground Plane (AP) Proposed 88.9% 77.3% 72.7%
VeloFCN 77.3% 72.4% 69.4%

Ground Plane (AOS) Proposed 88.9% 77.3% 72.7%
VeloFCN 77.2% 72.3% 69.4%

planning and control, which usually operates in world space,
e.g. in the full 3D space or on the ground plane. Therefore,
in the offline evaluation, we validate the proposed approach
in both the image space and the world space, using the
following metrics:

• Bounding box overlap on the image plane. This is
the original metric of the KITTI benchmark. The 3D
bounding box detection is projected back to the image
plane and the minimum rectangle hull of the projection
is taken as the 2D bounding boxes. Some previous point
cloud based detection methods [2], [16], [30] also use
this metric for evaluation. A detection is accepted if the
overlap area IoU with the groundtruth is larger than 0.7.

• Bounding box overlap on the ground plane. The 3D
bounding box detection is projected onto the 2D ground
plane orthogonally. A detection is accepted if the over-
lap area IoU with the groundtruth is larger than 0.7. This
metric reflects the demand of the autonomous driving
system naturally, in which the vertical localization of
the vehicle is less important than the horizontal.

For the above metrics, the naive Average Precision (AP) and
the Average Orientation Similarity (AOS) are both evaluated.

The performance of the proposed approach and [16] is
listed in Table I. The proposed approach uses less layers and
connections compared with [16] but achieves much better
detection accuracy. This is mainly because objects have
less scale variation and occlusion in 3D embedding. More
detection results are visualized in Figure 4.



TABLE II
PERFORMANCE COMPARISON IN AVERAGE PRECISION AND AVERAGE

ORIENTATION SIMILARITY FOR THE KITTI ONLINE EVALUATION

Easy Moderate Hard

Image Plane (AP)

Proposed 84.2% 75.3% 68.0%
VeloFCN [16] 60.3% 47.5% 42.7%
Vote3D [30] 56.8% 48.0% 42.6%

CSoR 34.8% 26.1% 22.7%
mBoW [2] 36.0% 23.8% 18.4%

Image Plane (AOS) Proposed 84.1% 75.2% 67.9%
VeloFCN [16] 59.1% 45.9% 41.1%

CSoR 34.0% 25.4% 22.0%

B. KITTI Online Evaluation

The proposed approach is also evaluated on the KITTI on-
line system. Note that on the current KITTI object detection
benchmark image based detection algorithms outperforms
previous point cloud based detection algorithms by a signif-
icant gap. This is due to two reasons: 1) The benchmark is
using the metric of bounding box overlap on the image plane.
Projecting 3D bounding boxes from point cloud inevitably
introduce misalignment with 2D labeled bounding boxes.
2) Images have much higher resolution than point cloud
(range scan), which enhances the detection of far or occluded
objects.

The proposed approach is compared with previous point
cloud based detection algorithms and the results are listed
in Table II. The performance of our method outperforms
previous methods by a significant gap of > 20%, which is
even comparable – though not as well as yet – with image
based algorithms.

V. CONCLUSIONS

Recent study in deploying deep learning techniques in
point cloud have shown the promising ability of 3D CNN
to interpret shape features. This paper attempts to further
push this research. To the best of our knowledge, this
paper proposes the first 3D FCN framework for end-to-end
3D object detection. The performance improvement of this
method is significant compared to previous point cloud based
detection approaches. While in this paper the framework are
experimented on the point cloud collected by Velodyne 64E
under the scenario of autonomous driving, it naturally applies
to point cloud created by other sensors or reconstruction
algorithms.

ACKNOWLEDGMENT

The author would like to acknowledge the help from
Xiaohui Li and Songze Li. Thanks also goes to Ji Wan and
Tian Xia.

REFERENCES

[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis. Fast
high-dimensional filtering using the permutohedral lattice. Computer
Graphics Forum, 29(2):753–762, 2010.

[2] Jens Behley, Volker Steinhage, and Armin B. Cremers. Laser-
based segment classification using a mixture of bag-of-words. IEEE
International Conference on Intelligent Robots and Systems, (1):4195–
4200, 2013.

[3] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi,
Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object proposals
for accurate object class detection. Advances in Neural Information
Processing Systems, pages 424–432, 2015.

[4] Mark De Deuge, F Robotics, and Alastair Quadros. Unsupervised
Feature Learning for Classification of Outdoor 3D Scans. Araa.Asn.Au,
pages 2–4, 2013.

[5] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, a. Quadros,
P. Morton, and a. Frenkel. On the segmentation of 3D lidar point
clouds. Proceedings - IEEE International Conference on Robotics
and Automation, pages 2798–2805, 2011.

[6] O.D. Faugeras and M. Hebert. The Representation, Recognition,
and Locating of 3-D Objects. The International Journal of Robotics
Research, 5(3):27–52, 1986.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the KITTI vision benchmark suite. Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 3354–3361, 2012.

[8] Ben Graham. Sparse 3D convolutional neural networks. Bmvc, pages
1–11, 2015.
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Fig. 4. More detection results on the KITTI dataset using 3D FCN.
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