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Abstract— In this paper, we develop a robust efficient vi-
sual SLAM system that utilizes heterogeneous point and line
features. By leveraging ORB-SLAM [1], the proposed system
consists of stereo matching, frame tracking, local mapping,
loop detection, and bundle adjustment of both point and line
features. In particular, as the main theoretical contributions
of this paper, we, for the first time, employ the orthonormal
representation as the minimal parameterization to model line
features along with point features in visual SLAM and ana-
lytically derive the Jacobians of the re-projection errors with
respect to the line parameters, which significantly improves
the SLAM solution. The proposed SLAM has been extensively
tested in both synthetic and real-world experiments whose
results demonstrate that the proposed system outperforms the
state-of-the-art methods in various scenarios.

I. INTRODUCTION

Visual SLAM (V-SLAM) is one of enabling technologies
for autonomous systems such as self-driving cars, unmanned
aerial vehicles and space robots. While most V-SLAM so-
lutions rely on point features due to their simplicity, line
features commonly seen in man-made environments are less
sensitive to lighting variation and position ambiguity and
have been only used in recent work [2]–[8]. In principle, the
combination of point and line features would provide more
geometric constraints about the structure of the environment
than either one, which motivates us to design robust V-SLAM
with point and line features.

Recently, optimization-based approaches have become fa-
vorable for the V-SLAM due to its superior accuracy per
computational unit as compared with filtering-based ap-
proaches [9]. In particular, graph-based SLAM is one of
the most popular formulations which constructs a factor
graph whose nodes correspond to the states to estimate and
edges represent measurement constraints between the nodes.
When incorporating the line features into the traditional
point feature-based graph SLAM framework, two challenges
arise: The first one is that the spatial line is often over
parameterized for the convenience of transformation [3], [4],
[7], which incurs extra computational overhead in the graph
optimization. Note that while a spatial line has only four
degrees of freedom, typically it is represented by its two
spatial endpoints or the Plücker coordinates with six degrees
of freedom. Secondly, it is known that the Jacobian plays
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an important role when using an iterative approach to solve
the graph optimization problem. In part because of the over
parametrization, most approaches [6], [7] using line features
typically employ the numerically computed Jacobians, which
incurs approximation. In contrast, we analytically compute
the Jacobians during the graph optimization in order to
improve accuracy as well as efficiency.

In particular, this paper introduces a robust and efficient
graph-based visual SLAM system using both point and line
features with a unified cost function, combining the re-
projection errors of points and lines. In our back-end, the spa-
tial line is parametrized by the orthonormal representation,
which is the minimal and decoupled representation. Based on
this minimal parametrization, we further derive the analytical
Jacobian of the line re-projection error. Specifically, the main
contributions of this paper are the following:
• An improved extraction and matching method for line

features is introduced to robustify data association.
• In the back-end of the proposed visual SLAM, we

employ the orthonormal (minimal) representation to
parameterize lines and analytically compute the corre-
sponding Jacobians.

• We design and implement a complete visual SLAM sys-
tem using both point and line features, which includes
stereo matching, frame tracking, local mapping, bundle
adjustment of both line feature and point feature, as well
as point-line based loop detection. Extensive experimen-
tal results are presented to validate its performance.

II. RELATED WORK

Some methods have been proposed to parameterize line in
three-dimensional (3D) space efficiently. Sola [10] summa-
rizes several methods to represent line including Plücker
coordinates, Anchored Plücker Lines, and homogeneous-
points line etc. For minimizing the number of the parameters,
Bartoli [11] proposed the orthonormal representation with the
minimum four parameters to represent spatial lines in SFM.

Combination of point and line features has been utilized in
the SLAM community recently. Marzorati et al. [3] proposed
a SLAM with points and lines, which uses a special trifocal
cameras to detect and reconstruct 3D lines. Rother [2]
reconstructed points and lines at the cost of requiring a
reference plane to be visible in all views. Koletschka et
al. [5] proposed a stereo odometry based on points and lines,
which computes the sub-pixel disparity of the endpoints
of the line and deals with partial occlusions. Lu [7] fuses
point and line features to form a RGBD visual odometry
algorithm, which extracts 3D points and lines from RGB-D
data. It is also proved that fusing these two types of features
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(a) Point and line features detected in one image (b) The point and line map
Fig. 1. The proposed visual SLAM with point and line features on the it3f dataset [6]. Note that in (b), the green lines indicate the trajectory of camera
motion. The blue frames represent keyframes, the current frame in green, and the local map for the tracking at that moment in red.

produced smaller uncertainty in motion estimation than using
either feature type alone in his work. Ruben [8] proposed a
probabilistic approach to stereo visual odometry based on
the combination of points and line segments, which weighs
the associated errors of points and line segments according
to their covariance matrices.

III. DETECTION AND REPRESENTATION OF LINE
FEATURES

A. Extraction and Description of Line Features

Line Segment Detector (LSD) [12] is a popular feature
detector for line segments. It is designed to work on noisy
image in various scenes without parameter tuning and is able
to provide subpixel accuracy. However, the LSD suffers from
the problem of dividing a line into multiple segments in some
scenarios as shown in Fig. 2, causing failures for matching
and tracking line features.

Fig. 2. Performance of LSD. Left: Original image. Right: Line features
detected in the image by LSD.

Therefore, in this paper, we seek to improve the LSD
algorithm by minimizing the influence of dividing a line
into multiple segments. In particular, we merge the line
segments which should be on the same one straight line
while being divided to several parts. For each line segment
extracted by LSD, the start point and end point can be
distinguished, because the direction is encoded by which

Fig. 3. Distances between two line segments.

side of the line segment is darker. In our improvement, we
merge the segments according to their differences of both
direction and distance. As shown in Fig. 3, l represents
the minimum distance between the endpoints of the two
segments, and d indicates the distance from the midpoint
of one segment to the other line segment. If d and l are
smaller than the given threshold and the direction difference
is also small, then the two segments are considered to be
the candidates to be combined. This improved line detector
has the advantages of making more robust and accurate data
association as demonstrated in our experiments. Fig. 4 shows
the result of the two different detectors. Note that the merged
line segments found by our improved detector is represented
by the LBD line descriptor [13], which is a 256-bit vector
same as ORB point descriptor [14]. The distance between
the two descriptors can be another criterion for fusing two
lines.

B. Line Feature Matching

Based on the LBD line segment descriptor, we introduce
the geometric properties [15] of line to perform effective
line matching. In our approach, two successfully matched
line features l1 , l2 need to satisfy the following conditions:

1) the angular difference of two matched lines is smaller
than a given threshold Φ;

2) the length of l1, ‖l1‖ is similar to the length of l2,
‖l2‖: min(‖l1‖,‖l2‖)

max(‖l1‖,‖l2‖) > τ ;
3) the overlapping length of the two lines is greater than

a certain value: loverlap
min(‖l1‖,‖l2‖) > β;

Fig. 4. Comparative results of different detectors. Left: The original LSD
detector. Right: The proposed improved detector.



4) the distance between the two LBD descriptors is less
than a certain value.

C. Geometric Representation

As 3D line can be initialized by its two spatial points,
we assume that their homogeneous coordinates are X1 =
(x1, y1, z1, r1)T , X2 = (x2, y2, z2, r2)T respectively, while
the inhomogeneous coordinates are represented as X̃1, X̃2.
Then Plücker coordinates can be constructed as follows:

L =

[
X̃1 × X̃2

r2X̃1 − r1X̃2

]
=

[
n
v

]
∈ P5 ⊂ R6 (1)

which is a 6-dimensional vector consisting of n and v. v is
the direction vector of the line and n is the normal vector
of the plane determined by the line and the origin [10].

Since 3D line has only four degrees of freedom, the
Plücker coordinates are over parameterized. In the back-
end graph optimization, the extra degrees of freedom will
increase the computational cost and cause the numerical
instability of the system. Thus, Bartoli [11] proposed the
orthonormal representation with minimum four parameters.
We can obtain the orthonormal representation (U ,W ) ∈
SO(3)× SO(2) from Plücker coordinates:

L = [n|v] =
[

n
‖n‖

v
‖v‖

n×v
‖n×v‖

] ‖n‖ 0
0 ‖v‖
0 0

 (2)

= U

 w1 0
0 w2

0 0

 . (3)

The orthonormal representation of line (U ,W ) consists of:

U = U(θ) =

 u11 u12 u13
u21 u22 u23
u31 u32 u33

 (4)

W = W (θ) =

[
w1 −w2

w2 w1

]
. (5)

We can update the orthonormal representation with the
minimum four parameters δθ = [θT , θ]

T ∈ R4, we can up-
date U with the vector θ ∈ R3, and update W with θ. Each
sub-parameter of δθ has a specific geometric interpretation.
W updated by θ encapsulates the vertical distance d from
the origin to the spatial line. As shown in Fig. 5, in the
case of fixed W represented in gray, the three-dimensional
vector θ is related to the rotation of the line around three
axes, drawn in orange, green, and blue.

Note that in the proposed visual SLAM system, we only
use the orthonormal representation in the back-end opti-
mization, as it is the minimal and decoupled representation.
However, in the other steps, the Plücker coordinates are
used due to its convenience in camera projection, endpoints
trimming, and line initialization [6], [11].

Fig. 5. Geometric interpretation of four parameters δθ in updating
orthonormal representation.

IV. GRAPH OPTIMIZATION WITH POINT AND LINE
MEASUREMENTS

In what follows, we present in detail how the line
measurements are incorporated into our graph-based visual
SLAM system, while the point measurements are treated in
a standard way, for example, as in ORB-SLAM [1].

A. Measurement Models of Point and Line Features

We use the transformation matrix Tcw ∈ SE(3) to denote
the transformation from world frame to camera frame, which
consists of a rotation matrix Rcw ∈ SO(3), and a translation
vector tcw ∈ R3, as shown in (6). First, we convert the 3D
line Lw from the world frame to the camera frame [16]
as shown in (7), denoted as Lc, with representation of the
Plücker coordinates. Then the 3D line Lc is projected to
the image in (8), described as l′ on image plane, according to
the known intrinsic parameters of camera. It should be noted
that only normal components nc in the Plücker coordinates
Lc can provide meaningful information in the projection.
Then, the re-projection error of 3D line is represented as
the distance between two homogeneous endpoints xs, xe of
the matched line segment z to the back-projected line l′ on
image plane as shown in (9).

Tcw =

[
Rcw tcw

0 1

]
(6)

Lc =

[
nc
vc

]
= HcwLw =

[
Rcw [tcw]×Rcw

0 Rcw

]
Lw,

(7)
where [.]× denotes the skew-symmetric matrix of a vector,
and Hcw represents transformation matrix of the line.

l′ = Knc =

 fv 0 0
0 fu 0

−fvcu fucv fufv

nc =

 l1
l2
l3

 , (8)

where K denotes the projection matrix of the line [10].

el = d (z, l′) =

[
xT
s l
′√

l21 + l22
,
xT
e l
′√

l21 + l22

]T
, (9)

where d(.) denotes the distance function.



The camera pose Tkw, the 3D point position Xw,i, and
the position of 3D line Lw,j are denoted as vertices in the
graph model. The two types of edge, the pose-point edge
in (10), the pose-line edge in (11), are constructed according
to the front-end data association. The re-projection errors
encapsulated in the edges are:

Epk,i=xk,i −KTkwXw,i (10)

Elk,j = d (zk,j ,Knc[HcwLw,j]) , (11)

where xk,i stands for the coordinates of point in the im-
age, nc[.] denotes the normal components of the Plücker
coordinates. For simplicity, we omit the conversion from
homogeneous coordinates to the inhomogeneous in the above
equations. Assuming that the observations obey Gaussian
distribution, the final cost function C can be obtained as
in (12), Where Σp−1, Σl−1 are the inverse covariance
matrices of points and lines, and ρp, ρl are robust Huber
cost functions. The back-end optimization minimizes the cost
function C.

C =
∑
k,i

ρp

(
EpTk,iΣp

−1
k,iEpk,i

)
+
∑
k,j

ρl

(
ElTk,jΣl

−1
k,jElk,j

)
(12)

B. Jacobian of Line Re-projection Error

It is known that the Jacobian is important when using
an iterative approach to solve the the graph optimization
problem. To the best of our knowledge, this is the first
paper deriving out the analytical Jacobains of re-projection
errors with respect to line parameters, which including the
Jacobian with respect to the small pose changes δξ, and to the
four dimensional vector δθ which updates the orthonormal
representation. The Jacobian of the line re-projection error
el = d(z, l′) with respect to the back-projected line l′ =
[l1, l2, l3]T is given by:

∂el

∂l′
=

1

ln

[
u1 − l1e1

l2n
v1 − l2e1

l2n
1

u2 − l1e2
l2n

v1 − l2e2
l2n

1

]
2×3

, (13)

where e1 = xT
s l
′, e2 = xT

e l
′, ln =

√
(l21 + l22). xs =

[u1, v1, 1]
T and xe = [u2, v2, 1]

T are the two endpoints of
matched line segment in the image.

Recall the projection of 3D line l′ = Knc, then:

∂l′

∂Lc
=
∂Knc
∂Lc

=
[
K 0

]
3×6 (14)

Assuming that the orthonormal representation of line in the
world frame Lw, which consists of U and W , We write the
Jacobians directly:

∂Lc

∂Lw
=
∂HcwLw

∂Lw
= Hcw (15)

∂Lw

∂δθ
=

[
−[w1u1]× −w2u1

−[w2u2]× w1u2

]
6×4

, (16)

where ui is the ith column of U .
It is difficult to compute ∂Lw

∂δξ
directly, so we divide the

pose changes δξ into two parts, the translation part δρ and
the rotation part δφ. δφ are set to zeros when computing

Jacobian with respect to δρ. With a transformation matrix
T ∗ containing the translation δρ, the new line L∗c is:

T ∗ = exp
(
δξ
∧)Tcw ≈ [ I δρ

0T 1

]
Tcw (17)

R∗ = Rcw, t∗ = δρ + tcw (18)

H∗cw =

[
Rcw [δρ + tcw]×Rcw

0 Rcw

]
(19)

L∗c = H∗cwLw =

[
Rcwnw + [δρ + tcw]×Rcwvw

RT
cwvw

]
,

(20)
where exp

(
δξ
∧) denotes the exponential map from Lie

algebras to Lie Groups (hence δξ∧ is a Lie algebra). Then
it is easy to deduce the partial derivative of δρ :

∂L∗c
∂δρ

=

[
[δρ+tcw]×Rcwvw

∂δρ

0

]
=

[
−[Rcwvw]×

0

]
6×3

(21)
The process to deduce ∂L∗

c

∂δφ
is similar to ∂L∗

c

∂δρ
, except for

δρ = 0. We only shows the final result Eq.22, and drops
the coordinate frame subscripts for readability. Readers can
refer to the Appendix for more details.

∂L∗c
∂δφ

==

[
−[Rn]× −

[
[t]×Rv

]
×

−[Rv]×

]
6×3

(22)

Stacking the Jacobians of δρ and δφ , we can obtain the final
Jacobian of δξ:

∂L∗c
∂δξ

=

[
−[Rn]× −

[
[t]×Rv

]
× −[Rv]×

−[Rv]× 0

]
6×6

(23)

Finally, the Jacobian of the re-projection error with respect
to the line parameters can be found using the chain rule:

Jlξ =
∂el
∂δξ

=
∂el
∂l′

∂l′

∂Lc

∂Lc

∂δξ
(24)

Jlθ =
∂el
∂δθ

=
∂el
∂l′

∂l′

∂Lc

∂Lc

∂Lw

∂Lw

∂δθ
(25)

Once these analytical Jacobians are available, we can employ
iterative algorithms such as Gaussian-Newton to solve the
graph optimization problem.

V. EXPERIMENTAL RESULTS

A. System Implementation

The proposed visual SLAM system is designed and im-
plemented based on ORB-SLAM2 [1] and has three main
parallel threads (see Fig. 6): Tracking, Local Mapping and
Loop Closing. The global BA thread is started only after
finishing loop closing. In the following, we briefly describe
each component while focusing on the difference from [1].



Fig. 6. The architecture of the proposed graph-based visual SLAM system
using both point and line features.

1) Tracking: Our system uses rectified stereo image se-
quence as input. For every input frame, four threads are
launched to extract point feature (Keypoints) and line feature
(Keylines) for left and right image in parallel. ORB features
are applied for point feature detection and description. Line
feature is detected by LSD and described by LBD descriptor.
Then two threads are launched for stereo matching and all
the features are classified as stereo or monocular features
according to whether the feature in the left image could
find its stereo match in the right image, as shown in Fig.
7. The stereo matching of 3D lines performs as described
in Section III-B. For each monocular feature, we search a
match with other unmatched features in other keyframes.
Once finding the matched feature, we triangulate the feature
in the same way as stereo features.

Fig. 7. The workflow of pre-processing images.

Motion estimation is made by two types of tracking,
namely tracking last frame and tracking local map. The
former one gives an initial pose estimation with the cor-
respondences of adjacent frame, while the latter one refines
the pose with much more constraints between the current
frame and the local map. After the data association, the pose
is estimated by motion-only BA using Levenberg-Marquardt
algorithm [17].

We use a constant velocity motion model to predict the
camera pose as a prior when tracking last frame. Once the
prior is known, the map points and the map lines in the last
frame or the local map can be projected to current frame to

build more associations. Then we perform a guided search to
bound the complexity and enhance the accuracy of matching.
Since the 3D line may be partially observed, the projected
2D line cannot be handled the same as the projected 2D
point. Fig. 8 shows a simple example, the dash lines can’t
be observed by the camera while the solid lines can. In order
to ensure the visibility of the projected 2D line segments in
image plane, we propose a culling based method described
as follow:

1) Transform the 3D line Lw from world frame to current
frame according to the prior Tkw′. Compute the two
endpoints Xsk and Xek.

2) Discard the line if both Xsk and Xek are
behind the camera. If one of them is behind
the camera, compute the intersection of the
plane and the 3D line by Xik = Xsk +
λ (Xsk −Xek) , where λ is a value between 0 and 1,
as depicted in Fig. 8.

3) Project the two 3D endpoints in front of the camera
to image plane. Since the projected line maybe lays
across or even out of the image bound, all the projected
lines must be dealt by Liang-Barsky algorithm [18]
which is an efficient line clipping algorithm and can
retain the orientation of original line.

Then line matching can be done efficiently thanks to the
restricted searching space and binary descriptor. The last step
is to decide whether the current frame is a new keyframe.
We adopt the same policy as ORB-SLAM2 [1] and add more
conditions related to line features.

Fig. 8. Partial observation of 3D line. (The dash lines can’t be observed by
the camera while the solid lines can. The red points denotes the intersection
of the plane and the 3D line.)

2) Local Mapping: Once a new keyframe is added, the
connections between the current keyframe and other frames
will be updated by providing the co-visible information.
Local mapping triangulates more map points and lines,
removes outlier landmarks, and deletes redundant keyframe.
All the camera poses and landmarks in the local map are
adjusted by performing local BA. During back-end optimiza-
tion, the 3D line is parameterized by infinite spatial line,
hence its endpoints have no affect on the final optimization
results. However, the endpoints play an important role in
matching and visualizing, so our system need to maintain
two endpoints of the 3D line after optimization. It can be
done by back-projecting the 2D line in current keyframe
and trimming the corresponding 3D line, which is similar
to SLSLAM [6].



3) Loop Closing and Global BA: The loop closing thread
is used to reduce drift accumulated during exploration by
loop detection and loop correction. Loop detection try to
find candidate keyframes based on the technique of bags
of words. The visual vocabulary should be trained offline
with both point and line features. Here we cluster the ORB
features and LBD features to build their own vocabulary
by DBOW [19] respectively. For every input keyframe, it
is converted to the bag of words vector and stored in the
online database. The similarity score between two bag of
vector va and vb can be computed as follow:

s = λsp(va,vb) + (1− λ) sl(va,vb), (26)

where λ is an empirical weight coefficient related to scenes.
sp(va,vb) and sl(va,vb) are the similarity score of point fea-
ture and line feature. Then we can find the correspondences
between the new keyframe and the candidate keyframe.
we also refine the correspondences with time consistency
test [20]. And try to compute a SE(3) transformation matrix
by EPnP [21] with corresponding points in a RANSAC
scheme [22]. If failed, we alternatively compute a SE(3)
by a method proposed in [23] using the matching lines
across two stereo views. Finally, a pose graph optimization
is launched to correct the loop. Once finished, a global BA
is incorporated to achieve the optimal solution in a separate
thread.

B. Results

Various experiments have been conducted in both synthetic
and real-world scene. The accuracy and time efficiency of our
approach are analyzed. In these experiments, the algorithm
run on a computer with Intel Core i7-2600 @ 3.40GHz and
16GB memory in a 64-bit Linux operating system.

Fig. 9. Synthetic scene with 25 lines and variable number of points.

1) Synthetic data: There is an accurate data association in
synthetic Scene. And this experiment is proposed to verify
the correctness and advantage of the introduced line feature
in the back-end optimization. The derived Jacobian of 3D
line re-projection error is used in the optimization. The
synthetic scene in Fig. 9 contains a house with a total of
25 lines and variable number of points. This construction
is similar to the scene in [10]. Virtual stereo camera with
baseline of 0.5m moves around the house, collecting images
of 640 × 480 pixels. Gaussian white noise with a variance

of 1 pixel are added to the points and endpoints of lines in
the captured images. Loop detection is disabled to display
pose error clearly. RMSE (Root Mean Square Error) of
RPE (Relative Pose Error) is the metric to evaluate the
performance of our method. Fig. 10 shows an estimated
trajectory by our proposed system. The average result of
Monte Carlo experiments of 25 runs, is shown in Table
I. RPEtrans1 and RPErot1 are translation and rotation
errors obtained in the scene with lots of point features, while
RPEtrans2 and RPErot2 result from the scene containing
few points. In the scene with comparable number of points
and lines, odometry based on only point feature performs
better than one using only lines. The reason may be that
re-projection error of an infinite long spatial line is only
related to the normal vector of the Plücker line coordinates
as shown in Section IV-A. So the matched point features
produce more constrains than the same number lines. The
table shows that the method based on point features has a
larger error than on line features in the scene with few points.
Our method based on fusion of points and lines outperform
than the both.

Fig. 10. Top and oblique views of estimated camera trajectory.

TABLE I
RPE OF THE METHODS BASED ON DIFFERENT FEATURES

Point Feature Line Feature Point-Line Feature
RPEtrans1(m) 0.08702 0.09827 0.07852
RPErot1(rad) 0.00430 0.00486 0.00381
RPEtrans2(m) 0.19254 0.09621 0.08637
RPErot2(rad) 0.00798 0.00481 0.00408

2) Real data: The real-world scene experiment is carried
on both it3f dataset [6] and KITTI dataset [24]. For a more
comprehensive assessment of the approach presented in this
article, several open source approaches are compared in this
section, including ORB-SLAM2 [1], SLSLAM [6], PLSVO
[8] and PL-SLAM presented in this paper. ORB-SLAM2 is
a complete point feature based SLAM system that contains
map reuse, loop detection and relocation. SLSLAM is based
on the straight line feature, constructing scene composed
of only straight lines, which is a relatively excellent line
based SLAM system. PLSVO is only an odometry using
two endpoints to represent the spatial line and performing
brute-force matching in the front-end.

Fig. 11 shows images from the it3f dataset, and Fig. 1
shows the results generated from this dataset. Fig. 12 shows
the trajectory and map of the camera before and after a



Fig. 11. Sample images used in it3f dataset [6].

Fig. 12. Results before and after of the loop closure. Left: Results before
the loop closure. Right: Results after the loop closure and loop correction.

loop closure followed by a bundle adjustment. PLSVO has
a poor performance on this dataset, so we only compare
ORB-SLAM2 and SLSLAM with our proposed PL-SLAM.
it3f dataset doesn’t provided the ground truth. The degrees
of drift before the loop closure are compared. For fair
comparison, both ORB-SLAM2 and PL-SLAM disable the
loop detection thread, and use the same parameters in point
feature extraction. For each image, we extract 1000 point
features at 8 scale levels with a scale factor of 1.2.

TABLE II
ERRORS BEFORE LOOP CLOSURE

Method Errors Before Loop Closure
PL-SLAM [−0.3549, 1.4056,−0.0273]T

ORB-SLAM2 [−0.3748, 1.9065, 0.17442]T

SLSLAM [−0.3141,−0.5455,−0.06449]T

Fig. 13 shows the top and side views of the reconstruction
results by the three systems without loop closures, respec-
tively. The point with zero coordinates is the starting point
and the other is the finishing point. Table II shows the drift
before the loop closure (translation in X(m), Y (m), Z(m)).
It can be observed from the table that PL-SLAM perform
better than ORB-SLAM2, which demonstrate the strength
of including constraints of straight line. SLSLAM has the
best performance, only -0.5455 meters error in the vertical
direction. A reason can account for this is that it3f dataset
contains low-textured scenarios, reflective white walls, win-
dows and floor etc. At the same time, due to the influence of
the ceiling lights, point features prone to be mismatched and
bring big errors. In the optimization process of our proposed
approach, we don’t set different weights to the error terms
of points and lines in (12) with consideration of versatility.
When the component based on point feature has unstable
performance and low accuracy, the proposed system based
on combination of point and line features will be affected,
which coincides with the synthetic scene experiment.

In terms of time efficiency, the execution time will not
increase much because features are extracted in parallel

Fig. 13. Comparison results on it3f dataset [6] without loop closure. The
top and bottom row show the top and side views of the results.

threads. For images with dimensions of 640×480, the feature
extraction and stereo matching in ORB-SLAM2 requires
32.15ms, while our system requires 42.401ms with additional
consideration of line features on it3f dataset. Our tracking
thread can achieve a performance of 15.1 frame/s, which
can satisfy the real-time requirements.

Fig. 14. Results on KITTI dataset. Left: The map composed of point and
line features. Right: One frame with extracted point and line features.

We also evaluate our system on KITTI odometry bench-
mark. Sequences 03, 04, and 10, which have scenarios with
lines, are selected. Fig. 14 shows the result on KITTI dataset
in our system. In this experiment, we only compare our
PL-SLAM with ORB-SLAM2 and PLSVO1. Loop detection
modules are all disabled for fair comparison. In this experi-
ment, RPE and ATE (Absolute Trajectory Error) are used
as evaluation criterion. Table III shows the results of the
experiment, where Trans and Rot represent RPE of the
translations and rotations respectively. The smallest ATE
in each sequence is marked in the table. It is shown that
our system has acceptable performance in several sequences.
A performance improvement can be achieved compared to
the original ORB-SLAM2. PLSVO has a poor performance
because of the brute-force matching in data association and
accumulated errors.

VI. CONCLUSIONS

To improve the accuracy and robustness of visual SLAM,
we present a graph-based approach using point and line
features. The spatial line is expressed by the orthonormal
representation in the optimization process, which is the
compactest and decoupled form. And the Jacobians of re-
projection error with respect to the line parameters is also
derived out to make a good performance. It is proved that
fusing these two types of features will produce more robust
estimation in synthetic and real-world scene. Our robust
visual SLAM is also able to work in real-time. In the future,
we will investigate how to introduce inertial sensors into our
system with point and line features.

1As the source code of the front-end module in SLSLAM is unavailable,
we do not include it in the experiments on KITTI dataset.



TABLE III
RESULTS OF ORB-SLAM, PLSVO AND PL-SLAM ON KITTI DATASET

PLSVO ORB-SLAM2 PL-SLAM
Trans(m) Rot(rad) ATE(m) Trans(m) Rot(rad) ATE(m) Trans(m) Rot(rad) ATE(m)

sequence 03 0.2247 0.0046 13.2415 0.1598 0.0023 2.6638 0.1601 0.0024 2.6203
sequence 04 0.2045 0.0019 2.3020 0.1180 0.0015 0.7415 0.1183 0.0017 0.3663
sequence 10 0.1809 0.0053 9.0208 0.1143 0.0022 6.3974 0.1166 0.0021 5.9207

APPENDIX

This appendix will explain the Jacobian with respect to δφ
in detail. δρ are set to zeros when computing Jacobian with
respect to δφ. With a transformation T ∗ containing rotation
δφ, the new 3D line is denoted as L∗c :

T ∗ = exp
(
δξ
∧)T ≈ (I +

[
[δφ]× 0

0T 0

])
T (27)

R∗ =
(
I + [δφ]×

)
R, t∗ =

(
I + [δφ]×

)
t (28)

H∗cw =

 (I + [δφ]×

)
R

(
I + [δφ]×

)
[t]×R

0
(
I + [δφ]×

)
R

 (29)

L∗
c = H∗

cwLw =

[ (
I + [δφ]×

)
Rn+

(
I + [δφ]×

)
[t]×Rv(

I + [δφ]×
)
Rv

]
,

(30)
where [.]× denotes the skew-symmetric matrix of a vector.

In the process of deducing H∗cw, the properties of rotation
matrix (Ra) × (Rb) = R (a× b) , R ∈ SO (3) is used.
Then ∂L∗

c

∂δφ
can be written directly:

∂L∗c
∂δφ

=

 ∂[δφ]×Rn

∂δφ
+

∂[δφ]×[t]×Rv

∂δφ
∂[δφ]×Rv

∂δφ

 (31)

=

 − [Rn]×δφ
∂δφ

−
∂[[t]×Rv]×δφ

∂δφ

− [Rv]×δφ
∂δφ

 (32)

=

[
−[Rn]× −

[
[t]×Rv

]
×

−[Rv]×

]
6×3

(33)
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